Content uploaded by Katherine W. Myers
Author content
All content in this area was uploaded by Katherine W. Myers
Content may be subject to copyright.
North Pacic Anadromous Fish Commission
Bulletin No. 4: 159–177, 2007
Abstract: Knowledge of migration routes, migration timing, and resident areas for populations of Pacic salmon in
the open ocean is vital to understanding their status and role in North Pacic marine ecosystems. In this paper we
review information from the literature, as well as some previously unpublished data, on stock-specic distribution
and migration patterns of salmon in the open ocean, interannual variation in these patterns, and associated ocean
conditions, and we consider what this information can tell us about ocean conditions on small- to mid-size scales.
We conclude that climate-driven changes in open-ocean feeding areas and along the migratory routes of Asian
and North American salmon can result in predictable interannual changes in stock-specic distribution, migration
patterns, and other biological characteristics. Global climate change is currently causing more frequent and un-
predictable environmental changes in the open ocean habitats through which salmon migrate. Data on changes
in the distribution and migration of indicator stocks of adult salmon returning from the open ocean might provide
an “advance warning” of interannual changes in North Pacic marine ecosystems.
All correspondence should be addressed to K. Myers.
e-mail: kwmyers@u.washington.edu
Stock-Specic Distributions of Asian and North American Salmon in the Open
Ocean, Interannual Changes, and Oceanographic Conditions
Katherine W. Myers1, Natalia V. Klovach2, Oleg F. Gritsenko2,
Shigehiko Urawa3, and Thomas C. Royer4
1School of Aquatic and Fishery Sciences, University of Washington,
Box 355020, Seattle, WA 98195-5020, USA
2Russian Federal Research Institute of Fisheries & Oceanography (VNIRO),
17 V. Krasnoselskaya, Moscow 107140, Russia
3National Salmon Resources Center, Fisheries Research Agency,
2-2 Nakanoshima, Toyohira-ku, Sapporo 062-0922, Japan
4Center for Coastal Physical Oceanography, Department of Ocean, Earth and Atmospheric Sciences,
Old Dominion University, Norfolk, VA 23529, USA
Keywords: salmon, ocean, distribution, stocks, interannual variation, oceanographic conditions
INTROdUCTION
Formore than fty years, research studies coordinated
by the International North Pacic Fisheries Commission
(INPFC 1955–1992) and the North Pacic Anadromous
Fish Commission (NPAFC 1993-present) have focused on
determining distribution and migration patterns of Pacic
salmon (Oncorhynchus spp.) in the open ocean (e.g., see
datasynthesesandreviewsbyGodfreyetal.1975;Frenchet
al.1976;Neaveetal.1976;Majoretal.1978;Takagietal.
1981;Burgner1991;Healey1991;Heard1991;Salo1991;
Sandercock1991).Thislargebodyofworkhasledtosome
generalhypothesesaboutoceanicdistributionandmigration
ofsalmonpopulations,andinparticularabout:(1)migration
routes,migrationtiming,andresidentareasofPacicsalmon
as population- or stock-specic traits, and (2) variation in
oceanconditions(e.g.,temperature,salinity,oceancurrents)
thatcan inuence stock-specic distributionand migration
patterns.Scientistshavelongrecognized,however,thatre-
Myers, K.W., N.V. Klovach, O.F. Gritsenko, S. Urawa, and T.C. Royer. 2007. Stock-specic distributions of Asian
and North American salmon in the open ocean, interannual changes, and oceanographic conditions. N. Pac.
Anadr. Fish Comm. Bull 4: 159–177.
© 2007 The North Pacic Anadromous Fish Commission
lations among salmon distribution, migration patterns, and
environmental conditions in the open ocean are obscured
whenstocksfrom different continents, geographic regions,
andsub-regions intermix (e.g.,Manzer et al.1965; Takagi
etal.1981). Untilrecently,signicantprogressinresearch
onthisissuehasbeenlimitedbythelackofcomprehensive
baselinedata on salmon populations throughout the Pacic
Rimandofaccuratemethodsforidentifyingsalmonstocks
migratingthroughtheopenocean(e.g.,NPAFC2004).
Inarecentreviewand synthesisofinformation onsal-
monbehaviorandecology,Quinn(2005)concludedthat“we
stillhavelittledirectinformationonthemovementpatterns
and orientation mechanisms used by salmon on the open
ocean.”Whileitisbeyondthescopeofourpapertoresolve
these major questions, we hope to draw attention to these
issuesasafocusforfutureresearchonthestatusandroleof
PacicsalmoninNorthPacicmarineecosystems.
Ourspecicobjectivesinthispaperareasfollows: (1)
provide a brief overview of information on stock-specic
159
NPAFC Bulletin No. 4
160
Myers et al.
distribution and migration patterns of salmon on different
spatial and temporal scales in the open ocean, (2) provide
examplesofinterannualvariationinsalmondistributionand
migrationin relation toocean conditions, (3)review some
recentchangesinoceanconditions(physical)thatmayaffect
stock-specic salmon distribution and migration patterns,
and(4)considerwhether annual variation in stock-specic
distribution and migration patterns can tell us something
aboutchangesinoceanconditions.
MATERIALS ANd METHOdS
This paper synthesizes previously published scientic
literatureandprocessedresearchreports,and analyzesboth
publishedandunpublisheddata.Overtheyears,manydiffer-
entmaterialsandmethodshavebeenusedtosampleandana-
lyze salmon andsurrounding oceanic conditions. Samples
werenotcollectedconsistentlybylocation,time,orintensity.
Capturemethodsincludedpurseseines, longlines,gillnets,
andsurfacetrawls(e.g.,Hartt 1975;Karpenkoet al. 2005).
Stockidentication techniques haveincludedhighseastag-
ging,serology,morphometry,scales(measuringage,circuli
patterns,or both), natural parasitetags,geneticanalysis(al-
lozymeandDNA),otolithmarks,andcoded-wiretags (e.g.,
Hartt1962;Myersetal.2004).Oceanographicobservations
weremadeindependently(e.g.,Favoriteet al.1976),direct-
lyaboardcharteredshing vessels at shing stations,(e.g.,
Eisneretal.2005),orjointlyinsheries-oceanographicsur-
veysaboardresearchvessels(e.g.,KhenandBasyuk2005).
Becauseoflimitedspace,wedonotattemptacompre-
hensivereview,andinsteadwefocusonresearchpertaining
toafewmajorpremises.Thesepremisesinclude:(1)Pacic
salmon in the open ocean have stock-specic distribution
andmigration patterns, (2) interannualvariation in salmon
distributionintheopenoceanduringthespring-summersea-
sondependslargelyonoceanconditionsduring thepreced-
ingwinter,(3)circulationandclimatesystemsinthe North
Pacic Ocean and Bering Sea are interconnected, and (4)
oceanographicconditionsintheseregionshavebeenchang-
ingsignicantlyoverthepastseveraldecades,evenpriorto
theclimaticregimeshiftof1977.
We use the term “juvenile” to denote salmon in their
rstocean year, and “immature” or“maturing” to indicate
older sh. By our denition, the “open ocean” refers pri-
marilytodeep-wateroceanicregions beyondneriticwaters
(<200mdeep) overthecontinental shelf.Themajorityof
oursampleswerematuringpinksalmon(O. gorbuscha)and
immature and maturing chum (O. keta) and sockeye (O.
nerka)salmon,whicharethemostabundantmaturitygroups
and, more generally,Pacic salmon species inhabiting the
openocean. Thedata from high-seas, salmon-tagging ex-
perimentsusedinafewexamplesarefromasharedNPAFC
databasethatiscurrentlyupdatedandarchivedbytheHigh
SeasSalmonResearchProgram,SchoolofAquaticandFish-
erySciences,UniversityofWashington,Seattle.
RESULTS ANd dISCUSSION
Stock-specic Distribution and Migration Patterns of
Salmon in the Open Ocean
AmajorpremiseofthisreviewisthatPacicsalmonin
theopen ocean havestock-specic distribution andmigra-
tionpatterns.Thisis not a new idea.Moiseev(1956)was
oneoftherstscientiststopublishevidencethatthemarine
habitatsofindividualstocksofsalmonarelocatedinspecic
areasoftheopenocean.Recentgeneticworkinfreshwater
habitats has revealed a strongly hierarchical structuring of
geneticvariationthatdescendsbygeographyfromthelarg-
est scale (i.e., ancestral) geographic lineages, to regional
geographic subdivisions, to individual subbasins, and to
life-historysubdivisionswithinthesesubbasins(Utteretal.
1989;seereviewbyWilliamsetal.2006).Wehypothesized
that the distribution patterns of salmon populations in the
openoceanwouldalsohaveahierarchicalgeographicstruc-
ture,i.e.,stocksthataregeneticallysimilarorgeographically
adjacenttoeachotherinfreshwaterhabitats,or both, have
oceandistributionandmigrationpatternsthataremoresimi-
lartoeachotherthanthoseofpopulationsthataregenetically
orgeographicallydistant.Individualpopulationsorlife-his-
toryvariantswithinpopulationsusually occupyonlyapor-
tionoftheentireoceanicrangeoccupiedbylargergroupsof
populations,e.g.,regionalstockcomplexes.
Onthelargestspatial scale,Pacicsalmonspecies mi-
gratinginopenwatersoftheNorthPacicOceanaredistrib-
utedprimarilyintheregionnorthofthesub-arcticboundary
(Fig.1).Pearcy(1992)speculatedthattheevolutionary“di-
vergenceofNorthPacicsalmonidsandtheiremergenceas
successfulandabundantshesisrelatedtotheformationof
thecoldSubarcticWaterMassintheNorthPacic.”Across
this immense marine region, the known ranges of salmon
encompassmostmajor oceanic currents anddomains(Fig.
1).Marinehabitatconditions(e.g.,seatemperaturesandsa-
linities) within acceptable limits for salmon, however, can
sometimes extend south of the sub-arctic boundary,which
expandsthesalmon’sknownopenoceanrangeintosubtropi-
calwaters(Azumayaetal.2007).
Earlymodelsofopen-oceanmigrationpatternsfromIN-
PFC-coordinated research described salmon movements at
seaas counterclockwisecircles,generally “downstream”in
cyclonicgyres andthroughassociatedcurrents inthewest-
ernNorthPacic,GulfofAlaska,andBeringSea(Royceet
al.1968). Althoughthis outdated modelis still frequently
citedintherecent scienticliterature,the prevailingtheory
amongexpertsisthatsalmonintheopenoceanmoveacross
broadfronts–-tothesouthandeastinwinterandspringand
tothenorthandwestinsummerandfall(e.g.,Frenchetal.
1976;Burgner1991;Shuntovetal.1993).Thesebroadsea-
sonalshiftsindistributionlikelyreectbothgeneticadapta-
tionsand behavioral responses toenvironmentalcues(e.g.,
preyavailabilityandwatertemperature)thataremediatedby
NPAFC Bulletin No. 4
161
Stock-specic ocean distribution of salmon
bioenergeticconstraints.
Ageneralseasonalmodeloftheopenoceandistribution
of immature and maturing Pacic salmon indicates that in
winterandspringtheyareprimarilydistributedsouthofthe
CommanderIsland-AleutianIslandchainintheNorthPacif-
icOcean,andinsummerandfalltheyarewidelydistributed
throughouttheNorthPacicOceanandBeringSea(Fig.1).
However,thereare major exceptionstothisgeneral model.
For example, the Bering Sea is a major winter habitat for
Asianand NorthAmericanpopulationsof Chinook salmon
(O. tshawytscha)(RadchenkoandGlebov1998;Myersand
Rogers1988).
Duringtheir rstyearintheocean, juvenileAsian and
NorthAmerican salmon interminglerarely. Although data
arelimited, most juvenile pink, chum,andsockeyesalmon
move in late fall or early winter from relatively shallow,
coastalwaterstosurface watersoverthe deepoceanbasins
(e.g.,HarttandDell1986;seerecentnationalreviewsofthe
earlymarineperiodinMyersetal.2000andNPAFC2003).
PossibleexceptionsareRussianandwesternAlaskanstocks
ofjuvenilesalmon,whichmayintermingleduringtheirrst
summerandfallinthenortheasternBeringSea(Farleyetal.
2005).
Atthescaleofmajorgeographicallineagesorcontinent-
of-originandregionalstockcomplexes,openoceandistribu-
tionsof immatureandmaturingAsianand NorthAmerican
salmon are frequently depicted by composites of recovery
datafromINPFC/NPAFC-coordinatedhighseassalmontag-
gingexperiments(e.g.,Frenchetal.1975;Myersetal.1990,
1996;Klovachetal.2002;Beamishetal.2005).Thesedata
indicatethatAsian stocks areprimarily distributed west of
180°,whileNorthAmericanstocksareprimarilydistributed
eastof180°(Fig.2).Theapparentareasofmixingbetween
immatureandmaturingAsian and NorthAmericansalmon
intheopenoceanvarybyspecies,andarelargestforchum
salmon(174°E–140°W,44°N–61°N),smallerforpinksalm-
on(between175°E and 160°W,44°N–57°N),andsmallest
for sockeye salmon (165°E–175°W, 45°N–58°N) (Fig. 2).
Differencesbetween species in areas of mixing seem to be
positively correlated with their relative abundance in the
openocean.Forexample,chumsalmonaremoreabundant
inthe ocean thanpink salmon, inhabit the ocean for more
time (as many as ve winters compared to one winter for
pinksalmon),andhavealargerareaofmixing.
Differencesinthe east-west extent ofdistributionalso
seemtobepositivelycorrelatedwiththerelativeabundance
ofAsianandNorthAmericansalmon. For example,Asian
pinkandchumsalmon aremoreabundantandhaveamore
extensiveeast-westrangethandoNorthAmericanpinkand
chumsalmon(Fig.2).Similarly,NorthAmerican sockeye
salmonaremoreabundantand haveamoreextensive east-
westrangethandoAsiansockeyesalmon(Fig.2).
Asymmetricaldistributions ofAsian and NorthAmeri-
cansalmonin the open oceanmight reect density-depen-
Winter
Summer
Fig. 1. A general conceptual model of seasonal distribution and movements of Pacic salmon in the open ocean. Salmon are distributed in both
the Bering Sea and North Pacic Ocean in the summer and primarily in the North Pacic Ocean in the winter. Immature salmon generally move
to the south and east in winter (black arrows) and to the north and west in summer (grey arrows). Base map showing oceanographic features
and approximate current speed (km/d) is from Quinn (2005).
NPAFC Bulletin No. 4
162
Myers et al.
dentinteractions, as explainedby the theory of “ideal free
distribution” (Fretwell and Lucas 1970). That is, as com-
petitiveinteractionsincreaseingrowingsalmonpopulations,
the population’s geographic distribution increases until it
reachesanewequilibrium.OguraandIto(1994)suggested
thatlarge-scalereleases ofhatchery chumsalmoninJapan
resultedinanexpansiontotheirknownoceanicrange.How-
ever,detectingstocksatthelimitsoftheirgeographicrange
mightsimplybeeasierwhentheyareabundant.Asymmet-
ricaldistributions of Asian and NorthAmerican salmon in
theopenoceanhavealsobeenattributedtophysicaloceanic
factors,suchascoldwinterseatemperaturesinthewestern
NorthPacic(e.g.,Shepardetal.1968;Neaveetal.1976)or
passive(eastward)transportofimmatureAsianshbywind-
drivenandgeostrophiccurrents(Uenoetal.1999;Azumaya
andIshida2004).
Inthelate 1970s, compositeconceptualmodels of the
distribution and migration routes of major regional stock
complexes ofAsian and North American salmon were de-
velopedbyINPFCresearchersusinginformationfromhigh-
seasresearch and commercialshingcatchandeffortdata,
biological data, tag recovery data, and stock-identication
results(primarilynaturalparasitetagsandanalysisof scale
patterns,e.g.,Frenchetal.1976;Takagietal.1981).Burgn-
er(1991)updatedtheFrench et al. (1976) sockeye salmon
migrationmodelswiththe results of scale patternanalyses
conducted in the 1980s in the open ocean region south of
46°N(Harris1987;seereviewbyMyersetal.1993).These
conceptual models were a major breakthrough in our un-
derstandingof stock-specic migratory behavior ofsalmon
Fig. 2. Composite map showing overlap in open ocean distributions of Asian and North American salmon as observed in high-seas tagging ex-
periments (1956–2004). Closed (black) diamonds = Asian stocks; closed (grey) triangles = North American stocks; open box = region of overlap.
Data source: High Seas Salmon Research Program, University of Washington, Seattle.
NPAFC Bulletin No. 4
163
Stock-specic ocean distribution of salmon
intheopenocean, andarestillfrequentlyusedandcitedin
thescienticliterature. These modelsneedto be updated,
however,because they are primarily based on datacollect-
edduringthemid-1950stolate1960s,when(1)theNorth
Pacic climate regime was in a different phase than after
the1977 regime shift(Mantua et al.1997), (2) there were
no large-scale releases of hatchery chum and pink salmon
into the North Pacic Ocean (Mahnken et al. 1998), and
(3) large-scale high-seas driftnet sheries were harvesting
largepercentagesofsalmonreturningto RussiaandAlaska
(e.g.,Fredinetal.1977;Harris1987).Inaddition,theseold
conceptualmodelsdonottellusanythingaboutinterannual
variationand the effects of oceanconditions on stock-spe-
cicdistributionandmigrationpatterns.
Morerecently,researchershavebeenattemptingtode-
velop quantitative models of open ocean distribution and
movements of some numerically dominant salmon species
andstocks(e.g.,HiramatsuandIshida1989;Thomsonetal.
1992,1994; Datetal.1995;Rand etal.1997;Walteretal.
1997;AzumayaandIshida2004).Forthemostpart,howev-
er,thesequantitativemodelshavefailedtosuccessfullycap-
turerelativelyclear differencesin the open oceandistribu-
tionandmigratoryorientationofAsianandNorthAmerican
salmonstocks.Anaddeddifcultyisthattheexistingtime
seriesofempiricaldataareusuallynotsufcienttovalidate
computermodels.
Weare nowinthemidst ofageneticrevolution thatis
beginningtoprovidereliable mid- to small-scale estimates
ofsalmonstockcompositionneededtodevelopandvalidate
quantitativemodels of interannual variation in open ocean
distribution and migration patterns of salmon (see Fig. 3).
Chum salmon were the focal species for the initial devel-
opmentofacomprehensive PacicRimgenetic(allozyme)
baseline.Thesedatawereusedtoestimatethestockcompo-
sitionofchumsalmoninsamples collectedduringresearch
vessel surveys and to develop new conceptual models of
chumsalmondistributionand migration patterns for major
regionalstocks(e.g.,Figs.3and4,toppanel; Urawa2000,
2004;Urawaetal.2001).Theresultsofanalysesusing20al-
lozymelocifrom356chumsalmonpopulationshaveshown
(1)ahigherdegreeofoverlapintheoceanicdistribution of
Asian and NorthAmerica stocks than that extrapolated by
previousmethods,(2)substantialintra-annualuctuationsin
stockcomposition over short time periods, and (3) greater
useoftheBeringSeabyimmatureandmaturingstocksfrom
throughoutthespecies’rangethanthatindicatedbytagging
studies(Seeb et al. 2004). Seeb et al.(2004) also suggest
that geographically but not genetically similar populations
ofchumsalmonfollowsimilarmigrationroutes.
Our conceptual model of the seasonal migrations of
BristolBaysockeyesalmon(Fig.4,bottompanel),whichin-
corporatesrecentdatafromgenetic(DNA)analysis(Habicht
etal. 2005), scale patternanalysis(Bugaev 2005), andex-
ploratoryshing(Farleyetal.2005),pointstoamoreexten-
sivedistributionofjuvenileandimmatureNorthAmerican
sockeyesalmonintheBeringSeainsummer and fall than
wasindicatedbyearliermodels(Burgner1991).However,
earliermodels may accurately reect seasonal distributions
ofsalmonintheBeringSeaduring“cool”periods,because
mostofthedatawerecollectedduringrelativelycoolperiods
160W 140W 180 160E 140E
40N
50N
60N
+
+
+
+
+
+
+
+
+
+
+
+
+ +
+ +
+
+
+
+
North Pacific Ocean
Bering Sea
+
500
100
10
0
+
+
+
+
+
0
30
60
90
Central NPO
180º
n=127 fish
0
20
40
60
Central G
A
145-148ºW
n=150 fish
0
20
40
60
Western G
A
163-168ºW
n=49 fish
Fig. 3. Example of geographic variation in the regional stock composition of immature and maturing chum salmon in their 2nd-4th winters at
sea, using a comprehensive baseline for 20 allozyme loci from stocks throughout the Pacic Rim (Urawa and Ueno 1997, 1999; Urawa 2000).
Samples were collected during NPAFC-coordinated cooperative winter surveys of salmon aboard the Japanese research vessel Kaiyo maru in
January 1996 and February 1998. The relative sizes of the solid circles represent catch per unit effort in a research trawl towed at each station.
Crosses indicate zero catches. Bars indicate percentages of each regional stock group, from left to right: Japan (downward diagonal), Russia
(black), northwestern Alaska (upward diagonal), Alaska Peninsula and Kodiak (white), southeastern Alaska and British Columbia (horizontal
brick), on three different survey lines. NPO = North Pacic Ocean, GA = Gulf of Alaska.
NPAFC Bulletin No. 4
164
Myers et al.
Fig. 4. Examples of seasonal stock-specic migration models for regional stocks of Asian and North American salmon. Top panel: Model for
Japanese hatchery chum salmon as estimated by genetic stock identication (Urawa 2000, 2004; Urawa et al. 2001). In their rst summer-fall,
juveniles are distributed in the Okhotsk Sea. In their rst winter, they are distributed in a narrow region of the western North Pacic. By their
second summer-fall, they have migrated into the Bering Sea, and in late fall they migrate south and east and spend their second winter in the
Gulf of Alaska. In subsequent years, they migrate between their summer-fall feeding grounds in the Bering Sea and their winter habitat in the
Gulf of Alaska. In their last summer and fall, maturing sh migrate back to Japan through the western Bering Sea and western North Pacic.
Bottom panel: Migration model for Bristol Bay sockeye salmon as indicated by tag recoveries (Myers et al. 1996), scale pattern analyses (Myers
et al. 1993, Bugaev 2005), parasite tags (Burgner 1991), genetic (DNA) stock identication (Habicht et al. 2005), and exploratory shing (Farley
et al. 2005). In their rst oceanic summer and fall, juveniles are distributed on the eastern Bering Sea shelf, and by the following spring immature
salmon are distributed across a broad region of the central and eastern North Pacic. In their second summer and fall, immature sh migrate
to the west in a band along the south side of the Aleutian chain and northward through the Aleutian passes into the Bering Sea. In subsequent
years, immature sh migrate between their summer/fall feeding grounds in the Aleutians and Bering Sea and their winter habitat in the North
Pacic. In their last spring, maturing sh migrate across a broad, east-west front from their winter/spring feeding grounds in the North Pacic,
northward through the Aleutian passes into the Bering Sea, and eastward to Bristol Bay.
Odd-year cycle of high abundance
of maturing Russian pink salmon
in odd years
Fig. 5. Example of interannual variation in sockeye, chum, and pink salmon catch per unit effort (CPUE; 1 tan = 50 m of gill net) in Japanese
research vessel catches in the Bering Sea. Because of their two-year life cycle (including one winter in the ocean), maturing pink salmon are
genetically different in even and odd years. Maturing pink salmon returning to spawn in rivers in eastern Kamchatka, Russia, are the dominant
regional stock in the Bering Sea in odd-numbered years. Data and gure source: Ishida et al. 2005.
160140180 140
40N
50N
60N
Winter-
Spring
Summe
r
-
Fall
1s
t
Fall
Okhotsk
Sea
Bering
Sea
North Pacific Ocean
1s
t
Winter-
Spring
Japanese
Chum Salmon
160W 140W 180160E140E
Winter-Spring
Summe
r
-
Fall
Okhotsk
Sea
North Pacific Ocean
Gulf of
Alaska
Bristol Bay
Sockeye Salmon
60N
50N
40N
Gulf of
Alaska
1s
t
Fall
Bering
Sea
NPAFC Bulletin No. 4
165
Stock-specic ocean distribution of salmon
inthe1950s–60s,whilemostrecentdatawerecollecteddur-
ingaperiodofwarmingintheBeringSea(KhenandBasyuk
2005).
Research vessel catches of salmon in the open ocean
vary signicantly from year to year (e.g., Fig. 5; Ishida et
al.2002;Ishidaetal.2005).Thesevariationslikelyresult
fromchangesinstockabundanceandcomposition,distribu-
tion,migrationroutes,migrationtiming,andphysicalhabitat
(temperature,salinity,currents,e.g.),as well as prey abun-
danceordistribution.Atpresent,however,timeseriesofge-
neticstockidenticationdataaretoolimitedto providede-
tailedinformationoninterannualvariationinstock-specic
distributionandmigrationroutesintheopenocean.Perhaps
the best available genetic (allozyme) data time series de-
scribeschumsalmoncaughtinJuly(1995–2001)inresearch
gillnetsin thecentralBeringSea (Fig.6).Thestrongodd-
evenyear variation in researchgillnetcatch per unit effort
(CPUE)ofmaturingchumsalmonislikelyduetoadensity-
dependent change in the salmon’sdistribution (though not
survival) in years when maturing eastern Kamchatka pink
salmonwere abundant in the Bering Sea, as theygenerally
areinJulyofoddyears(Fig.6,toppanel;Fig.5;Azumaya
andIshida2000;Ishidaetal.2002).Thereisnodirectrela-
tionbetweenestimatedrelativeabundanceofmaturingJapa-
nesechumsalmoninthecentralBeringSeainJulyandsub-
sequentadultreturnstoJapan(Fig.6,centerpanel).There
isa strong negative relation, however,betweentherelative
abundanceofRussianchumsalmonandseasurfacetemper-
atures(SST)inthecentralBeringSeainJuly(Fig.6,bottom
panel).Thiscorrelationmightreecttheinuenceofocean
temperatureonruntiming,i.e.,inwarmSSTyearsRussian
salmonmay maturefasterandleavethe central BeringSea
sooner,resulting inlowerCPUEs in July.There is no ap-
parentrelationbetweenresearchgillnetCPUEsofmaturing
RussianchumsalmoninthecentralBeringSeainJuly(Fig.
6)andsubsequentadultreturnstoRussia(commercialcatch,
seePICES2004).
Evenmoreeffectivethanallozymebaselinesinidentify-
ingindividualpopulations,comprehensiveDNAbaselines
forchumsalmonandotherspeciesarebeingdevelopedand
appliedtoquestionsaboutopenoceandistributionandmi-
grationpatterns of salmon (NPAFC2004). Unfortunately,
this genetic “revolution” is happening at a time when the
numberofsalmonresearchvesselsurveysintheopenocean
isdiminishing,dueinparttodecreasinggovernmentsupport
forsuchsurveys.Nevertheless,throughcooperativeresearch
programscoordinatedbyNPAFC(forexample,BASIS,Ber-
ing Aleutian Salmon International Survey, 2002-present),
wearerapidlyadvancinginourknowledgeofstock-specic
distributionandmigrationpatternsofsalmon(NPAFC2005;
Urawaetal.2005).
Interannual Variation in Salmon Distribution Relative to
Ocean Conditions
Inthissection,we willreviewacasestudythatsought
relationsbetweeninterannualchangesinsalmondistribution
andoceanconditions.SSTisthemainindexofinterannual
variation in natural open ocean habitats considered in this
section.Wedonotreviewotherwell-knownclimaticindi-
ces,suchasALPI(AleutianLowPressure Index)andPDO
(Pacic Decadal Oscillation), which are believed to char-
acterize long-term climatic trends over the North Pacic.
Ishidaet al. (2002) did notnd any signicantcorrelation
betweenSSTsand theAleutianlow-pressureindex (ALPI)
0
30
60
90
120
150
180
210
CPUE
1995199619971998199920002001
Year
Alaska
Russia
Japan
0
5
10
15
20
25
30
35
40
45
567 8 9
SST (C)
CPUE
JAPAN
RUSSIA
ALASKA
0
20
40
60
80
100
0 50 100 150
CPUE
Adult returns
(millions of fish
)
Odd years
Even years
Fig. 6. Top panel: Interannual changes in mean catch per unit effort
(CPUE) of maturing chum salmon stocks in research gill nets in the
central Bering Sea (180°), July 1995–2001. Center panel: Relation
between chum salmon returns to Hokkaido, Japan, and Bering Sea
CPUEs of maturing Japanese chum salmon. Bottom panel: Relation
between sea surface temperatures (SSTs) and CPUEs of maturing
chum salmon stocks in the Bering Sea in July of even years. Data
source: S. Urawa, National Salmon Resources Center, Japan.
0
10
20
30
40
50
60
70
80
90
100
1231 2 3
Ten-day period of month
The share, %
A
p
ril May
0
10
20
30
40
50
60
70
80
90
100
123123
Ten-day period of month
The share, %
April May
Chum Salmon Sockeye Salmon
1997
1999
NPAFC Bulletin No. 4
166
Myers et al.
orSSTandresearchgillnet CPUEs for each speciesinthe
central Bering Sea in July (1970–2000). They speculated
thatSST,particularly at higher temperatures,causesashift
insalmondistributionthataffectedtheirCPUEvalues.
Themajorpremiseofthispartofourreviewisthatin-
terannualvariationinsalmondistributionintheopenocean
duringthe spring-summerseasondependslargelyonocean
conditionsduring the precedingwinter. In particular, spa-
tio-temporalpatternsofsalmon distribution in spring-sum-
mervarydependingonthesynoptictypeofwinter(coldor
warm).
The migration routes of salmon in the western North
PacicOceaninspringappeartofollowthenorthwestward
progressionofthe2°CSSTisotherm(Birman1985;Erokh-
in1990). In years that differbywinterclimatictype(cold
or warm), the spring CPUEs of salmon in research gillnet
catchesand corresponding concentrations ofsalmonin the
openoceanvaryduringthesameten-dayperiod.Forexam-
ple, hydro-meteorological conditions in the western North
PacicinApril–Mayof1997and1999werequitedifferent.
The winter of 1996–1997 was warm. In the rst ten-day
periodofApril1997,theSSTintheNorthPacicwatersoff
Kamchatka reached 3°C, and by the second half ofApril-
early May 1997, SSTs had already reached 3.5–4°C (Fig.
7).Incontrast, the winter of 1998–1999wascold. In the
secondhalfofApril1999,SSTsintheNorthPacicwaters
off Kamchatkahadnotreached2°C.Bythe beginning of
May,thesurface layer had warmed to2.3°C.Only by the
endofMaydidthemaximumSSTreachabout4.0°C,which
waslowerthanthemeanlong-termvaluesforthisperiodby
about1.5°C. In1999, the temperaturedifference between
the surface and 100 m below the surface did not exceed
1.0–1.5°C,whichischaracteristicofthehydrologicalwinter.
Thelowwatertemperatureinspring1999,comparedtothe
sameperiodin1997,resultedinfewersalmonincatchesin
thewesternNorthPacicOceanoffKamchatka(Fig.7).
InApril–Mayof1997and1999,threespeciesofsalmon
(sockeye,chum, and chinook)werecaughtbyresearchgill
netsin North Pacic waters off Kamchatka (Klovachetal.
2000;Klovach2003).Sockeyeandchumsalmonwereob-
servedduringthesameperiod,andchinooksalmonappeared
incatchesinmidMay.Theratioofsockeyeandchumsalm-
oninthecatcheswasdifferentduringwarm(1997)andcold
(1999)years.Theproportionofsockeyesalmonwashigher
in1999than in 1997 (Klovachet al. 2000; Klovach2003;
Fig.8).Sockeyesalmonwerealsothepredominantspecies
inNorthPaciccatchesoffKamchatka during subsequent,
cold years (2000 and 2001). We hypothesize that this in-
creaseintherelativeabundanceofsockeyesalmonwasas-
sociated with cooling of the western North Pacic Ocean
duringthesecondhalfofthe1990s.Atthattime,icecover
inwaters off the western andeasterncoasts of Kamchatka
increased,andretreatedlaterintheyear(Fig.9).Intheoce-
anic region where Russian sockeye salmon overwinter (in
the North Pacic Ocean, south of theAleutian Islands), it
0
1
2
3
4
1 2 312 3
Т°С
1997
1999
A
0
5
10
15
20
123123
April May
CPUE, kg per net
1999
1997
B
Fig. 7. Comparison of (А) sea surface temperatures (T°C) and (B)
salmon catch per unit effort (CPUE, kg of salmon per net) in 1997
and 1999 in the western North Pacic Ocean off Kamchatka in April
and May. 1, 2, 3 = 10-day periods in April and May.
Fig. 8. The share (%) of chum and sockeye salmon in catches made
near East Kamchatka during April and May in 1997 and 1999.
NPAFC Bulletin No. 4
167
Stock-specic ocean distribution of salmon
wasobservedthatthecoldseasonlastedlongerand spring
warmingbeganlaterintheyear(Fig.10).
Thesecoolerconditionsapparentlycausedadelay(com-
paredtomeanlong-termdates)inthemigrationsofmaturing
salmontotheeast andwestcoasts ofKamchatka,a change
inthemigrationroutesofsockeyeandchumsalmonreturn-
ingto the East Kamchatkacoast,andashiftintheoceanic
feedingpatterns of differentsalmonspeciesandstocks. In
particular,the low temperature of North Pacicwaters off
Kamchatkainthespringof1999and2000causedthesock-
eyesalmon’smainmigrationroutestoshiftsouthby2–4°,
arealignmentthatcoincidedwithadisplacedzoneofwater
with optimal temperatures for sockeye salmon (Gritsenko
etal. 2000,2002;Fig.11).Instead of migratingacrossthe
southwesternBeringSea,asoccursinwarmyears,sockeye
salmon returning to the Kamchatka River migrated north
alongthecoastofEastKamchatkatothemouthoftheriver.
Asa result, notonly in Maybut also inJune of 1999and
2000,theCPUEsofsockeyesalmoninNorthPacicwaters
offKamchatkawerehigherthaninwarmyears(Gritsenkoet
Fig. 9. Trends in sea ice cover in the western North Pacic Ocean off the western (A) and eastern (B) coasts of Kamchatka at 53°N, 1995–2001.
1-date that the sea ice margin crossed 53°N during spring warming. Dates (months): 1 = January, 2 = February, 3 = March, 4 = April, 5 = May.
2-duration (number of days) of sea ice cover at 53°N.
0
1
2
3
4
5
6
1994 19961998 2000
Years
Months
0
20
40
60
80
100
120
140
160
Duration, number of days
1
2
3
Fig. 10. Trends in the 5°C isotherm in the eastern North Pacic
Ocean at 50°N, 170°W during spring warming and autumn cooling:
1-date that the 5°C isotherm crossed 50°N, 170°W when warming;
2-duration of 5°C-isotherm at 50°N, 170°W (number of days); 3-date
that the 5°C isotherm crossed 50°N, 170°W when cooling. Dates
(Months): 0 = December, 1 = January, 2 = February, 3 = March, 4 =
April, 5 = May.
Fig. 11. Interannual variability in the dates that the 2°C-isotherm con-
sistently crossed the line from Bering Island to 51°N, 160°E during
spring warming in the western North Pacic Ocean. Dates (Months):
3 = March, 4 = April, 5 = May, 6 = June.
1
2
3
4
5
19941996 1998 2000
Years
s h t n o M
0
20
40
60
80
100
120
) s y a d f o r e b m u n ( n i g r a m e c I
1
2
A
1
2
3
4
5
6
1994 1996 1998 2000
Years
s h t n o M
0
20
40
60
80
100
120
) s y a d f o r e b m u n ( n i g r a m e c I
1
2
B
3
4
5
6
1993 1995 1997 1999 2001
Years
s h t n o M
NPAFC Bulletin No. 4
168
Myers et al.
al.2000,2002;Fig.12).
Thus,theSSTinearlyspringisasignal,notonlytrig-
geringmigrationsofmaturingsalmontothecoasts,butalso
determiningtheratesofthesemigrations,thescheduleofsh
maturation,and,eventually,theclosingdatesofmigrations,
whensalmonentertheirnatalrivers.In May–June1997,a
watermasswithabnormallyhightemperaturesformedinthe
areaoftheNorthKurilStraits.Thisabnormalformationpro-
ducedearliermigrationsofWestKamchatkasockeyesalmon
stocksintotheSeaofOkhotsk,comparedtomeanlong-term
dates.Incontrast,in1999–2001,warmingofwesternNorth
PacicwatersadjacenttotheNorthKurilStraitsbeganlate
andcontinued until the endof June-mid July.As aresult,
WestKamchatkasockeyesalmonremainedinNorthPacic
waters off East Kamchatka longer than in previous years,
andhigh CPUEs of sockeyesalmon were observedinthat
areainearlyJuly2001(Fig.13).
Inwarmyears,pinksalmonappearinNorthPacicwa-
tersoffKamchatkainearlyJune,andbymidJune,research
gillnet catches are relatively high. For example, in 1997
and1998(warmyears),afewindividualpink salmonwere
caughtinearlyJune(June2)inPacicwatersoffKamchat-
ka,whilemorethan4t/dayofanapproximatetotal10twere
caughtinmidJune(June12).In2001(acoldyear),onlya
fewindividualpinksalmonwerecaughtoffEastKamchatka
inmidJune(June15),butonetofatotal12twascaughton
July4.
Inyears with different thermalconditions,the relative
abundanceof salmon specieslikewisevariesspatially.For
example,inwarmyearspinkandchumsalmonpredominate
numericallyintheopenoceanoffeastandwestKamchatka
inlateJune-earlyJuly,whilemostsockeyesalmonhaveal-
readymigratedfromthearea.Incoldyears,theratioamong
thesethreesalmonspecieschangesduetothedelayedmigra-
tionsof WestKamchatka sockeye salmon in North Pacic
waters and the later appearance of pink salmon. At these
times,sockeyesalmonpredominateinNorthPaciccatch-
esmade off Kamchatkauntil the secondten-day period in
July.
The conditions observed in 2003 provide a clear il-
lustration of the effect of winter habitat conditions on the
distributionandbiologicalcharacteristicsofsalmonduring
thespring-summerseason.AnanalysisofSSTdistribution
inthesouthwesternBeringSeaduringwinterof2002–2003
showedthatJanuary2003wasarelativelywarmmonth.In
subsequentwintermonths,SSTsnearedmeanlong-termval-
ues,and,asaresult, overalliceconditionschanged.Later,
the processes of ice erosion exceeded the mean long-term
datesby 8–14days.This extended iceerosionwasassoci-
atedwith bothcyclonicactivityandthe advection ofwarm
andwetairmassesfromMarchtoApril.Astandardhydro-
logicalsurveyin the southwestern BeringSea in mid-June
found that the temperature of the upper 10-m water layer
wasthehighestmeasuredovertheprevioussixyears.From
MaytoJune2003,SSTsinthewesternandeasternNorthPa-
cicwere3–5°Chigherthanthemeanlong-termvaluesfor
thetime period.Dueto theearlierwarmingof thesewater
masses,pinksalmonappearedinresearchgillnetcatchesoff
eastKamchatkaasearlyasthebeginningofJune,andpeak
CPUEsofpinksalmon occurredbytheendofJune,asone
wouldexpectinawarmyear.
Weassumethattheinterannualdifferencesin research
gillnetCPUEsobservedinourcasestudyarenotrelatedto
differencesintheverticaldistributionofsalmon.Ingeneral,
salmon are distributed at the surface of the open ocean at
night (Walker et al., 2007). The nocturnal distribution of
salmon was conrmed by Klovach and Gruzevich (2004),
whosetresearchgillnets attheocean surfaceatnight,and
retrievedthem 9–12 hours later. Welchetal.(1995,1998)
foundabruptdecreasesintherelativeabundance(CPUE)of
salmoninresearchvesselcatches(usinggillnets,longlines,
0
2
4
6
8
10
12
14
16
18
20
1995 1996 1998 2000
Years
CPUE, number per net
all salmon
red salmon
chum salmon
Fig. 12. Catch per unit effort (CPUE, number of sh per net) of salm-
on in the western North Pacic Ocean off East Kamchatka, June
1995–2000. Red salmon = sockeye salmon.
0
1
2
3
4
5
6
7
8
9
18-20.05
21-25.05
26-31.05
01-05.06
06-10.06
11-15.06
16-20.06
21-25.06
26-30.06
1-5.07
6-10.07
Date
CPUE, individuals per net
1
2
3
Fig. 13. Catch per unit effort (CPUE, individuals per net) in the
western North Pacic Ocean near Kamchatka in 2001. 1 = sockeye
salmon, 2 = chum salmon, 3 = pink salmon. Date = days.month, e.g.,
18–20.05 is May 18–20, 2001.
NPAFC Bulletin No. 4
169
Stock-specic ocean distribution of salmon
andropetrawls)when SSTswereat ornearthe upperther-
mal limit for salmon habitats. However, we do not know
ifthis decrease inabundanceresultedfroma change inthe
verticalorhorizontaldistributionofsalmon.Ourknowledge
islimitedbecauseSSTsinourcasestudywerenotattheup-
perthermallimitofsalmondistributionintheNorthPacic
Ocean.
Climaticconditionsin2003(warmwinter,earlyspring)
alsoaffectedthebiologicalcharacteristicsofsalmon,partic-
ularlythedegreeofgonadmaturity.Becauseofhighwater
temperatures,salmonmaturedfasterin2003thanin2001or
2002.Maturingsalmonmigratedtotheirspawninggrounds
sooner and immature sh occupied open-ocean feeding
grounds(previouslyoccupiedbymaturingsh)earlierthan
usual.Asaresult,in2003alargenumberofimmaturesalm-
on were caught in North Pacic waters off Kamchatka as
earlyasJune,and in July,about40%ofthe catch in these
regions was immature male sockeye salmon (Fig. 14). In
coldyears,thesamesituationoccursatleasttwoweekslater
(KlovachandGruzevich2004).Thus,takingintoconsider-
ationthecorrelationbetweensynoptictypeofwinter(coldor
warm)and migrationpatterns,itseemspossible to forecast
thedistributionofsalmonintheopenoceanduringtheirpre-
spawningmigrations,aswellasthedatesoftheirmigrations
tospawninggrounds.
Weconcludethatmanymeasuresof interannual varia-
tion in salmon populations in the open ocean (e.g., the
number of sockeye and chum salmon in catches, the date
when immature individuals appear on pre-spawning feed-
inggrounds,thedegreeofgonadmaturity,theratiobetween
maleandfemaleindividuals,andthedatewhenpinksalmon
appearincatchesmadeinPacicwatersoffKamchatka)are
determinedtoalargeextentbyclimaticconditions.
Hodgson et al. (2006) recently evaluated a similar
modeldevelopedbyBlackbourn(1987)forNorthAmerican
sockeyesalmon. Blackbournhypothesizedthatinterannual
variation in the timing of adult sockeye salmon returns to
riversinNorthAmericais related to winter-springSSTs in
theGulf ofAlaska.Accordingto this hypothesis,maturing
NorthAmerican sockeye salmonin the Gulf of Alaska are
distributedfarthertothenorthandwestinwarmwintersthan
incoolwinters.Ifswimmingspeedsandstartdatesofreturn
fromtheopenoceanareconstant,thensalmonrunsinsouth-
easternrivers(e.g.,FraserRiver,BC)willbelate,andrunsin
riversfarthertothenorthandwest(e.g.,BristolBay,Alaska)
willbeearly.Ingeneral,theresultsofHodgsonetal.(2006)
indicatedthat(1)correlationsbetweenmigratorytimingand
SSTarereversedfornorthernandsouthernpopulations,(2)
interannualvariationinsalmondistributionandseatempera-
turearerelated,and (3) the start-of-return dateisapopula-
tion-specictraitthatisnotaffectedbylocationatsea.
Therearelittle or no empirical dataonsalmon migra-
tionsintheGulfofAlaskatovalidateHodgson’sresults.Al-
mostallhighseastaggingresearchintheGulfofAlaskawas
carriedout duringthe 1960s, but oceanographic conditions
inthatdecadewereirregular—particularlyinthewinterand
0
10
20
30
40
50
60
70
80
90
100
16-
20.06
26-
30.06
16-
20.07
26-
31.07
6-
10.08
Date
Share, of immature individuals%
males
females
Fig. 14. Share of immature sockeye salmon in the western North
Pacic Ocean near Kamchatka, 2003. Date = days.month, e.g., 16-
20.06 is June 16-20, 2003.
Fig. 15. Example of annual variation in stock-specic distribution of
maturing sockeye salmon in the Gulf of Alaska in the spring (April
1965 and 1966), as shown by historical tagging experiments (n = 193
sh). The symbols indicate the high seas release locations of tagged
sh later recovered in western Alaska. Western Alaska (Bristol Bay)
= closed (grey) triangles and southern British Columbia (Fraser R.) =
closed (black) diamonds. Note that while both stocks are distributed
across broad fronts, and distributions of the two stocks overlap signif-
icantly; Bristol Bay sockeye salmon are distributed farther to the west
and north than southern British Columbia sh. Using the Southern
Oscillation Index criteria, it can be determined that 1964–65 was a
moderate La Niña (cold) winter and 1965–66 was an El Niño (warm)
winter. AK = Alaska, YT = Yukon Territory, BC = British Columbia.
Data source: High Seas Salmon Research Program, University of
Washington, Seattle.
NPAFC Bulletin No. 4
170
Myers et al.
spring of 1966, when northward transport was about 50%
ofthe10-year average, summer wind stressconditionsex-
istedin February,and allwestward ow of warmwater in
theAlaskaStreamwasapparentlyre-circulatedintheGulfof
Alaska(Favoriteetal.1967).Thus, dataretrievedin those
yearsdonot conform to expectations. Usingthe Southern
OscillationIndexcriteria,itcanbedeterminedthat1964–65
hadaLaNiña(cold)winterand1965–66anElNiño(warm)
winter(http://www.wrcc.dri.edu/enso/reanlnen.html).Inthe
springof1966,salmonweredistributedfartheroffshoreto
thesouthandwestthantheywereinthespringof1965(IN-
PFC1967a,b).Limitedtagdatasuggestthatbothnorthern
(Bristol Bay) and southern (Fraser River) sockeye salmon
stocksmaybe displaced to the southandwest,rather than
northandwest,inthespringfollowingawarmwinter(Fig.
15).Additionalresearchisneededto develop and validate
models to predict the effects of climatic forcing on stock-
specicopenoceandistributionandruntimingofsalmon.
Interannual Variation in Ocean Conditions in the Gulf of
Alaska and the Bering Sea
In summer, interannual variation in the relative abun-
danceofsalmon in the BeringSeaappears to be inversely
relatedtothatofsalmonintheGulfofAlaska(Ishidaetal.
2002).Thisrelationmightbedrivenatleasttosomeextent
by SSTsor other oceanographic conditions in the Gulf of
Alaska,e.g.,chumandsockeyesalmonaremoreabundantin
theBeringSeathanintheGulfofAlaskainyearswhensum-
merSSTsarehighintheGulfofAlaska(Ishidaetal.2002).
Inthis section we reviewinformationoninterannualvaria-
tioninoceanenvironmentswheresalmonstocksaredistrib-
uted. The basic premise of this part of our review is that
thecirculation and climate inthe North PacicOceanand
BeringSea areinterconnected.Anotherpremise isthatthe
oceanographicconditionsintheseregionshavebeenchang-
ingsignicantlyoverthepastseveraldecades,evenpriorto
theregimeshiftof1977(Mantuaetal.1997).
The1977regimeshiftwasalarge-scaleclimaticevent,
andcanbeseeninmuchofthe environmental data for the
region,asillustratedinMantuaetal.(1997).Thatstudyfo-
cusedonSST,becausethatmeasurementwastheubiquitous
data set, though not necessarily the “best” data to explain
salmonvariability.Unfortunately,otheroceanographicdata
aresparse.Long-termseriesofsmall-tomid-scaledataare
absent. We must, therefore, deal with the few large-scale
andlong-term dataseriesthatareavailable. Forthenorth-
easternPacic OceanandGulfofAlaska, data setsinclude
hydrographicmeasurementstakenatOceanStationP(OSP;
50°N,145°W)since1958(Freelandetal.1997);coastalob-
servationsofsealevel;measurementsofsurfacetemperature
andsalinitytakenatCanadianlighthousesalongtheBritish
Columbia coast, some from early in the last century
(Freeland,http://wlapwww.gov.bc.ca/air/climate/indicat/pdf/
seasurftemp-tdoc1.pdf);hydrographicobservationsmadeat
GulfofAlaskaStation1(GAK1, 60°N,149°W)from1970
to the present (Royer 2005); and observations of currents,
temperature and salinity per depth, taken since 1995 from
Fig. 16. Gulf of Alaska (GAK1) temperature anomalies at 150 m (°C, upper panel) with SOI (lower panel) since 1970 with responses to ENSO
events noted by vertical lines between panels. There is a 99% correlation between data sets with a C.I. linear trend of 0.03°C increase/year at
150 m and throughout the water column (250 m). From Fig. 14 in Royer (2005): “One standard deviation is indicated with dashed line.” ENSO =
El Niño-Southern Oscillation, SOI = Southern Oscillation Index.
NPAFC Bulletin No. 4
171
Stock-specic ocean distribution of salmon
Fig. 17. Monthly coastal freshwater discharge for the Gulf of Alaska from the Alaska-B.C. border to Cook Inlet. From Fig. 5 in Royer (2005):
“Heavy line is 5-year ltered (Butterworth) discharge.” Note that this volume exceeds that of the Mississippi River’s 14,400 cubic meters per
second.
mooringsatSiteM2onthe70-misobathinthesoutheastern
BeringSea(Stabenoetal.1995,2001,2002a).
Kingetal.(2005)summarizedoceanographicchanges
in the region since the 1998 regime shift. These changes
includeincreasedstormactivity and increased mixed layer
depthintheGulfofAlaskaastheregionreturnedtocooler,
stormier conditions. The Bering Sea andAleutian Islands
apparentlyremainedunaffectedby these cooler conditions,
insteadwarmingandlosingtheiricecover.Recentclimate
variability over the North Pacic Ocean and Bering Sea
supporttheideathattheseregionsmightbelinkedtogether
(Kingetal.2005).
Gulf of Alaska
Inwinter,thedepthofthemixedlayeratOSPhasbeen
decreasing,whichsuggeststhatthe supplyofnutrientsinto
theeuphoticzonewillalso diminish(Freelandetal. 1997).
This shoaling of the mixed layer is the result of a general
warmingand freshening of theocean’supperlayer,as ob-
servedatOSPandalongthe British Columbia coast(H.K.
Freeland, http://wlapwww.gov.bc.ca/air/climate/indicat/pdf/
seasurftemp-tdoc1.pdf).IncreasedwindstressovertheGulf
ofAlaskaisexpectedtodeepenthewintertimemixedlayer,
butapparentlydiminisheddensityintheupperlayercounter-
actsthetendencytowardincreasedwindmixing.Long-term
hydrographicmeasurementsatGAK1,farthernorth,support
thendingsofFreeland’scoastalmeasurements. Asigni-
canttemperatureincreaseof0.03°Cperyearhasbeenfound
throughout the entire water column (250 m) near Seward,
Alaska (Royer 2005; Fig. 16). The salinity of the upper
layer(0–100m)isalsodiminishinginresponsetoincreased
coastal precipitation and freshwater discharge since 1970
(Fig.17).UnlikeOSP,thiscoastalsitehasnotdisplayedany
signicant trends in wintertime, mixed-layer depths since
1970(Sarkaretal.2005)
Therefore,themajorchangesthathavebeentakingplace
inthephysicaloceanographyoftheGulfofAlaskainclude:
arelativelysteadyincreaseinthecoastalwatertemperature
ofthe upper layers, adecreasein the mixed-layer depthat
OSP(Freelandetal.1997),anincreaseinstorminessinthe
Gulf ofAlaska, and a decrease in the upper-layer salinity,
resultingfromincreasedprecipitationandcoastalfreshwater
discharge.Thisstraticationisalsoenhancedbyrapidgla-
cialmeltingincoastalAlaska(Arendtetal.2002).Increased
straticationwillinhibittheux ofnutrientsintothe upper
euphoticzone, trap organismsin thatupper layer, increase
theamplitudeof upper-layer seasonal temperature changes
andadvancethetimingofthespringbloom.Oceanicstrati-
cationistakingplaceinconcertwithincreasedwindstress,
aforcethatcould counteract the increased stabilityinnew
oceanlayers.TheincreasedcirculationintheGulfofAlaska
asaresult of increased straticationandwind stress could
alsoproducemoreeddiesalongtheshelfbreak.Wedonot
haveenoughlong-termdataoneddydynamicstodetermine
whetherthislastconjectureistrue.
Bering Sea
IncontrastwiththeGulfofAlaska,theBeringSeahas
verylittleprecipitation,andwindstresshasdiminishedsince
the1997–98regimeshift(WirtsandJohnson2005).Asdis-
NPAFC Bulletin No. 4
172
Myers et al.
cussedintheprevioussection,theinowofrelativelywarm
waterfromtheGulfofAlaskawillleadtoincreasedstrati-
cationandenhancedsurfaceandupper-layerwatertempera-
tures. Increased stratication willproduce wider variation
inseasonal temperatures dueto solar heating. Interannual
changesinthemixedlayerinthesoutheastBeringSeafrom
2001to2004(Fig.18)revealanincreaseinthetemperature
ofthemixedlayer,accompaniedbyadecreaseinwatersa-
linityanddensity (Wirtsand Johnson 2005), ashiftthat is
consistentwiththechangingupstreamconditionsintheGulf
ofAlaska.
Changes in seasonal signals such as temperature, sea
ice,and winds, willaffectsalmon production in theBering
Sea(Huntetal.2002;Fig.19).Thetimingandqualityofthe
springbloomishighlydependent onthepresenceof winds
andseaiceinearlyspring.Whenseaiceispresentinorafter
late March, a strong bloom takes place as the ice retreats.
Ifthere is no ice or the iceretreats before late March, the
bloomtakesplaceinMayorJune.Inadditiontoseaice,ed-
diesapparentlyplayanimportantroleinmigrationpatterns,
thougheddydynamicsandformationareimperfectlyknown
(Stabenoetal.2002a,b).
Insummary,itappears thatupper-layerwatertempera-
tures,stratication,andwindstressareincreasing,whilesa-
linitiesare decreasing (GulfofAlaskaonly).Althoughthe
inuenceofthesemid-scalefeaturesisyettobedetermined,
eddiesmayplayamajorroleinsalmonproductivity.Con-
tinuedsatellitealtimetrywillprovide enhancededdystatis-
ticsinthefuture,perhapssheddinglightonthisquestion.
CONCLUSIONS
Atpresentourdataareinsufcienttoanswerthe ques-
tion, “What does annual variation in open-ocean salmon
stockcompositiontellusaboutenvironmentalconditionson
small-tomid-sizescales?”Weconcludefromourbriefre-
view,however,thatclimate-drivenchangeinoceanographic
conditionsinopen-oceanfeedingareasandalongmigratory
routes of Asian and NorthAmerican salmon can result in
predictabledifferencesinthedistributionandmigrationpat-
ternsofsalmon.
Clearly, advancement in our knowledge of stock-spe-
cic ocean distribution and migration patterns is vital to
understandingthestatusofPacicsalmoninmarineecosys-
tems. Updated models of oceandistributionandmigration
areneeded for most of themajor regional stockgroups of
salmonoriginatingfromriversintheNorthPacicRim.
Pacic salmon species have evolved over millions of
yearstotakeadvantageofdifferentecologicalnichesinthe
openocean.Thediversityofthesenaturaladaptationsbynu-
merousindividualpopulationshasprovidedsalmonspecies
asawholewitharesilientbuffertotheeffectsof environ-
Fig. 18. Mixed layer changes in the Bering Sea from June 2001 to September 2004. From Fig. 2 in Wirts and Johnson (2005): “Mixed-layer
potential temperature (top left), salinity (top right), potential density anomaly (bottom left), and pressure at the base of the mixed layer (bottom
right) plotted versus time using the oat CTD data (plusses) in the southeast Aleutian Basin with seasonal cycles (solid lines) estimated from
annual and semiannual harmonics t to these data.”
NPAFC Bulletin No. 4
173
Stock-specic ocean distribution of salmon
Fig. 19. Water column temperatures from the M2 mooring in the
middle domain of the Bering Sea, 1995-2000. From Fig. 6 in Hunt
et al. (2002): “Areas of black indicate cold water resulting from the
presence of melting sea ice. The yellow line near the bottom of each
panel indicates uorescence at 11–13 m. For each year, uorometer
traces have been scaled to the highest value in that year. Gaps in the
uorometer record are the result of fouling of the instrument. When
ice is present in or after late March, a strong uorescence peak oc-
curs as the ice retreats (1995, 1997). When there is no ice (1996)
or the ice retreats before late March (1998, 2000), an open-water
bloom occurs in May or June. In 1999, the spring was stormy and ice
recurred in May. There was a bloom in late March, and another weak
and prolonged period of production in late May and June.”
mentalchangeontheirmarinegrowthandsurvival.Chang-
esin climate,oceanicconditions,and migrationpatternsof
salmonintheopenocean are inextricably intertwined, and
improvementsinourabilitytomakepredictionsaboutsalm-
onmay very well improve our ability to make predictions
abouttheenvironment.Globalwarmingisresultinginmore
frequentandunpredictableenvironmentalchangesinopen-
oceanhabitatsthroughwhichsalmonmigrate.Weconclude
that changes in the distribution and migration of indicator
stocksofadultsalmonreturningfromtheopenoceanmight
provide an “advance warning” of interannual changes in
NorthPacicmarineecosystems.
REFERENCES
Arendt,A.A.,K.A.Echelmeyer,W.D.Harrison,C.S.Lingle,
andV.B.Valentine.2002.RapidwastageofAlaskagla-
ciersandtheircontributiontorisingsealevel.Science
297:382–386.
Azumaya, T., and Y. Ishida. 2000. Density interactions
between pink salmon (Oncorhynchus gorbuscha) and
chum salmon (O. keta) and their possible effects on
distributionandgrowthintheNorthPacicOceanand
BeringSea. N.Pac.Anadr.FishComm.Bull.2: 165–
174.(Availableathttp://www.npafc.org).
Azumaya, T., and Y. Ishida. 2004. An evaluation of the
potentialinuenceofSSTand currentson the oceanic
migrationofjuvenileandimmaturechum salmon(On-
corhynchus keta)byasimulationmodel. Fish.Ocean-
ogr.13:10–23.
Azumaya,T.,T.Nagasawa,O.S.Temnykh,andG.V.Khen.
2007.Regionalandseasonaldifferencesintemperature
andsalinitylimitationsofPacic salmon.N.Pac.An-
adr.FishComm.Bull.4:179–187.(Availableathttp://
www.npafc.org).
Beamish,R.J.,G.A.McFarlane, andJ.R.King. 2005. Mi-
gratorypatterns ofpelagicshesandpossible linkages
between open ocean and coastal ecosystems off the
Paciccoast of NorthAmerica. Deep-Sea Res.II 52:
739–755.
Birman,I.B.1985.ThePacicsalmon:sea period of life
andstockdynamics.Agropromizdat,Moscow.208pp.
(InRussian).
Blackbourn, D.J. 1987. Sea surface temperature and the
pre-season prediction of return timing in Fraser River
sockeyesalmon(Oncorhynchus nerka).Can.Sp.Publ.
Fish.Aquat.Sci.96:296–306.
Bugaev,A.V. 2005. Identication of local stocksofsock-
eyeandchinooksalmon byscalepattern analysisfrom
trawl catches of R/V “TINRO” worked by program
of the Bering-Aleutian Salmon International Survey
(BASIS)in September–October 2002. N. Pac.Anadr.
FishComm.Tech.Rep.6:88–90.
Burgner,R.L.1991. Life history of sockeye salmon (On-
corhynchus nerka).InPacicsalmonlifehistories.Ed-
ited byC.GrootandL.Margolis.UBCPress,Vancou-
ver.pp.1–117.
Dat,C.G.,P.H.LeBlond,K.A.Thomson,andW.J.Ingraham.
1995. Computer simulations of homeward-migrating
FraserRiversockeyesalmon:iscompassorientationa
sufcientdirection-ndingmechanisminthenorth-east
PacicOcean?Fish.Oceanogr.4:209–216.
Eisner,L.B.,E.V.Farley,J.M.Murphy,andJ.H.Helle.2005.
Distributionsofoceanographicvariables,juvenilesock-
eyesalmonandage-0walleyepollockinthesoutheast-
ernBering Sea duringfall2000–2003.N.Pac.Anadr.
FishComm.Tech.Rep.6: 16–18.(Availableathttp://
www.npafc.org).
NPAFC Bulletin No. 4
174
Myers et al.
Erokhin,E.G. 1990.Distribution andbiologicalcondition
ofpinksalmonOncorhynchus gorbuschainthePacic
Ocean.Vopr.Ikhtiologii30(6):1031–1036.
Farley,E.V.,Jr.,J.M. Murphy,B.W.Wing,J.H.Moss, and
A.Middleton.2005.Distribution,migrationpathways,
and size of western Alaska juvenile salmon along the
easternBeringSeashelf.AlaskaFish.Res.Bull.11(1):
15-26.
Favorite,F.,A.J.Dodimead,andK.Nasu.1976.Oceanog-
raphyofthesubarcticPacicregion.Int.N.Pac.Fish.
Comm.Bull.33.187pp.
Favorite,F.,W.B.McAlister,W.J.Ingraham,Jr.,andD.Day.
1967.Int.N. Pac.Fish.Comm.Annu. Rep.1966:89–
96.
Fredin,R.A.,R.L.Major,R.G.Bakkala,andG.K.Tanonaka.
1977. Pacic salmon and the high seassalmonsher-
ies of Japan. U.S. Dept. Commerce, NOAA, NMFS,
NorthwestandAlaska FisheriesCenter,Seattle. (Pro-
cessedReport).
Freeland, H., K. Denman, C.S. Wong, F. Whitney,and R.
Jacques.1997.Evidenceofchangeinthewintermixed
layerin the Northeast Pacic Ocean. Deep-Sea Res. I
44:2117–2129.
French,R.R.,R.Bakkala,andD.F.Sutherland.1975.Ocean
distributionof stocks of Pacicsalmon, Oncorhynchus
spp.,andsteelheadtrout,Salmo gairdnerii,asshownby
taggingexperiments:chartsoftagrecoveriesbyCanada,
Japan, and the United States, 1956-69. National Oce-
anicandAtmosphericAdministrationTech.Rep.NMFS
SSRF-689.89pp.
French,R.,H.Bilton, M.Osako,andA.Hartt.1976.Dis-
tributionand origin of sockeye salmon(Oncorhynchus
nerka) in offshore waters of the North Pacic Ocean.
Int.N.Pac.Fish.Comm.Bull.34.113pp.
Fretwell,S.D., andH.J. Lucas Jr.1970.Onterritorialbe-
haviour and other factors inuencing habitat distribu-
tioninbirds.ActaBiotheor.19:16–36.
Godfrey,H.,K.A.Henry,andS.Machidori.1975.Distribu-
tionandabundanceofcohosalmoninoffshorewaters
oftheNorth Pacic Ocean. Int.N.Pac.Fish. Comm.
Bull.31.80pp.
Gritsenko,O.F.,N.V.Klovach,andM.A.Bogdanov.2002.
AneweraofPacicsalmonbeinginthenorth-western
PacicOcean.RybnoyeKhozyastvo(Fisheries)1:24–
26.(InRussian).
Gritsenko,O.F.,N.V.Klovach,and L.F.Urusova.2000.A
newepochforsalmonstocksinthenorth-westernPacif-
ic.N.Pac.Anadr.FishComm.Doc.503.9pp.(Avail-
ableathttp://www.npafc.org).
Habicht,C.,N.V.Varnavskaya,T.Azumaya,S.Urawa,R.L.
Wilmot, C.M. Guthrie III, and J.E. Seeb. 2005. Mi-
gration patterns of sockeye salmon in the Bering Sea
discerned from stock composition estimates of sh
captured during BASIS studies. N. Pac. Anadr. Fish
Comm.Tech.Rep.6:41–43.(Availableathttp://www.
npafc.org).
Harris,C.1987.CatchesofNorthAmericansockeyesalm-
on (Oncorhynchus nerka) by the Japanese high seas
salmonsheries, 1972-1984. In Sockeyesalmon(On-
corhynchus nerka)populationbiologyand futureman-
agement.Edited byH.D.Smith,L.Margolis,andC.C.
Wood.Can.Sp.Publ.Fish.Aquat.Sci.96:458–479.
Hartt,A.C.1962.MovementofsalmonintheNorthPacic
OceanandBeringSeaasdeterminedbytagging,1956–
1958.Int.N.Pac.Fish.Comm.Bull.6.157pp.
Hartt,A.C. 1975. ProblemsinsamplingPacicsalmon at
sea.Int.N.Pac.Fish.Comm.Bull.32:165–231.
Hartt,A.C.,andM.B.Dell.1986.Earlyoceanicmigrations
and growth of juvenile Pacic salmon and steelhead
trout.Int.N.Pac.Fish.Comm.Bull.46.105pp.
Healey,M.C. 1991.Life history ofchinook salmon (On-
corhynchus tshawytscha).InPacic salmonlifehisto-
ries.Edited byC.GrootandL.Margolis.UBCPress,
Vancouver.pp.311-393.
Heard,W.R.1991.Lifehistoryofpinksalmon(Oncorhyn-
chus gorbuscha).InPacicsalmonlifehistories.Edit-
ed byC.GrootandL.Margolis.UBCPress,Vancouver.
pp.119–230.
Hiramatsu,K.,andY.Ishida.1989.Randommovementand
orientationin pink salmon (Oncorhynchus gorbuscha)
migrations.Can.J.Fish.Aquat.Sci.46:1062–1066.
Hodgson,S.,T.P.Quinn,R.Hilborn,R.C.Francis,andD.E.
Rogers. 2006.Marineand freshwaterclimaticfactors
affecting interannual variation in the timing of return
migrationtofreshwaterofsockeyesalmon(Oncorhyn-
chus nerka).Fish.Oceanogr.15(1):1–24.
Hunt,G.L.,P.Stabeno,G.Walters,E.Sinclair,R.D.Brodeur,
J.M.Napp,andN.A.Bond.2002.Climatechangeand
controlofthesoutheasternBeringSeapelagicsystem.
Deep-SeaRes.II49:5821–5823.
International North Pacic Fisheries Commission (INPFC).
1967a.Annualreport1965.Vancouver,Canada.129pp.
International North Pacic Fisheries Commission (INPFC).
1967b.Annualreport1966.Vancouver,Canada.117pp.
Ishida,Y.,T.Azumaya,M.Fukuwaka,andN.Davis.2002.
Interannual variability in stock abundance and body
sizeofPacicsalmoninthecentralBeringSea. Prog.
Oceanogr.55:223–234.
Ishida, Y.,T.Azumaya, M. Fukuwaka, and T. Nagasawa.
2005.DensitydependentgrowthofpinksalmonOnco-
rhynchus gorbuschaintheBeringSea.N.Pac.Anadr.
FishComm.Tech.Rep.6:47.(Availableathttp://www.
npafc.org).
Karpenko, V.I., M.N. Kovalenko, V.G. Erokhin, A.A.
Adamov,A.B.Dekshtein,S.I.Subbotin,V.P.Smorodin,
andE.D.Kim.2005.Abundanceestimatesofjuvenile
Pacicsalmonintheeastern OkhotskSeaandwestern
BeringSea.N.Pac.Anadr.FishComm.Tech.Rep.6:
52–53.(Availableathttp://www.npafc.org).
Khen,G.V.,andE.O.Basyuk.2005.Oceanographiccondi-
NPAFC Bulletin No. 4
175
Stock-specic ocean distribution of salmon
tionoftheBeringSeainBASIS.N.Pac.Anadr.Fish
Comm.Tech.Rep.6:21–23.(Availableathttp://www.
npafc.org).
King,J.,H.Batchelder,J.Boldt,W.Crawford,A.Hollowed,
S.Kim,V.Lapko,A.MacCall,D.Mackas,N.Mantua,
G. McFarlane, S. McKinnell, J. Overland, I. Perry, J.
Polovina,J.Schweigert,F.Schwing,Q-STang,A.Yatsu,
andJ-PZhao.2005. Coherentregionalresponses. In
Report of the study group on sheries and ecosystem
responses to recent regime shifts. PICES Scientic
ReportNo.28.pp.37-50.(Availableatwww.pices.int/
publications/).
Klovach,N.2003.Ecologicalconsequencesoflarge-scale
propagation of chum salmon. VNIRO Publishing,
Moscow.161pp.
Klovach, N., and A. Gruzevich. 2004. Results of 2003
salmonresearchcruiseoftheSRTMKSovremennik.N.
Pac.Anadr.FishComm.Doc.767.32pp.(Availableat
http://www.npafc.org).
KlovachN.V.,G.A.Bogdanov,andM.V.Bondarenko.2000.
Watertemperatureandpre-spawningmigrationdynam-
icsofthePacicsalmonatsea.Vopr.Ikhtiologii1(2-3):
176–177.
Klovach,N.V.,V.I.Karpenko,A.E.Bobyrev,A.K.Gruzevich,
E.M.Klovach,andS.S.Kozlov.2002.Atlasofmarine
distributionofPacicsalmonsduringthespring-summer
feeding and pre-spawning migrations. Edited by O.F.
Gritsenko.VNIROPublishing,Moscow.189pp.
Mahnken, C., G. Ruggerone, W. Waknitz, and T. Flagg.
1998.Ahistorical perspectiveonsalmonidproduction
fromPacicrimhatcheries.N.Pac.Anadr.FishComm.
Bull.1:38–53.(Availableathttp://www.npafc.org).
Major,R.L.,J.Ito,S.Ito,andH.Godfrey.1978.Distribu-
tionand abundance of chinook salmon(Oncorhynchus
tshawytscha) in offshore waters of the North Pacic
Ocean.Int.N.Pac.Fish.Comm.Bull.38.54pp.
Mantua,N.J., S.R. Hare,Y.Zhang, J.M. Wallace,andR.C.
Francis.1997.APacicinterdecadalclimateoscillation
withimpactsonsalmonproduction.Bull.Am.Meteorol.
Soc.78:169–1079.
Manzer, J.I.,T. Ishida, A.E. Peterson, and M.G. Hanavan.
1965.SalmonoftheNorthPacicOcean:PartV:Off-
shoredistributionofsalmon.Int.N.Pac.Fish.Comm.
Bull.15.452pp.
Moiseev,P.A.1956.High-seassalmonsheriesintheNorth
Pacic.InPacicsalmon:selectedarticlesfromSoviet
periodicals. pp. 55–63. Israel Program for Scientic
Translations, Jerusalem 1961. (Translated from Rus-
sian,Rybnoekhozyaistvo32(4):54–59).
Myers,K.W.,andD.E.Rogers.1988.Stockoriginsofchi-
nooksalmoninincidentalcatchesbygroundshsher-
iesintheeasternBeringSea.N.Am.J.Fish.Manage.
8:162–171.
Myers,K.W.,K.Y.Aydin,R.V.Walker,S.Fowler,andM.L.
Dahlberg.1996.KnownoceanrangesofstocksofPa-
cicsalmonandsteelheadasshownbytaggingexperi-
ments,1956–1995.FRI-UW-9614.FisheriesResearch
Institute,UniversityofWashington,Seattle.225pp.
Myers, K.W., C.K. Harris, Y. Ishida, L. Margolis, and M.
Ogura.1993.ReviewoftheJapaneselandbaseddrift-
netsalmonshery in the westernNorthPacicOcean
andthecontinentoforiginofsalmonidsinthisarea.Int.
N.Pac.Fish.Comm.Bull.52.86pp.
Myers, K.W., R.V. Walker, H.R. Carlson, and J.H. Helle.
2000.SynthesisandreviewofUSresearchonthephys-
ical and biological factors affecting ocean production
of salmon. N. Pac.Anadr. Fish Comm. Bull. 2: 1–9.
(Availableathttp://www.npafc.org).
Myers, K.W., R.V.Walker,N.D. Davis, and R.L. Burgner.
2004. A history of U.S. high seas salmon and steel-
headstockidenticationresearch. N.Pac.Anadr.Fish
Comm.Tech.Rep.5:16–17.(Availableathttp://www.
npafc.org).
Myers,K.W.,R.V.Walker,S. Fowler, and M.L. Dahlberg.
1990.KnownoceanrangesofstocksofPacicsalmon
andsteelheadasshownbytaggingexperiments,1956–
1989. FRI-UW-9009. Fisheries Research Institute,
UniversityofWashington,Seattle.57pp.
Neave,F.,T.Yonemori,andR.G.Bakkala.1976.Distribu-
tion and origin of chum salmon in offshore waters of
theNorthPacicOcean.Int.N.Pac.Fish.Comm.Bull.
35.79pp.
North Pacic Anadromous Fish Commission (NPAFC).
2003.Areviewoftheresearchontheearlymarinepe-
riodofPacicsalmonbyCanada,Japan,Russia,andthe
UnitedStates.N.Pac.Anadr.FishComm.Bull.3.152
pp.(Availableathttp://www.npafc.org).
North Pacic Anadromous Fish Commission (NPAFC).
2004.Workshopon application of stock identication
indening marine distribution andmigration of salm-
on.N.Pac.Anadr.FishComm.Tech.Rep.5. 135pp.
(Availableathttp://www.npafc.org).
North Pacic Anadromous Fish Commission (NPAFC).
2005.WorkshopBASIS-2004:salmonandmarineeco-
systems in the Bering Sea and adjacent waters on ap-
plicationof stock identication indeningmarinedis-
tributionandmigrationofsalmon.N.Pac.Anadr.Fish
Comm.Tech.Rep.6.127pp.(Availableathttp://www.
npafc.org).
Ogura,M.,andS.Ito.1994. Change in the known ocean
distribution of Japanese chum salmon, Oncorhynchus
keta,inrelationtothe progress of stock enhancement.
Can.J.Fish.Aquat.Sci.51:501–505.
Pearcy,W.G.1992.OceanecologyofNorthPacicsalmo-
nids.UniversityofWashingtonPress,Seattle.179pp.
PICES. 2004. Marine ecosystems of the North Pacic.
PICESSp.Pub.1.280pp.
Quinn, T.P. 2005. The behavior and ecology of Pacic
salmonandtrout.UniversityofWashingtonPress,Se-
attle.378pp.
NPAFC Bulletin No. 4
176
Myers et al.
Radchenko,V.I.,andI.I.Glebov.1998.Incidentalby-catch
ofPacicsalmonduringRussianbottomtrawlsurveys
intheBeringSeaandsomeremarksonitsecology.N.
Pac.Anadr.FishComm.Bull.1:367–374.(Availableat
http://www.npafc.org).
Rand,P.S.,J.P.Scandol,andE.E.Walter.1997.NerkaSim:
a research and education tool to simulate salmon in a
dynamicoceanenvironment.Fisheries22(10):6–13.
Royce,W.F.,L.S.Smith,andA.C.Hartt.1968.Models of
oceanicmigrationsofPacicsalmonandcommentson
guidance mechanisms. U.S. Fish Wildl. Serv., Fish.
Bull.66:441–462.
Royer,T.C.2005.Hydrographicresponsesatacoastalsite
inthe northernGulfofAlaskato seasonal andinteran-
nualforcing.Deep-SeaRes.II52:267–288.
Salo,E.O.1991.Lifehistoryofchumsalmon(Oncorhyn-
chus keta). In Pacic salmon life histories. Edited by
C.Groot andL.Margolis.UBCPress,Vancouver.pp.
231–309.
Sandercock,F.K. 1991. Life history of coho salmon(On-
corhynchus kisutch). In Pacic salmon life histories.
Edited byC.Grootand L.Margolis.UBCPress,Van-
couver.pp.395–445.
Sarkar, N., T.C. Royer, and C.E. Grosch. 2005. Hydro-
graphic variability on decadal and interdecadal scales
in the northern Gulf of Alaska. Cont. Shelf Res. 25:
2147–2162.
Seeb, L.W., P.A. Crane, C.M. Kondzela, R.L. Wilmot,
S. Urawa, N.V. Varnavskaya, and J.E. Seeb. 2004.
Migration of Pacic Rim chum salmon on the high
seas: insights from genetic data. Environ. Biol. Fish.
69:21–36.
Shepard,M.P.,A.C.Hartt,andT.Yonemori.1968.Salmon
oftheNorthPacicOcean-PartVIII.Chumsalmon in
offshorewaters.Int.N.Pac.Fish.Comm.Bull.25.69
pp.
Shuntov,V.P.,V.I.Radchenko,V.V.Lapko, andYu.N.Pol-
tev.1993.DistributionofsalmoninthewesternBering
SeaandneighboringPacicwaters.J.Ichthyol.33(7):
48–62.
Stabeno,P.J.,N.A.Bond, N.B.Kachel,S.A.Solo, andJ.D.
Schumacher.2001.Onthetemporalvariabilityof the
physicalenvironmentoverthesoutheasternBeringSea.
Fish.Oceanogr.10(1):81–98.
Stabeno,P.J.,N.B.Kachel,M.Sullivan,andT.E.Whitledge.
2002a.Variabilityofphysical and chemicalcharacter-
isticsalongthe70-misobathofthesoutheasternBering
Sea.Deep-SeaRes.II49:5931–5943.
Stabeno, P.J., R.K. Reed, and J.M. Napp. 2002b. Trans-
port through Unimak Pass,Alaska. Deep-Sea Res. II
49:5919–5930.
Stabeno,P.J.,J.D.Schumacher,andK. Ohtani.1995.The
BeringSea: a summary of physical, chemical and bio-
logical characteristics and a synopsis of research. N.
Pac. Mar. Sci. Org. PICES. Alaska Sea Grant Press,
Fairbanks,pp.1–128.
Takagi,K.,K.V.Aro,A.C.Hartt,andM.B.Dell.1981.Dis-
tributionandoriginofpinksalmon(Oncorhynchus gor-
buscha)inoffshorewatersoftheNorthPacicOcean.
Int.N.Pac.Fish.Comm.Bull.40.195pp.
Thomson,K.A.,W.J.Ingraham,M.C.Healey,P.H.LeBlond,
C. Groot, and C.G. Healey. 1992. The inuence of
ocean currents on latitude of landfall and migration
speedofsockeyesalmonreturningtotheFraserRiver.
Fish.Oceanogr.1:163–179.
Thomson,K.A.,W.J.Ingraham,M.C.Healey,P.H.LeBlond,
C.Groot,and C.G. Healey.1994. Computer simula-
tionsoftheinuenceofoceancurrentsonFraserRiver
sockeye salmon (Oncorhynchus nerka) return times.
Can.J.Fish.Aquat.Sci.51:441–449.
Ueno,Y.,Y.Ishida,K.Nagasawa,andT.Watanabe.1999.
Winter distribution and migration of Pacic salmon.
SalmonRep.Ser.48:59–82.
Urawa,S.2000.OceanmigrationrouteofJapanesechum
salmonwithareferencetofuturesalmonresearch.Na-
tionalSalmonResourcesCenterNewsletter5:3–9.(In
Japanese).
Urawa,S.2004. Stock identication studiesofhighseas
salmon in Japan: a review and future plan. N. Pac.
Anadr.FishComm.Tech.Rep.5:9–10.(Availableat
http://www.npafc.org).
Urawa, S., and Y.Ueno. 1997. Genetic stock identica-
tionofchumsalmon(Oncorhynchus keta)intheNorth
PacicOceaninthewinterof1996.SalmonRep.Ser.
43:97-104.
Urawa,S.,andY.Ueno.1999.Thegeographicaloriginof
chumsalmon(Oncorhynchus keta)caughtinthewest-
ern and central North Pacic Ocean in the winter of
1998.SalmonRep.Ser.48:52-58.
Urawa, S., Y. Ueno,Y. Ishida, L.W. Seeb, P.A. Crane, S.
Abe, and N.D. Davis. 2001. A migration model of
Japanesechumsalmonduringearlyoceanlife.N.Pac.
Anadr.Fish Comm. Tech. Rep. 2: 1–2. (Available at
http://www.npafc.org).
Urawa,S.,M.Kawana,T.Azumaya,P.A.Crane,andL.W.
Seeb.2005.Stock-specicoceandistributionofimma-
turechumsalmoninthesummerandearlyfallof2003:
estimates by allozyme analysis. N. Pac. Anadr. Fish
Comm. Doc. 896. 14 pp. (Availableat http://www.
npafc.org).
Utter,F.,G.Milner,G.Stahl,andD.Teel. 1989. Genetic
populationstructureofChinooksalmon,Oncorhynchus
tshawytscha,inthePacicNorthwest.Fish. Bull. 87:
239–264.
Walker, R.J., V.V. Sviridov, S. Urawa, and T. Azumaya.
2007. Spatio-temporal variation in vertical distribu-
tions of Pacic salmon in the ocean. N. Pac. Anadr.
Fish Comm. Bull. 4: 193–201. (Available at http://
www.npafc.org).
Walter,E.E.,J.P.Scandol,andM.C.Healey.1997.Areap-
praisaloftheoceanmigrationpatternsofFraserRiver
sockeye salmon (Oncorhynchus nerka) by individual-
basedmodeling.Can.J.Fish.Aquat.Sci.54:847–858.
Welch, D.W., A.I. Chigirinsky, and Y. Ishida. 1995. Up-
perthermallimitsontheoceanicdistributionofPacic
salmon(Oncorhynchusspp.)inthespring.Can.J.Fish.
Aquat.Sci.52:489–503.
Welch,D.W.,Y.Ishida,andK. Nagasawa.1998.Thermal
limits and ocean migrations of sockeye salmon (On-
corhynchus nerka): long-term consequences of global
warming.Can.J.Fish.Aquat.Sci.55:937–948.
Williams,R.N.,J.A.Lichatowich,andM.A.Powell.2006.
Diversity,structure, and status of salmonpopulations.
InReturntotheriver:restoringsalmontotheColum-
biaRiver.Edited by R.N.Williams.ElsevierAcademic
Press,Amsterdam.pp.99–171.
Wirts,A.E.,and G.C. Johnson. 2005. Recent interannual
upperoceanvariabilityinthedeepsoutheasternBering
Sea.J.Mar.Res.63:381–405.
177
NPAFC Bulletin No. 4Stock-specic ocean distribution of salmon