Ramial Chipped Wood: the Clue to a Sustainable Fertile Soil

Article (PDF Available) · January 2001with 1,011 Reads
Ramial Chipped Wood:
the Clue to a Sustainable Fertile Soil
by
G. Lemieux1 and D. Germain2
1Professeur au Département des Sciences du bois et de la forêt
Faculté de foresterie et de géomatique
Université Laval, Québec (Québec)
Canada, G1K 7P4
Phone: (418) 656-2131, extension 2837
Gilles.Lemieux@sbf.ulaval.ca
2Hydrogéochem Environnement,
1184 Cartier Ave, suite 1, Québec (Québec)
Canada, G1R 2S7
Phone: (418) 647-6814
Diane.Germain@hydrogeochem.qc.ca
Publication n° 128
December 2000
http://forestgeomat.ffg.ulaval.ca/brf/
édité par le
Groupe de Coordination sur les Bois Raméaux
Université Laval
Département des Sciences du Bois et de la Forêt
Québec (Québec)
Canada G1K 7P4
December 2000
Ramial Chipped Wood: the Clue...
Lemieux, G. & Germain, D. Dec. 2000
Foreword
This paper has been written in order to fulfill a request from the Inter-
American Development Bank, Washington DC, USA. Dr. Germain and
I, in order to respond, have made some efforts for illustrating the RCW
Technology and compare with both chemical fertilizers and composts
over the results achieved.
This was also written in the framework of a new project we are seeking
for Central America and where women stand in the center of our
concerns. Those comments should bring some enlightenments on our
worries and what we aim at.
Professor Gilles Lemieux
Université Laval
December 2000
ii
Groupe de Coordination sur les Bois Raméaux
Université Laval, Québec, Canada
Ramial Chipped Wood: the Clue...
Lemieux, G. & Germain, D. Dec. 2000
Table of contents
Project rationale and objectives............................................................................. 1
Degraded Agricultural Lands Threaten World's Food Production Capacity........... 1
Competition for water............................................................................................ 2
The soil: a fragile environment .............................................................................. 3
The forest contribution to soils formation............................................................... 3
What is ramial chipped wood?............................................................................... 4
RCW studies ......................................................................................................... 5
Observations...................................................................................................... 5
Projects in progress........................................................................................... 5
Mineral Fertilizers, Composts and RCW: Advantages and Disadvantages........... 6
Mineral fertilizers................................................................................................ 6
Advantages.................................................................................................... 6
Disadvantages ............................................................................................... 6
Organic fertilizers............................................................................................... 7
Advantages.................................................................................................... 7
Disadvantages ............................................................................................... 8
RCW.................................................................................................................. 8
Advantages.................................................................................................... 8
Disadvantages ............................................................................................... 9
Agricultural training................................................................................................ 9
Why oriented toward women? ........................................................................... 9
Implementation................................................................................................ 10
How to use the RCW technology?....................................................................... 10
Tree species, harvesting, and size .................................................................. 10
The chipping.................................................................................................... 11
Spreading and soil incorporation ..................................................................... 11
The forest litter addition................................................................................... 12
Environmental and social impacts....................................................................... 12
Environmental impacts..................................................................................... 12
A new category for soil improvement: SOIL UPGRADERS............................. 13
Social impacts.................................................................................................. 13
The research team.............................................................................................. 13
Coordination Group on Ramial Wood (CGRW) ............................................... 13
Hydrogéochem Environment ........................................................................... 14
References.......................................................................................................... 15
iii
Groupe de Coordination sur les Bois Raméaux
Université Laval, Québec, Canada
Ramial Chipped Wood: the Clue...
Lemieux, G. & Germain, D. Dec. 2000
Project rationale and objectives
Close to forty percent of the world's agricultural land is seriously degraded, which
could undermine the long-term productive capacity of those soils. Plus, the
economic and social effects of agricultural land degradation have been much more
significant in developing countries than in industrialized countries. However, they
are the regions where the greatest growth in food production will be needed, and
where such growth will be the most difficult.
According to Gardner and Halweil (2000), in rural areas of Africa, Latin America,
and Asia, 80% of the food is in fact produced by women. Yet women have little or
no access to land ownership, credit, agricultural training, education, and social
privileges in general…
This project could partly solve those problems. The main objective is to implement
a new technology, known as ramial chipped wood (RCW) for establishing a
sustainable fertile soil. The implementation will be based on an agricultural training
for women already interested in farming.
The second goal is in favor of farmers mastering the new technology where its
implementation will be under the responsibility of agricultural advisers.
The third objective is to have regional scientists or scientific groups in charge to
maintain a close cooperation between the development of RCW technology and
the local agricultural advisers.
Degraded Agricultural Lands Threaten World's Food Production
Capacity
(section taken from IFPRI, 2000)
Nearly forty percent of the world's agricultural land is seriously degraded, which
could undermine the long-term productive capacity of those soils, according to
scientists at the International Food Policy Research Institute (IFPRI), who carried
out the most comprehensive mapping to date of global agriculture.
"The economic and social effects of agricultural land degradation have been much
more significant in developing countries than in industrialized countries," says Dr.
Serageldin, World Bank Vice President for Special Programs and Chairman of the
Consultative Group on International Agricultural Research (CGIAR). "These are
precisely the regions where the greatest growth in food production will be needed,
but where all indications are that achieving such growth will be the most difficult."
"Halting the decline of the planet's life-support systems may be the most difficult
challenge humanity has ever faced," said Jonathan Lash, World Resources
Institute (WRI) President. According to Dr. Per Pinstrup-Andersen, IFPRI Director
1
Groupe de Coordination sur les Bois Raméaux
Université Laval, Québec, Canada
Ramial Chipped Wood: the Clue...
Lemieux, G. & Germain, D. Dec. 2000
General, these threats to the world's food production capacity are compounded by
three disturbing trends:
1.5 billion additional people will be on the planet by 2020, almost all in poorer
developing countries;
the natural fertility of agricultural soils is generally declining; and
it is increasingly difficult to find productive new land to expand the agricultural
base.
Soil degradation, including erosion and nutrient depletion, is undermining the long-
term capacity of many agricultural systems. One of the most common management
techniques used to maintain the condition of agroecosystems is the application of
inorganic fertilizers (nitrogen, phosphorus and potassium) or manure. Too little can
lead to soil 'nutrient mining' (amount of nutrients extracted by harvested crops is
greater than the amount of nutrients applied), and too much can lead to nutrient
leaching (washing away of excess nutrients contaminating groundwater and
surface water).
The findings of significant losses of soil fertility from IFPRI analysis of nutrient
depletion in Latin America and the Caribbean are consistent with other sub-
regional studies from Sub-Saharan Africa, China, South and Southeast Asia and
Central America.
The unprecedented scale of agricultural expansion and intensification raises the
growing concern over the vulnerability of the productive capacity of many
agroecosystems to the stresses imposed on them by the intensification of
agriculture. Can technological advances and increased inputs continue to offset the
depletion of soil fertility and fresh water resources? As soil fertility reduces and
water becomes scarcer, what will be the impact on food prices?
Competition for water
Competition for water will further magnify constraints to food production. According
to Sandra Postel of the Global Water Policy Project, today some 40% of the world's
food comes from the 17% of cropland that is irrigated. Of all the vulnerabilities
characterizing irrigated agriculture, none threatens most than the depletion of
groundwater resources. In fact, overpumping of aquifers in China, India, North
Africa, Saudi Arabia, and the United States exceeds 160 billion tons of water per
year. Since it takes roughly 1,000 tons of water to produce 1 ton of grain, this is the
equivalent of 160 million tons of grain, or half the U.S. grain harvest.
The largest single groundwater resource deficits are in India (104 billion cubic
meters per year) and China (30 bcm), and these deficits are growing. In India,
where more than half of all children are malnourished and underweight, a shrinking
harvest is likely to increase hunger-related deaths. David Seckler, Director General
of the International Water Management Institute in Sri Lanka, estimates that a
2
Groupe de Coordination sur les Bois Raméaux
Université Laval, Québec, Canada
  • Conference Paper
    Full-text available
    Obwohl zahlreiche Forschungsergebnisse belegen, dass Agroforstsysteme potentiell zum Klimaschutz, Erosionsschutz, zur Verhinderung von Nährstoffauswaschungen und zum Aufbau von Bodenfruchtbarkeit beitragen können (u.a. Quinkenstein et al. 2009, Aßmann u. Oelke 2010, Huber et al. 2013) mangelt es in Deutschland bislang noch an der Umsetzung in die landwirtschaftliche Praxis. Gründe hierfür sind u.a. fehlende regionale Anschauungsobjekte (Modell- und Demonstrationsvorhaben), aber auch die nach wie vor fehlende Thematisierung von Agroforstsystemen in Ausbildung und Studium. Um hierfür Lösungsansätze zu erarbeiten, wurde der Hochschule für nachhaltige Entwicklung Eberswalde (HNEE) von einem an der Entwicklung von Agroforstsystemen interessierten Eigentümer eine ca. 30 ha große Projektfläche im nördlichen Brandenburg (Gemeinde Löwenberger Land) zur Erforschung von Agroforstsystemen dauerhaft zur Verfügung gestellt. Im Rahmen von Abschlussarbeiten von den land- und forstwirtschaftlichen Studiengängen der HNEE (Haefke 2016, Hofmann u. Hübner-Rosenau 2016, Müller 2016) erfolgte hierfür die Konzeption eines multispezifischen, standortangepassten Agroforstsystems: dieses sieht Wertholz- und Fruchtertragskomponenten sowie eine Kurzumtriebsplantage (KUP) vor, die durch die Produktion von Frisch-Zweig-Häckseln (FZH) dem Aufbau von Bodenfruchtbarkeit dienen soll. Dabei soll das Agroforstsystem gleichzeitig als Modellprojekt und Dauerbeobachtungsfläche fungieren: Zum einen sollen die vielfältige Umsetzbarkeit von Agroforstsystemen sowie deren Potenziale anschaulich aufgezeigt werden, um andere Landeigentümer*innen, Landwirt*innen und politische Entscheidungsträger*innen zur Nachahmung zu inspirieren; zum anderen sollen die vielfältigen ökologischen Wechselwirkungen des Agroforstsystems durch die HNEE langfristig beobachtet und dokumentiert werden. (http://agroforst-info.de/wp-content/uploads/2017/03/Tagungsband_5_Forum_Agroforstsysteme_.pdf)
  • Chapter
    By-products of wood degradationand fungal activities have an important function in the formation of organic soilcomponents and can positively influence the natural succession pattern. The term mycoremediation usually refers to the exploitation of a unique fungal capacity to break down various organopollutants or to remove heavy metals from contaminated substrates but was also expanded on application of fungi to revitalise degraded and organically poor areas. Natural microbial and fungal communities found in degraded and/or contaminated soils and woody substrates represent a heterogeneous potential for remediation. But different ecological factors can hinder and prolong the revitalisation processes. The remediation potential of indigenous microflora can be enhanced with the addition of nutrients (biostimulation) or with the addition of living exogenous organisms into the remediated substrate (bioaugmentation). The substrate used for biostimulation or as an organic amendmentcan also carry a variability of organisms that can express bioremediation potential. The structures and organisation of main components of wood cell walls and high carbon to nitrogen ratio promote wood stability and cause resistance to deterioration and degradation. To promote wood degradation and production of soil organic matter, white-rot fungi can be exploited. It is essential to understand basic processes involved in the wood degradation and succession of organisms to get an insight into mycoremediation principles. With this chapter we introduce the basis of wood degradation and emphasise the influence of exogenously added fungi on the development and stability of indigenous microbial communities.
  • Nourishing the Underfed and Overfed Edited by Brown, Flavin and French
    • Www Epa Gardner
    • G Halweil
    EPA530-F-97-044, www.epa.gov Gardner, G., Halweil, B., 2000. Nourishing the Underfed and Overfed. In: State of the World 2000. Edited by Brown, Flavin and French. W.W. Norton & Co., p. 59-78
  • Organic Materials Management Strategies EPA530-R-99-016 www.epa.gov EPA, 1998. An Analysis of Composting As an Environmental Remediation Technology. EPA530-R-98-008, www.epa.gov EPA, 1997. Innovative Uses of Compost : Disease Control for Plants and Animals
    EPA, 1999a. Background Report on Fertilizer use, contaminants and regulations. EPA747- R-98-003, www.epa.gov EPA, 1999b. Organic Materials Management Strategies. EPA530-R-99-016 www.epa.gov EPA, 1998. An Analysis of Composting As an Environmental Remediation Technology. EPA530-R-98-008, www.epa.gov EPA, 1997. Innovative Uses of Compost : Disease Control for Plants and Animals. EPA530-F-97-044, www.epa.gov
  • Nourishing the Underfed and Overfed. In: State of the World
    • G Gardner
    • B Halweil
    Gardner, G., Halweil, B., 2000. Nourishing the Underfed and Overfed. In: State of the World 2000. Edited by Brown, Flavin and French. W.W. Norton & Co., p. 59-78.
  • Une tentative d'évaluation de la technologie BRF pour des fins maraîchères. Publication #120
    • G Lemieux
    • L Lachance
    Lemieux, G., Lachance, L., 2000. Une tentative d'évaluation de la technologie BRF pour des fins maraîchères. Publication #120. Département des Sciences du bois et de la forêt, Faculté de Foresterie et de géomatique, Université Laval. 34 pages.
  • L'étude de la chimie des polyphénols dans le bois raméal fragmenté (BRF)
    • T Stevanovic-Janezic
    • G Lemieux
    • L Lachance
    • S Genest
    • C Hamel
    Stevanovic-Janezic, T. 1998. L'étude de la chimie des polyphénols dans le bois raméal fragmenté (BRF). In: Lemieux, G., Lachance, L., Genest S., and Hamel, C. La Technologie pédogénétique du bois raméal fragmenté (BRF), une source naturelle qui contribue à l'établissement et au maintien de la fertilité des sols au Sénégal et au
  • Global Biodiversity Scenarios for the year 2100
    • Leroy Poff
    • Martin T Sykes
    • Brian H Walker
    • Marilyn Walker
    • Diana H Wall
    LeRoy Poff, Martin T. Sykes, Brian H. Walker, Marilyn Walker, and Diana H. Wall. Global Biodiversity Scenarios for the year 2100. Science 2000 March 10; 287: 1770- 1774.
  • Article
    Full-text available
    Soil organisms play principal roles in several ecosystem functions, i.e. promoting plant productivity, enhancing water relations, regulating nutrient mineralisation, permitting decomposition, and acting as an environmental buffer. Agricultural soils would more closely resemble soils of natural ecosystems if management practices would reduce or eliminate cultivation, heavy machinery, and general biocides; incorporate perennial crops and organic material; and synchronise nutrient release and water availability with plant demand. In order to achieve these goals, research must be completed to develop methods for successful application of organic materials and associated micro-organisms, synchronisation of management practices with crop and soil biota phenology, and improve our knowledge of the mechanisms linking species to ecosystem processes.
  • Article
    Full-text available
    Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.