ArticlePDF Available


Wetland rice systems in Asia make a major contribution to global rice supply. The system is also able to maintain soil fertility on a sustainable basis. The essential components of wetland rice culture comprise cultivation of land in the wet or flooded state (puddling), transplanting of rice seedlings into puddled rice paddies, and growing the rice crop under flooding. The land is dry or flood-fallowed during the turnaround period between two crops. Following these cultural practices, two or three crops of rice or rice with upland crops in sequence are grown. However, in the present context of increasing freshwater scarcity, there is a case to shift from the traditional way of growing rice to ways that are water-wise. In this context, it is crucial that the benefits of the wetland rice system on soil fertility and productivity are considered. This article examines the benefits of growing rice in flooded conditions on soil fertility and its maintenance. Research has shown that the wetland rice system (growing rice in submerged soils) has a great ameliorative effect on chemical fertility: largely by bringing p H in the neutral range, resulting in better availability of plant nutrients and accumulation of organic matter. The article concludes that the benefits of growing rice using submerged conditions must be considered and weighed in the context of a likely shift to growing rice with water-management practices that are water-wise.
CURRENT SCIENCE, VOL. 88, NO. 5, 10 MARCH 2005 735
Fertility and organic matter in submerged
rice soils
K. L. Sahrawat
International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, India
Wetland rice systems in Asia make a major contribution
to global rice supply. The system is also able to maintain
soil fertility on a sustainable basis. The essential compo-
nents of wetland rice culture comprise cultivation of land
in the wet or flooded state (puddling), transplanting of
rice seedlings into puddled rice paddies, and growing
the rice crop under flooding. The land is dry or flood-
fallowed during the turnaround period between two crops.
Following these cultural practices, two or three crops
of rice or rice with upland crops in sequence are grown.
However, in the present context of increasing freshwater
scarcity, there is a case to shift from the traditional way of
growing rice to ways that are water-wise. In this context,
it is crucial that the benefits of the wetland rice system on
soil fertility and productivity are considered. This article
examines the benefits of growing rice in flooded condi-
tions on soil fertility and its maintenance. Research
has shown that the wetland rice system (growing rice
in submerged soils) has a great ameliorative effect on
chemical fertility: largely by bringing pH in the neutral
range, resulting in better availability of plant nutri-
ents and accumulation of organic matter. The article
concludes that the benefits of growing rice using sub-
merged conditions must be considered and weighed in
the context of a likely shift to growing rice with water-
management practices that are water-wise.
SOIL fertility and nutrient supplying capacity of a soil can be
maintained on a long-term basis only by replenishing, by
addition through external inputs, nutrients removed by
cropping and those lost through physical, chemical and bio-
logical processes. In addition to replenishing plant nutrients,
the application of organic matter is also crucial for main-
taining fertility of soils. Soil organic matter acts as a reservoir
of plant nutrients. The maintenance of a threshold level of
organic matter in the soil is crucial for maintaining physical,
chemical and biological integrity of the soil and also for the
soil to perform its agricultural production and environmental
Microbial activity in a soil drives organic matter decompo-
sition and mineralization processes, leading to release of
organically bound plant nutrients in forms available to grow-
ing plants. Because of the prevailing high temperatures in
the tropical regions, decomposition or destruction of added
and soil organic matter is relatively rapid. The balance
between inputs and outputs of organic matter is the observed
organic matter in a soil. Hence, the maintenance of soil orga-
nic matter is possible only through addition of organic matter
on a continuing basis2.
Wetland rice systems in Asia are making a major contribu-
tion to global rice supply3. These systems are also excellent
examples of sustainable soil fertility maintenance4. A unique
feature of soils that remain flooded for prolonged periods,
for example soils that are used for continuous lowland rice
cultivation, is the maintenance of soil fertility and productivity
of wetland rice-based production systems5.
Upland-based production systems have a greater tendency
for unsustainability due mainly to relatively rapid loss of orga-
nic matter, degradation of soil fertility and deterioration
in physical, chemical and biological properties5.
Several studies indicate that given similar climatic and soil
conditions, organic matter accumulates preferentially in tropi-
cal wetland rice soils compared to upland-based production
systems. The maintenance of soil organic matter status in
soils with tropical upland conditions is more difficult than in
soils used for wetland rice conditions. The results from
long-term studies of soil organic matter dynamics in upland
and wetland rice-based production systems support this
conclusion6. Under similar soil and climatic conditions, the
maintenance of organic matter and fertility would seem more
feasible in wetland rice than in upland rice-growing con-
The traditional way of growing lowland rice involves land
preparation by cultivation of the land in flooded or wet state
(puddling), followed by transplanting rice seedlings into the
puddled rice paddies and growing the crop in a submerged
Although the traditional method of growing lowland rice
has been sustainable, the system uses high amounts of water.
Critics argue that lowland rice should be cultivated with
increased water use efficiency. Obviously, there is an urgent
need to critically review and analyse the benefits of growing
rice in submerged conditions in the context of soil chemical
fertility amelioration and fertility maintenance, which might
be affected by switching from traditional to water-saving
This article reviews the recent literature and highlights the
underlying principles that govern the maintenance of organic
matter and soil fertility in wetland rice systems.
Submerging soil and chemical fertility
The most important influence of submerging a soil in water
is to reduce oxygen supply. As a result, the entrained oxygen
is quickly exhausted. The lack of free oxygen or anaerobiosis
causes soil reduction and sets in motion a series of physical,
chemical and biological processes. The influence of flooding
on physical, chemical and electrochemical properties of soil
has been comprehensively researched and reviewed from time
to time4,7–13.
The main electrochemical changes that influence the chemi-
stry and fertility of submerged soils and growing of crops
such as wetland rice include:
A decrease in redox potential (redox potential, Eh) or re-
duction of the soil.
An increase in pH of acid soils and a decrease in pH of
alkali soils, and changes in the floodwater pH.
An increase in specific conductance and ionic strength
of soil solution.
Ionic equilibria influence sorptiondesorption reactions
and the availability of major and micronutrients.
Submerging aerobic soils in water decreases its Eh that drops
and stabilizes at a fairly stable range of + 200 mV to –300 mV
depending on the soil, especially the content of organic matter
and reducible species (nitrate, sulphate and ferric iron),
particularly iron. But Eh of the surface water and the first few
millimetres of top soil in contact with the surface water remain
relatively oxidized in the Eh range of + 300 to + 500 mV8. A
range of Eh is encountered in various soils from well-drained,
aerated to waterlogged conditions (Table 1).
The Eh of soils controls the stability of various oxidized
components [oxygen, nitrate, manganese (Mn IV), ferric (Fe
III) iron, sulphate (SO2–
4 ), carbon dioxide] in submerged soils
and sediments (Table 2).
The pH of acidic soils decreases following submergence
because under anaerobic conditions, ferric iron is used as an
electron-acceptor for oxidizing organic matter and during
this process acidity is neutralized:
Fe2O3 + 1/2CH2O + 4H+ = 2Fe2+ + 5/2H2O + 1/2CO2. (1)
In these redox reactions, ferric iron (from amorphous ferric
hydroxides) serves as an electron-acceptor and organic
matter (CH2O) as the electron-donor. This reaction results in
the neutralization of acidity and increase in pH.
A decrease in pH of alkali or calcareous soils is the result
of accumulation of carbon dioxide in flooded soil, which
neutralizes alkalinity. Moreover, carbon dioxide produced
is retained in the flooded soil due to restricted diffusion
through standing flood-water layer on the soil surface. This
allows large quantities of carbon dioxide to accumulate and
form mild acid, which help in neutralizing alkalinity in the
soilfloodwater system (see eqs (2) and (3)). Moreover, sub-
merged soil provides an ideal environment for reaction
between carbon dioxide-generated acid (carbonic acid) and
Table 1. Oxidationreduction potential found in rice
soils ranging from well-drained to submerged condi-
Soil water condition Redox potential (mV)
Aerated or well-drained +700 to +500
Moderately reduced +400 to +200
Reduced +100 to –100
Highly reduced 100 to –300
Table 2. Redox potentials in which the main oxidized
components in submerged soils become unstable30
Reaction Redox potential (mV)
O2H2O +380 to +320
NO3N2, Mn4+Mn2+ +280 to +220
Fe3+Fe2+ +180 to +150
4 S2– 120 to –180
CO2CH4 200 to 280
CO2 + H2O = H2CO3. (2)
H2CO3 = H+ + HCO3
. (3)
Ponnamperuma et al.14 studied the influence of redox poten-
tial and partial pressure of carbon dioxide on the pH values
of 35 diverse rice soils (pH range between 3.6 and 9.4) from
the Philippines, Taiwan and Vietnam. The soils were held in
flooded condition in pots in the greenhouse and changes
in soil solution pH, redox potential and partial pressure of
carbon dioxide were monitored for 16 weeks. The results
showed that the pH values of alkali and calcareous soils
decreased and those of acid soils increased to a fairly stable
range of 6.7 to 7.2, 12 weeks after flooding. Further, it
was established that the increase in soil solution pH of the
acid soils was related to the potential of the Fe (OH)3Fe (II)
system and that the decrease in pH of alkali and calcareous
soils was defined by the partial pressure of carbon dioxide
through the Na2CO3H2OCO2 and CaCO3H2OCO2 sys-
tems respectively. The pH values were sensitive to carbon
dioxide changes in the soil solution.
Thus accumulation of large amounts of carbon dioxide in
submerged soils acts an ameliorating agent by neutralizing
the alkalinity. Adding organic carbonaceous materials, which
would generate extra carbon dioxide on decomposition, can
enhance the generation of carbon dioxide, especially in soils
low in organic matter. However, if the carbon dioxide pro-
duced is allowed to escape from the soilwater system, it would
result in increasing the pH of the soilwater system.
Thus iron reduction and carbon dioxide concentration
in submerged soils play a key role in controlling the pH of
submerged soils. This, of course, requires optimum temperature
(between 25 and 35°C) and availability of easily decomposable
organic matter, reducible iron and other electron acceptors
such as sulphate and carbon dioxide8,15.
Narteh and Sahrawat13 studied the influence of flooding
on the changes in electrochemical and chemical properties
of 15 diverse soils from West Africa by monitoring the
changes in soil solution drawn periodically from soils held
CURRENT SCIENCE, VOL. 88, NO. 5, 10 MARCH 2005 737
under flooded condition in pots in the greenhouse. They found
that at four weeks after flooding of soils, the pH of the soil
solution could be predicted from the soil solution redox poten-
tial (Eh in mV) and the concentration (mg l–1) of Fe (II) in soil
solution by the following equation:
Eh = 409–4.09 logFe2+59 pH; R2 = 0.99. (4)
It was further demonstrated that the changes in soil solution
pH corresponded to the changes in soil solution Eh. A dyna-
mic stability in EhpH relationship was established at four
weeks after flooding of the soils and was described by the
following equation:
Eh = –16–48 pH; R2 = 0.84. (5)
Considering all the 15 soils at four weeks after flooding, the
soil solution electrical conductivity (EC) (mScm–1) was signi-
ficantly correlated with the concentrations of Ca, Mg, K and
ammonium (Table 3). Also, at four weeks after flooding, the
mean EC value of the soil solution was highly significantly
correlated with the mean total concentration of Ca, Mg and
K in the soil solution (r = 0.91)13. Ponnamperuma16 reported
similar results on the relationship between soil solution
EC and solution concentration of basic cations in flooded
Asian soils.
Sahrawat and Narteh17 showed that at four weeks after
flooding of the 15 West African soils, the soil solution
EC was highly significantly correlated with the total concen-
tration of macro- and micronutrient elements released in the
soil solution.
Solution EC (mS cm–1) = 0.191 + 0.0055 nutrient conc.
in solution (mg l–1);
r = 0.927 (n = 15). (6)
This four-week period coincided with the establishment of
a dynamic equilibrium between pH and Eh. The soils had a
wide range in solution EC, indicating a range in soil fertility
status. The soil solution EC was significantly correlated to
organic C and iron extracted by EDTA. The association bet
ween soil solution EC, concentrations of macro- and micronu-
trient elements in soil solution, organic C and EDTA-
extractable iron of the soils is seen17 in Table 4. It is sug-
gested that the soil solution EC at four weeks after flooding of
the soils can serve as an index of fertility status of soils that
are not affected by salts17.
Table 3. Correlation between soil solution EC of 15
flooded West African soils and concentration of im-
portant nutrient elements in soil solution at four weeks
after flooding. Probability levels of significance (P)
are shown in parentheses13
Nutrient element Correlation coefficient (r)
K 0.85 (P < 0.001)
Ca 0.86 (P < 0.001)
Mg 0.84 (P < 0.001)
Total K + Ca + Mg 0.91 (P < 0.001)
Ammonium-N 0.62 (P < 0.001)
The availability of free water on the soil surface not only
relieves moisture stress, but also provides a more conducive
environment to rice roots, and availability and accessibility
of nutrients through diffusion and mass flow to plant roots9.
The convergence of soil pH to neutrality following sub-
merging of soils benefits wetland rice crop through better
availability of nutrients such as ammonium, P, K and ex-
changeable cations, which are mobilized in soil solution. It
has been shown that preflooding of soil for about four
weeks prior to transplanting of the rice seedlings, leads to the
release of ammonium, phosphate, K and other exchangeable
cations in the soil solution, which is good for the growth of
rice plants. This may allow rice farmers to skip the basal
application of nitrogen fertilizer in some cases. The extent
and release of ammonium and other cations and anions will
depend on soil chemical characteristics including pH, organic
matter and texture8,9,13,18.
From this discussion, it can be concluded that flooding soil
is a great equalizer of diversity in chemical fertility of wetland
soils. This change is brought about by consumption of acidity
in acid soils and the neutralization of alkalinity in alkaline
and calcareous soils following flooding. As a result of flood-
ing, the pH of acidic soils increases and that of alkaline
soils decreases and the chemical reaction of submerged soils
generally stabilizes in the neutral range8,13. This is the benefit
of flooding of soils to rice crop.
The convergence of pH to near neutral also affects the
availability of plant nutrients mostly in a favourable manner.
However, soil reduction, following flooding of soils that are
rich in reducible iron, accumulates excessive concentrations
of iron in the soil solution that could be toxic to wetland rice.
Also, production of reduction products in submerged soils,
such as sulphide and organic acids in flooded soils, may cause
toxicity and retardation of rice plant growth, especially in
soils that are high in easily decomposable organic matter
or if high amounts of organic materials are added to the soil9.
Salient changes in the availability of plant nutrients and
organic matter accumulation as a result of flooding of soils,
gleaned from the literature, are summarized in Table 5.
Submerging soil and organic matter
The decomposition of soil or added organic matter is rela-
tively fast under aerobic conditions where oxygen is the
electron acceptor. However, under submerged conditions
the supply of free oxygen is low or absent and the decomposi-
tion of organic matter depends on the availability of electron
acceptors such as ferric iron or sulphate. Moreover, the alter-
nate electron-acceptors (ferric hydroxides or sulphate) are
inefficient in the destruction of organic matter compared to
oxygen. Consequently, the decomposition of organic matter is
comparatively slow, inefficient and incomplete under
flooded or anaerobic soil conditions. Coupled with retarded
rates of organic matter decomposition in submerged soils, the
higher primary productivity of wetlands, contribution by
Table 4. Distribution of 15 West African soils according to the concentration of macro- and micro-
nutrient elements in soil solution at four weeks after flooding, and the associated soil solution EC,
organic C and EDTA extractable iron (EDTAFe)17
Conc. of nutrients Soil solution EC No. of Organic C EDTAFe
in solution (mg l1) (mS cm–1) soils (g kg1) (mg kg–1)
> 200 0.721.92 3 23.046.0 150–2200
100200 0.250.92 8 7.435.2 125–1375
< 100 0.120.30 4 9.223.2 450–800
Table 5. Changes in organic matter and availability of plant nutrients
in soils following their submergence under water
Chemical property Change(s) following soil submergence
pH Favours convergence to neutral pH
Organic matter Favours accumulation of organic C and N
Ammonium-N Release and accumulation of ammonium favoured
P Improves P availability, especially in soils
high in Fe and Al oxides
K K availability improves through exchange of K
Ca, Mg, Na Favours release of Ca, Mg and Na in solution
S Sulphate reduction may reduce sulphur availability
Fe Iron availability improves in alkali and calcareous
soils, but Fe toxicity may occur in acidic soils high
in reducible Fe
Al Al toxicity is generally absent, except perhaps in
acid sulphate soils
Cu, Zn and Mo Improves availability of Cu and Mo but not of Zn
Reduction Production of sulphide and organic acids, especially
products in degraded soils may cause toxicity or injurious
effects to growing plants
biological nitrogen fixation and decreased humification of
organic matter lead to preferential (compared to aerobic
counterpart soils) accumulation of organic matter in wetland
soils and sediments6.
Sahrawat6 cites several examples from recent literature,
which show that accumulation of organic C and N in sub-
merged soils is significant in wetland rice double-cropping,
even during short-term experiments. The use of an upland
crop in the crop sequence with wetland rice resulted in
decreased organic C and total N.
Relatively higher accumulation of organic matter (organic
C and total N) in wetland soils makes them attractive for
sequestration of C for increasing the fertility of wetland
soils and at the same time mitigating greenhouse emis-
sions19. Unlike in aerobic soils, such effects can be significant
during relatively short periods. For example, Witt et al.20
conducted a two-year experiment under irrigated condition
to study the effects of crop rotation and residue management
on C sequestration and N accumulation, and rice productivity.
They found that compared to the ricerice system replacement
of dry-season rice by maize caused a reduction in soil C
and N sequestration due to a 3341% increase in the esti-
mated amount of mineralized C and less input from biological
N fixation during the dry-season maize crop. There was
11–20% more C sequestration and 512% more N accumula-
tion in soils continuously cropped with wetland rice, than
in maizerice rotation with greater amounts sequestered
in N-fertilized treatments. These results demonstrate the
capacity of continuous, irrigated rice systems to sequester
C and accumulate N during relatively short time-periods.
Application of crop residues such as rice straw, has a bene-
ficial effect on the build-up of organic matter and in increas-
ing the N-supplying capacity of wetland rice soils. This is due
to the fact that there is a strong relationship between organic
matter content and potentially mineralizable N21. Moreover,
application of organic matter to submerged soil provides
energy for soil changes in pH and Eh, thus resulting in
benefits in terms of nutrient release and availability to
wetland rice12. Thus flooding soil through accumulation of
organic matter (organic C and N) imparts stability and
sustainability in crop productivity and maintenance of fertility
in wetland soils.
Flooding a soil with water sets in motion a series of physical,
chemical and biological processes. Changes in flooded soils
are triggered by lack of oxygen in the flooded soil-system.
The soil gets reduced (lower Eh; see Tables 1 and 2), for which
energy is provided by mineralizable organic C. The reduction
process is regulated by the presence and availability of elec-
tron acceptors (mainly ferric iron and sulphate) and elec-
tron donors (organic matter). Soil reduction is accompanied
by changes in the pH, Eh, specific conductance, sorption
desorption, ion exchange and exchange equilibria, which in
turn greatly influence the availability of plant nutrients, uptake
and utilization by wetland rice9.
Soils with moderate to high content of organic matter or
added organic matter can help adjust soil pH to the neutral
range (6.57.5), which is of benefit to the rice crop, because
this pH range appears to favour nutrient uptake by wetland
rice. Availability of N (ammonium is stable in reduced soils),
P, K, Ca, Mg, Fe, Mn and Si is high (see Table 5). The supply
of micronutrients such as Cu and Mo is adequate22. Gener-
ally, the availability of Zn is reduced as result of submer-
gence of the soil23. Toxic concentrations of Al and Mn in soil
solution are absent in submerged mineral rice soils, be-
cause the solubility of these metals is reduced as a result of
increase in soil pH8. However, Fe toxicity and injurious
concentrations of organic acids and sulphide may be present
to cause toxicity to lowland rice, especially in soils with high
organic matter and impeded drainage23.
CURRENT SCIENCE, VOL. 88, NO. 5, 10 MARCH 2005 739
The ricewheat system occupies 24 mha of cultivated land
in the Indo-Gangetic Plains and in China, and is one the
world’s largest production system. Recent results from
long-term experiments indicate that soil organic matter levels
have declined24,25. Several hypotheses have been put forth
to explain the declining trend in organic matter content and
accompanying decline in yields, including lack of application
of organic matter input and decreased nutrient supplying
capacity of the soil, especially N. However, results from
long-term experiments with the ricerice (lowland) system
show that organic matter is generally maintained or even
increased6. Clearly, organic matter accumulates under sub-
merged conditions of the ricerice system. On the other hand,
organic matter that accumulates under lowland rice is rapidly
oxidized under arable cropping of wheat in the ricewheat
rotation production6.
Higher net primary productivity has been ascribed as the
important factor for increased organic matter in tropical
wetlands26. Flooded soil provides an ideal environment for
aerobic and anaerobic microbial activity in its floodwater
and contributes to higher net primary productivity27. Wetlands
are important for sequestering carbon from the atmosphere
under anaerobic metabolism. Protection of existing wetlands
and creation and restoration of new wetlands will contribute
to carbon sequestration for mitigating greenhouse emis-
Wetland rice culture favours fertility maintenance and
build-up of organic matter in soils, and is the backbone of
long-term sustainability of the wetland rice systems6. Further
strategic research is needed in the field and through the
use of simulation modelling for studying and evaluating the
comparative effects of growing rice under submerged
condition in rice paddies and under various alternate water-
management practices that save and conserve water on
soil fertility maintenance in the longer-term. Such research
would help in making an appropriate decision by considering
trade-offs between water-saving and yields, and fertility
maintenance for the future growing of an important staple
such as rice.
1. Izaurralde, R. C., Rosenberg, N. J. and Lal, R., Mitigation of climate
change by soil carbon sequestration: Issues of science, monitoring,
and degraded lands. Adv. Agron., 2001, 70, 175.
2. Izaurralde, R. C. and Cerri, C. C., Organic matter management. In
Encyclopedia of Soil Science (ed. Lal, R.), Marcel Dekker, New
York, 2002, pp. 910916.
3. Cassman, K. G. and Pingali, P. L., Intensification of irrigated rice
systems: Learning from the past to meet future challenges. Geojour-
nal, 1995, 35, 299305.
4. De Datta, S. K., Principles and Practices of Rice Production,
Wiley, New York, 1981.
5. Sahrawat, K. L., Fertility and chemistry of rice soils in West Africa,
State-of-the-art paper, West Africa Rice Development Associa-
tion, Bouaké, Ivory Coast, 1994.
6. Sahrawat, K. L., Organic matter accumulation in submerged soils.
Adv. Agron., 2004, 81, 169201.
7. Shioiri, M. and Tanada, T., The Chemistry of Paddy Soils in Japan,
Ministry of Agriculture and Forestry, Tokyo, Japan, 1954.
8. Ponnamperuma, F. N., The chemistry of submerged soils. Adv.
Agron., 1972, 24, 2996.
9. Ponnamperuma, F. N., Effects of flooding on soils. In Flooding and
Plant Growth (ed. Kozlowski, T.), Academic Press, New York, 1984,
pp. 945.
10. Gambrell, R. P. and Patrick Jr., W. H., Chemical and microbi-
ological properties of anaerobic soils and sediments. In Plant Life
in Anaerobic Environments (eds Hook, D. D. and Crawford, R. M. M.),
Ann Arbor Science Publication, Ann Arbor, Michigan, 1978, pp.
11. Yu, Tian-Ren (ed.), Physical Chemistry of Paddy Soils, Science
Publisher, Beijing, Berlin, 1985.
12. Sahrawat, K. L., Flooding soil: A great equalizer of diversity in
soil chemical fertility. Oryza, 1998, 35, 300305.
13. Narteh, L. T. and Sahrawat, K. L., Influence of flooding on elec-
trochemical and chemical properties of West African soils. Geo-
derma, 1999, 87, 179207.
14. Ponnamperuma, F. N., Martinez, E. and Loy, T., Influence of redox
potential and partial pressure of carbon dioxide on pH and the
suspension effect of flooded soils. Soil Sci., 1966, 101, 421431.
15. Sahrawat, K. L., Ammonium production in submerged soils and
sediments: the role of reducible iron. Commun. Soil Sci. Plant
Anal., 2004, 35, 399411.
16. Ponnamperuma, F. N., Dynamic aspects of flooded soils and the
nutrition of the rice plant. In The Mineral Nutrition of the Rice
Plant, Johns Hopkins Press, Maryland, 1965, pp. 295328.
17. Sahrawat, K. L. and Narteh, L. T., A fertility index for submerged
rice soils. Commun. Soil Sci. Plant Anal., 2002, 33, 229236.
18. Narteh, L. T. and Sahrawat, K. L., Ammonium in solution of flooded
West African soils. Geoderma, 2000, 95, 205214.
19. Bouchard, V. and Cochran, M., Wetland and carbon sequestration.
In Encyclopedia of Soil Science (ed. Lal, R.), Marcel Dekker, New
York, 2002, pp. 14161419.
20. Witt, C., Cassman, K. G., Olk, D. C., Biker, U., Liboon, S. P.,
Samson, M. I. and Ottow, J. C. G., Crop rotation and residue man-
agement effects on carbon sequestration, nitrogen cycling and pro-
ductivity of irrigated rice systems. Plant Soil, 2000, 225, 263278.
21. Sahrawat, K. L., Nitrogen availability indexes for submerged rice
soils. Adv. Agron., 1983, 36, 415–451.
22. Ponnamperuma, F. N., Physicochemical properties of submerged
soils in relation to fertility. IRRI Research Paper Series Number 5.
International Rice Research Institute, Manila, Philippines, 1977.
23. Yoshida, S., Fundamentals of Rice Crop Science, International
Rice Research Institute, Manila, Philippines, 1981.
24. Abrol, I. P., Bronson, K. F., Duxbury, J. M. and Gupta, R. K., Long-
term fertility experiments in ricewheat cropping systems. Rice
Wheat Consortium Paper Series No. 6, RiceWheat Consortium
for the Indo-Gangetic Plains, New Delhi, 2000.
25. Yadav, R. L., Dwivedi, B. S. and Pandey, P. S., RiceWheat crop-
ping system: Assessment of sustainability under green manuring
and chemical fertilizer inputs. Field Crops Res., 2000, 65, 1530.
26. Neue, H. U., Gaunt, J. L., Wang, Z. P., Becker-Heidmann, P. and Qui-
jano, C., Carbon in tropical wetlands. Geoderma, 1997, 79, 163185.
27. Reddy, K. R. and Patrick Jr., W. H., Nitrogen fixation in flooded
soil. Soil Sci., 1979, 128, 8085.
28. Gorham, E., The development of peat lands. Q. Rev. Biol., 1957, 32,
29. Mitsch, W. J., Wu, X., Nairn, R. W., Weihe, P. E., Wang, N., Deal,
R. and Boucher, C. E., Creating and restoring wetlands: A whole
ecosystem experiment in self-design. BioScience, 1998, 48, 10191030.
30. Patrick Jr. W. H. and Reddy, C. N., Chemical changes in rice soils.
In Soils and Rice, International Rice Research Institute, Manila, Phi-
lippines, 1978, pp. 361379.
Received 23 July 2004; revised accepted 8 November 2004
... Water-logged paddies and well-drained uplands possess distinct biogeochemical processes that could affect soil pH (Kögel-Knabner et al. 2010). The process of soil reduction caused by flooding is often accompanied by an increase in the pH of acidic soils due to the consumption of protons and a decrease in the pH of alkaline soils due to increasing P CO2 (Sahrawat 2005). These changes in soil pH are also associated with soil intrinsic properties, such as minerals, texture, and agricultural management of crop residues incorporation and length of flooding periods (Yu et al. 1985;Xu et al. 2012). ...
Full-text available
Purpose Soil acidification is a major issue in agricultural ecosystems. However, how agricultural land uses shape the soil pH pattern and affect soil acidification on a regional scale are still poorly understood. The research aims to investigate the influences of typical agricultural practices on soil acidification across different climate zones of eastern China. Materials and methods Soil samples were collected from 240 sites and 3 land uses per site (uplands, paddies, and adjacent woodlands) across four climate zones (mid-temperate, warm temperate, subtropical, and tropical regions) of eastern China. Soil pH was quantified for each soil samples. The mean annual temperature (MAT) and mean annual precipitation (MAP) at each site were also analyzed. Results and discussion Climate was significantly associated with soil acidification. The differences in soil pH between adjacent land use types ranged from 0.02 to 1.12, whereas those between climate zones ranged from 0.34 to 2.22. Alkaline soils (cooler climates) exhibited a stronger acidification pace than acidic soils (warmer climates). Uplands resulted in alarming decrease in soil pH by 1.12 units relative to adjacent woodlands in mid-temperate zone, which may be induced by the dramatic loss of soil carbon. Acidification of uplands was stronger than that of paddies, owing to higher soil nitrification and carbon mineralization. Croplands had higher soil pH than adjacent woodlands only in the subtropics, indicating that agricultural practices in this zone were effective to retard soil acidification. Conclusion We demonstrated, for the first time, the direction and intensity of the differences in soil pH levels among adjacent agricultural lands and woodlands depending on climate. As the two common agricultural croplands across eastern China, uplands have stronger acidification relative to paddies, particularly in the mid-temperate zone. Proper agricultural management practices to avoid carbon losses and preserve the flooding status of paddies should be considered to resist acidification of cropland soils.
... Paddy soils have contrasting water management and soil properties to upland soils, indicating a lower mineralization rate of SOM under waterlogged conditions. In anaerobic conditions, microbial activities and the decomposition of SOM are relatively slower than in aerobic conditions [88]. Figure 6 shows the proportional contributions based on results from variation partitioning analysis (VPA), explaining the contribution of biotic factors (SMBC, SMBN, LAP, NAG), abiotic factors (pH, SOC, total N, total and available P) and N content (NO3 − -N and NH4 + -N) to the net N mineralization. ...
Full-text available
A long-term experiment (38 years) was conducted to elucidate the effects of long-term N addition on the net N mineralization in both paddy and upland soils, based on their initial soil N status, with and in connection with soil microbial biomass and N cycling extracellular enzyme activities. Two treatments without N addition CK (No fertilizer) and K (inorganic potassium fertilizer) and two treatments with N addition N (inorganic nitrogen fertilizer) and NK (inorganic nitrogen and potassium fertilizer) were placed in incubation for 90 days. Results showed that the total N and soil organic carbon (SOC) contents were higher in the treatments with N application compared to the treatments without N in both paddy and upland soils. The SOC content of paddy soil was increased relative to upland soil by 56.2%, 45.7%, 61.1% and 62.2% without N (CK, K) and with N (N and NK) treatments, respectively. Site-wise, total N concentration in paddy soil was higher by 0.06, 0.10, 0.57 and 0.60 times under the CK, K, N and NK treatments, respectively, compared with up-land soil. In paddy soil, soil microbial biomass nitrogen (SMBN) was higher by 39.6%, 2.77%, 29.5% and 31.4%, and microbial biomass carbon (SMBC) was higher by 11.8%, 11.9%, 10.1% and 12.3%, respectively, in CK, K, N and NK treatment, compared with upland soil. Overall, compared to up-land soil, the activities of leucine-aminopeptidase (LAP) were increased by 31%, 18%, 20% and 11%, and those of N-acetyl-b-D-glucosaminidase (NAG) were increased by 70%, 21%, 13% and 18% by CK, K, N and NK treatments, respectively, in paddy soil. A significantly linear increase was found in the NO3 −-N and NH4 +-N concentrations during the 90 days of the incubation period in both soils. NK treatment showed the highest N mineralization potential (No) along with mineralization rate constant, k (NMR) at the end of the incubation. SMBC, SMBN, enzyme activities, NO3 −-N and NH4 +-N concentrations and the No showed a highly significant (p ≤ 0.05) positive correlation. We concluded that long-term N addition accelerated the net mineralization by increasing soil microbial activities under both soils. Citation: Ali, S.; Liu, K.; Ahmed, W.; Jing, H.; Qaswar, M.; Kofi Anthonio, C.; Maitlo, A.A.; Lu, Z.; Liu, L.; Zhang, H. Nitrogen Mineralization, Soil Microbial Biomass and Extracellular Enzyme Activities Regulated by Long-Term N Fertilizer Inputs: A Comparison Study from Upland and Paddy Soils in a Red Soil Region of China.
... Although soil pH and extractable Ca showed correlations with the profile of above ground VOC emissions (Fig. 1B), the effects were not apparent in the ANOVA (Table 4). In rice fields under submerged conditions, soil pH values shift towards neutral conditions (Sahrawat (Sahrawat 2005). This trend was apparent in the study conducted by Yu and Patrick (2003). ...
Full-text available
Flooding is a major plant abiotic stress factor that is frequently experienced by plants simultaneously with other biotic stresses, including herbivory. How plant volatile emissions, which mediate interactions with a wide range of organisms, are influenced by flooding and by multiple co-occurring stress factors remains largely unexplored. Using Spodoptera frugiperda (Lepidoptera: Noctuidae) (fall armyworm) as the insect pest and two maize (Zea mays, L. Poaceae) hybrids differentially marketed for conventional and organic production, we assessed the effects of flooding, herbivory, and both stress factors on the composition of blends of emitted volatiles. Headspace volatiles were collected from all treatment combinations seven days after flooding. We documented metrics indicative of biomass allocation to determine the effects of individual and combined stressors on plant growth. We also evaluated relationships between volatile emissions and indicators of soil chemical characteristics as influenced by treatment factors. Flooding and herbivory induced the emission of volatile organic compounds (VOCs) in similar ways on both maize hybrids, but the interaction of both stress factors produced significantly larger quantities of emitted volatiles. Thirty-eight volatile compounds were identified, including green leaf volatiles, monoterpenes, an aldehyde, a benzoate ester, sesquiterpenes, a diterpene alcohol, and alkane hydrocarbons. The hybrid marketed for organic production was a stronger VOC emitter. As expected, plant biomass was detrimentally affected by flooding. Soil chemical properties were less responsive to the treatment factors. Taken together, the results suggest that flooding stress and the interactions of flooding and insect attack can shape the emission of plant volatiles and further influence insect-plant interactions.
... So, waterlogging interferes the O 2 movement in soil and creates hypoxia (sub-optimal O 2 ) and anoxia (absence of O 2 ) condition and favors anaerobic microbial community. In waterlogging condition, a number of physical, chemical, and biological changes may occur in soil like soil fertility due to changes in soil physicochemical and microbiological properties (Sahrawat 2005). The main ...
Full-text available
The ecosystem functioning of any functional niche is largely dependent on the structure and organization of the inhabiting microbial communities. The microbial communities often display dynamic organization which is under constant exposure to diverse abiotic stress conditions. Such stress conditions play a major role in shaping and influencing the microbial community organization and its diversity. Microorganisms, which represent the earliest life forms, have undergone the longest evolutionary period resulting in the acquisition and development of capabilities to withstand extreme stress conditions. Besides their resilience nature against various abiotic stress conditions, microbes also display adaptability by rapid mutation to counter the stress conditions. As different microbes have different capabilities to tolerate any stress condition, the stress condition often favors the enrichment of microbes which display tolerance to the exposed condition. In this chapter, we summarized various abiotic stress conditions, including temperature, salt, drought, waterlogging, and metal toxicity stress, and how they influence the structure and diversity of the inhabiting microbial community structure and diversity. Various mechanisms employed by microorganisms to withstand these abiotic stress conditions are also described in the chapter.
... Thus, initial P and K levels of paddy growing soils are not indicative of the yield response for the added fertilizers. However, a considerable variability of the yield response in relation to the initial P and K levels (Figure 3a and 3b) suggested the need of further exploring the impact of other yield limiting factors such as, soil texture (Hamoud et al., 2019), soil pH (Moore et al., 1990), organic matter content Sahrawat, 2005) micronutrients such as Zn (Buri et al., 2000), water availability. (Jearakongman et al., 1995) and growing season/climate (Yang et al., 2014) on yield response. ...
... In this study, the contributions of soil and hydrological properties on J o u r n a l P r e -p r o o f macrophytes' R/S were predominant for both inland and coastal wetlands (Figure 7) relative to that of climate condition (i.e., temperature and precipitation, Figure 4). For wetlands, emergent vegetation is generally an important source of organic matter in soil or sediment, while soil organic matter can improve plant growth in turn due to its close relationship with soil fertility (Sahrawat, 2005;Ouyang et al., 2010). However, the positive correlation between soil organic carbon (SOC) and living biomass was found in coastal wetlands but not in inland ones ( Figure S2). ...
Knowledge of root: shoot ratio (R/S) is fundamental for our understanding of carbon allocation and storage in terrestrial ecosystems. Due to the periodic variation of water table and the difficulty of measuring belowground biomass (BGB), macrophyte biomass allocation in both coastal and inland wetlands remains unclear, especially at regional scale. In this study, 131 records of biomass allocation in wetlands were collected to examine general pattern of macrophyte R/S in relation to climate, soil, and hydrological factors in China using model selection and variance decomposition analysis. Our results showed that coastal wetlands supported higher aboveground biomass (AGB, 3.1 kg m⁻²) but a lower R/S (1.2) than inland ones (1.47 kg m⁻² and 3.1, respectively). The positive relationships between AGB and BGB and between BGB and R/S in coastal wetlands were significantly different from those in inland wetlands, while only inland wetlands exhibited a significant negative correlation between R/S and AGB (R²=0.19, p<0.001). Among climate (i.e., mean annual temperature and precipitation), soil (e.g., pH, salinity, soil organic carbon, soil nitrogen and phosphorus concentration), and hydrological (water level and depth for coastal and inland wetlands, respectively) properties, the latter two groups explained 64% and 31% of spatial variation for inland and coastal R/S, respectively, compared with climate (2.7% and 1.5%, respectively). Specifically, soil salinity was the most important factor in regulating R/S for coastal wetlands, while, for inland wetlands, it was soil phosphorus. This study highlights the importance of hydrology, soil salinity and nutrients on wetland R/S and BGB estimation, which could be incorporated into wetland ecosystem models to improve prediction performance for carbon dynamics and their feedbacks to climate change in the future.
Full-text available
The experiment was conducted in farmer's field of Vaikom Kari soils of strongly acidic nature in Kallara panchayat in Kottayam district from November 2014 to March 2015. The experiment was laid out in RBD with seven treatments in three replications with rice var. Uma (MO-16). The treatments included burnt lime shell, dolomite and rice husk ash (RHA) applied as two splits-as basal + 30 DAS or as basal + one week before third dose of fertilizer application or PI (panicle initiation) and a control without ameliorants. The ameliorated plots showed higher organic carbon status compared to control.
Heavy metal pollution in paddy fields has caused widespread concerns due to the threat to food safety. The present study used sugarcane bagasse (SB) and two sugarcane bagasse materials modified with citric-acid (SSB) and citric-acid/Fe3O4 (MSB) to investigate their effects on the bioavailability of Cd in soil and Cd accumulations in rice in a pot experiment. The three organic amendments significantly decreased the Cd accumulation in plants by limiting its mobilization in soil. The MSB and SSB but not SB increased the soil pH and immobilized the Cd in soil significantly during the 120-day experiment. The amendments decreased Cd bioavailability through transforming to the stable fraction throughout the whole growth stage. The functional groups in the amendments (-OH, –COOH, C–O, -COO⁻ and Fe–O) played an active role in Cd immobilization. Moreover, the three organic materials increased the content of Fe–Mn plaque on rice roots, which prevented its transport from soil to rice roots further. We also found that Fe competed with Cd for transporters and reduced potential Cd uptake and translocation in rice tissues. The addition of MSB and SB but not SSB inhibited the rice growth compared to the unamended control, indicating the potential of SSB in situ remediation. These results provide valuable information to use organic amendments for Cd passivation in soil and food safety.
Full-text available
Waterlogging is an important factor, affecting soil properties. This research was conducted to evaluate the effect of waterlogging on secondary soil clay minerals, as well as manganese (Mn) of paddy soils with long-term rice cultivation in Fars province. In each region, two soil profiles in paddy and non-paddy fields were digged on calcareous parent materials and the same landform in a pairwise manner. Analysis of the clay mineralogy indicated that the long-term rice cultivation seems to have an influence on the quantity of clay minerals, as indicated by higher smectite in paddy soils. But, higher chlorite, illite and palygorskite was found in non-paddy soils. Clay minerals were probably affected more by parent materials and less by the aquatic condition. Chlorite and illite were observed in both paddy and non-paddy soils and increased with depth due to their presence in parent rocks. Transformation of illite to smectite in the A horizon increased relative abundance of smectite but it decreased with depth. The results showed that the paddy soils have more available Fe and Mn (extracted by DTPA), total Fe and Mn (extracted by HNO3), and poorly crystalline Fe and Mn oxides (extracted by Ammonium oxalate), compared to the non-paddy soils and the surface horizons of paddy soils showed the highest rates. Also, the long-term cultivation of rice decreased the content of pedogenic (extracted by Citrate-Bicarbonate-Dithionite) and crystalline Mn oxides.
Full-text available
Boron is an essential trace element required for the physiological functioning of higher plants, considering as a nutritional disorder that adversely affects the metabolism and growth of plants. Boron is in many ways unique among plant nutrients; however, it is especially distinguished by the substantial differences among species in terms of mobility, the narrow range between deficiency and toxicity, and differential inter-and interspecies response to an inadequate supply. Both boron deficiency and toxicity may have detrimental effects on yield of various agricultural plants. Deficiency of boron in soil may reduce the yield productivity particularly for rice crops through increased panicle sterility; fewer productive tillers, shriveled grains, fewer chloroplasts, and lower net assimilate rates along with impaired grain cooking quality. Fertilization of boron may solve and improve boron deficiency. Such disorder pronounced more in the reproductive phase of plant life, particularly in species in which the element is phloem-immobile. Boron is involved in the structural and functional integrity of the cell wall and membranes, ion fluxes H + , K + , PO4-3 , Rb + and Ca +2 across the membranes, cell division and elongation, nitrogen and carbohydrate metabolism, sugar transport, cytoskeletal proteins, and plasmalemma-bound enzymes, nucleic acid, indole acetic acid, polyamines, ascorbic acid, and phenol metabolism and transport.. Boron has been associated with one or more of the following processes: calcium utilization, cell division, flowering /reproductive phase, water relations, disease resistance, and nitrogen (N) metabolism Review examined Boron functions in plants, deficiency and toxicity symptoms. Mechanism and transportation of Boron uptake particularly under low boron concentration. Several factors may occur for boron deficiency including soil characteristics such as, soil acidity and / or alkalinity, low organic matter content, and water deficit. The interaction between boron and other nutrients such as nitrogen, phosphorus, potassium, and calcium; and the availability and application of boron fertilizers.
This chapter reviews the methods proposed for assaying the nitrogen-supplying capacity of wetland rice soils and recommends those methods that have potential for predicting soil nitrogen (N) availability, thus making possible the judicious and efficient use of fertilizer nitrogen for rice production. It discusses the mineralization process that is basic to soil nitrogen availability to wetland rice. The mineralizable N pool in soils plays a dominant role in N nutrition of wetland rice. Studies using 15N-labeled fertilizers show that approximately one-half to two-thirds of the total N utilized by a rice crop, even in well-fertilized rice paddies, comes from the soil-mineralizable N pool. Numerous biological and chemical laboratory methods have been proposed for predicting soil N availability to various crops, including rice. Mineralization of organic nitrogen, which does not proceed past ammonium production in wetland rice soils, is the most important biological process that is involved in the availability of soil N to rice grown under submerged conditions. The chapter discusses simple equations describing the relationships between the amounts of NH4+–N released under waterlogged conditions and environmental factors such as temperature and other soil characteristics. These relationships have been formulated from studies with diverse soils from a particular region and are limited in that they have not been widely tested.
The rate of N2fixation was evaluated in four experiments using Crowley silt loam soil incubated under flooded conditions. When a flooded soil not planted to rice was incubated under light for a period of 2 yr, the N2fixation rate, as determined by15N tracer, was 57 μg/g/yr, whereas the N2fixation rate measured by the increase in total N content was 61 μg/g/yr. Dinitrogen fixation rate, measured by the acetylene reduction method, was increased considerably when N-poor rice straw was added to the soil. In undisturbed soil cores taken from a rice field,15N fixation was relatively low in relation to the plant’s need, occurring only under light and only in the surface layer of soil. Aquatic weeds growing in these soil cores contained appreciable amounts of15N. Measurement of N2fixation by the acetylene reduction method in plexiglass enclosures in the field also showed a low fixation of N2.