Article

The Drosophila Neurally Altered Carbohydrate Mutant Has a Defective Golgi GDP-Fucose Transporter

Journal of Biological Chemistry (Impact Factor: 4.57). 06/2012;

ABSTRACT

Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac1 flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mis-targeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac1 mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac1 Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac1 mutant. These results validate the Drosophila nac1 mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency.

Download full-text

Full-text

Available from: Christoph Geisler
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration.
    Full-text · Article · Jan 2013 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with degradation of Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.
    No preview · Article · Sep 2014 · Developmental Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fucoconjugates are key mediators of protein-glycan interactions in prokaryotes and eukaryotes. As examples, N-glycans modified with the non-mammalian core α1,3-linked fucose have been detected in various organisms ranging from plants to insects and are immunogenic in mammals. The rabbit polyclonal antibody raised against plant horseradish peroxidase (anti-HRP) is able to recognize the α1,3-linked fucose epitope and is also known to specifically stain neural tissues in the fruit fly Drosophila melanogaster. In this study, we have detected and localized the anti-HRP cross-reactivity in another insect species, the malaria mosquito vector Anopheles gambiae. We were able to identify and structurally elucidate fucosylated N-glycans including core mono- and difucosylated structures (responsible for anti-HRP cross reactivity) as well as a Lewis-type antennal modification on mosquito anionic N-glycans by applying enzymatic and chemical treatments. The three mosquito fucosyltransferase open reading frames (FucT6, FucTA and FucTC) required for the in vivo biosynthesis of the fucosylated N-glycan epitopes were identified in the Anopheles gambiae genome, cloned and recombinantly expressed in Pichia pastoris. Using a robust MALDI-TOF MS approach, we characterised the activity of the three recombinant fucosyltransferases in vitro and demonstrate that they share similar enzymatic properties as compared to their homologues from D. melanogaster and Apis mellifera. Thus, not only do we confirm the neural reactivity of anti-HRP in a mosquito species, but also demonstrate enzymatic activity for all its α1,3- and α1,6-fucosyltransferase homologues, whose specificity matches the results of glycomic analyses.
    Full-text · Article · Nov 2015 · Insect biochemistry and molecular biology