Aphasia is a highly disabling acquired language disorder generally caused by a left-lateralized brain damage. Even if traditional therapies have been shown to induce an adequate clinical improvement, a large percentage of patients are left with some degree of language impairments. Therefore, new approaches to common speech therapies are urgently needed in order to maximize the recovery from aphasia. The recent application of virtual reality (VR) to aphasia rehabilitation has already evidenced its usefulness in promoting a more pragmatically oriented treatment than conventional therapies (CT). In the present study, thirty-six chronic persons with aphasia (PWA) were randomly assigned to two groups. The VR group underwent conversational therapy during VR everyday life setting observation, while the control group was trained in a conventional setting without VR support. All patients were extensively tested through a neuropsychological battery which included not only measures for language skills and communication efficacy but also self-esteem and quality of life questionnairies. All patients were trained through a conversational approach by a speech therapist twice a week for six months (total 48 sessions). After the treatment, no significant differences among groups were found in the different measures. However, the amount of improvement in the different areas was distributed over far more cognitive and psychological aspects in the VR group than in the control group. Indeed, the within-group comparisons showed a significant enhancement in different language tasks (i.e., oral comprehension, repetition, and written language) only in the VR group. Significant gains, after the treatment, were also found, in the VR group, in different psychological dimensions (i.e., self-esteem and emotional and mood state). Given the importance of these aspects for aphasia recovery, we believe that our results add to previous evidence which points to the ecological validity and feasibility of VR treatment for language recovery and psychosocial well-being.
1. Introduction
Aphasia is one of the most socially disabling consequences post stroke [1–3] which manifests itself in about one-third of left brain-damaged people (30% of acute vs. 10-20% of chronic stroke patients [1]). The aphasic symptoms are heterogeneous varying in terms of severity and degree of involvement across the modalities of language, including the expression and comprehension of speech, reading, and writing [4]. Variation in the severity of expressive impairments, for example, may range from the patient’s occasional inability to find the correct word to telegraphic and much reduced speech output [5]. Thus, persons with aphasia (PWA) experience frustration and depression since their exclusion from language-dependent activities has strong implications for many aspects of their emotional condition and social status. Indeed, language difficulties determine loss of autonomy with reduced opportunities for social exchanges with friends and for practising language skills in everyday life contexts [6]. Most aphasic patients show some degree of spontaneous recovery, most notably during the first 2–3 months following stroke onset; however, studies indicate that further improvements, even in chronic patients, are possible when they are provided with an intervention (see for review [7]). The impact and the consequential implications of having aphasia for the individuals themselves and their families highlight the importance of planning efficacious treatment methods [8, 9]. The traditional aphasia therapy approaches are largely based on compensatory strategies or repetitive training of lost functions [7]. However, although there is convincing evidence that those approaches are useful, over the last years, there has been a shift from impairment-oriented language therapy to functional approaches that train language skills in more realistic contexts. A central goal here is to facilitate the successful participation of the patients in authentic conversation by increasing communicative confidence, thus, empowering PWA to improve their quality of life [10, 11]. Accordingly, the latest Cochrane review on speech and language therapy following stroke concluded that therapy should enhance functional communication in ecological contexts [7]. Indeed, a common observation regarding PWA is that they can communicate much more than their linguistic abilities would suggest. Therefore, the hypothesis has been advanced that a more ecological approach aimed at restoring the patient’s ability to communicate in different daily contexts would be proved useful in rehabilitation [12–15]. Within this approach, conversational therapy is one such treatment [12–16]. The main objective of this approach is to set up a natural conversation between the therapist and the PWA, a condition of communicative exchange, in which both speakers participate using their available communicative resources [14, 15]. Within this therapeutic approach, not only language but also any intentional action (e.g., gesturing, drawing) can be used to communicate. The therapeutic goal shifts from a purely analytic treatment aimed at the recovery of the damaged linguistic processes, still used in the traditional approach, to a global approach. The latter considers the ability of the PWA to communicate as a whole through strengthening his/her residual communicative functions [12–16].
In these last years, scientific advancements in language conceptualization and the progress of new technologies have made new tools available for professional therapists and educators. Digital technologies offer exciting opportunities to PWAs who live with long-term communication deficits (see for review [17]). Among these technologies, computer therapies deliver individually tailored exercises for training a range of language skills, including word retrieval [18, 19], sentence building [20, 21], and language comprehension [22]. The StepByStep (PLOS) computer program includes over 10,000 language exercises ranging from listening to writing words or producing sentences [17, 19]. It was shown that patients who received StepByStep training achieved greater improvement in naming ability compared with patients who received the standard speech and language therapy [19]. A study that investigated Multicue as a rehabilitation program demonstrated significant improvement in naming abilities measured through the Boston Naming Test in patients who received the training; however, no significant improvement was shown in verbal communication skills [18, 23, 24]. Overall, these studies suggested that independent computerized therapies can be as effective as clinician-guided therapies [24]. However, most of these studies exhibited a positive effect on word finding in picture naming tasks but not on communicative abilities [18, 23, 24]. Additionally, iPad-based aphasia rehabilitation treatments have been investigated but, as for computer therapies, most of the findings investigated the impact only on language functions [25–28].
Among the applied technologies, an area that particularly merits exploration is virtual reality (VR). Development of VR applications for rehabilitation of aphasia is still in its early stages ([29–32]; see for a review [17]). This involves a computer-generated simulation of 3D environments with which the user can experience a semi-immersive interaction that may encourage language practice in real context communication settings. Typically, an individual entering a virtual environment feels a part of this world and he/she has the opportunity to interact with it almost as he/she would do in the real world. Uses of VR in healthcare are widespread, ranging from the treatment of physical impairments [33, 34], post traumatic stress disorders [35], and anxiety [36, 37]. Virtual reality applications have been also explored on different communication disorders such a speaking phobias [38], stuttering [39], and autism [40, 41]. However, to date, the use of VR for language recovery in aphasia has been limited. Stark et al. [42] developed a virtual house to promote individual language practice. In Aphasia Script [43], therapy is based on the oral production of scripts, which are short functional dialogs structured around communication of everyday activities. Script treatment can be delivered by a virtual therapist (VT) through a computer or by a real therapist. A randomized controlled cross-over study using Aphasia Script was conducted to investigate the effect of high or low cuing on treatment outcomes over time [43]. Eight participants were recruited and randomized to receive intensive computer-based script training differing in the amount of high or low cuing provided during treatment. In the high cue treatment condition, participants could hear the virtual therapist (VT) during listening, choral reading, and reading aloud, with auditory cues (therapist speaking) and visual cues (therapist’s mouth movements) available at the start, during, and after practice. In the low cue condition, they received visual and auditory cues when listening to the script being read aloud initially and after practice, but did not receive auditory and visual support during sentence practice.
Performance was measured by averaging the sentence level word accuracy of participants’ production of ten sentences (ten words in length) during each assessment session. Accuracy of words were rated using a previously validated six-point scale, and the overall session score expressed on a scale from 0 to 100%. Training resulted in significant gains in script acquisition with maintenance of skills at three and six weeks posttreatment. Differences between cuing conditions were not significant. Three weeks of computer-based script training resulted in increased accuracy and rate of script production. The mean baseline performance was 50.0 (26.4)% for accuracy and 23.7 (20.6) for rate (words per minute, WPM). At the end of training, it had improved to 77.8 (19.6)% and 60.3 (30.5) WPM for accuracy and rate, respectively. Moreover, although there was a slight drop in performance noted at both three weeks and six weeks posttreatment, the decreases were small. At three weeks posttreatment, the mean scores for accuracy were 72.2 (22.4) and the mean scores for rate were 55.2 (34.0). By six weeks posttreatment, these scores had declined slightly to 68.6 (24.7) for accuracy and 51.4 (35.8) for rate [43].
The Web Oral Reading for Language in Aphasia (ORLA, Rehabilitation Institute of Chicago) [44] is a therapy program where patients repeatedly read aloud sentences, first in unison with a clinician and then independently. The program was developed to improve the patient’s reading comprehension skills by providing practice in phonological and semantic reading routes. Following a no-treatment period, twenty-five individuals with chronic nonfluent aphasia were randomly assigned to receive twenty-four sessions of ORLA, 1–3 times per week, either by computer () or by a speech language pathologist () (SLP-ORLA). Results showed that the mean change in the Western Aphasia Battery-Aphasia Quotient scores (the primary outcome measure) from pre- to posttreatment was 3.29 () for the eleven participants receiving computer ORLA. In comparison, the mean change during the no-treatment phase from baseline to posttreatment was only −0.4. Student -tests were used to compute the change from pretreatment to posttreatment between the computer ORLA and SLP-ORLA groups. No significant differences were found on any of the outcome measures ( values ranged from 0.2 to 0.6), suggesting good compatibility and feasibility of the VR version [45].
Sentactics (Sentactics Corporation, Concord, CA, USA) is a linguistic treatment which aims at improving sentence production and comprehension deficits through a virtual clinician. Patients are trained repeating and reading sentences and describing pictures presented on the screen. Thompson et al. [20] conducted a study to test the efficacy of Sentactics as an aphasia rehabilitation tool. Computer-delivered Sentactics was compared with a clinician-delivered therapy. Results showed that patients who received Sentactics training significantly improved in production and comprehension for both trained (0% to 90% production, 0% to 30% comprehension) and untrained sentences (0% to 30% production, 0% to 15% comprehension) [20].
More recently, a multiuser virtual world called EVA Park was designed for PWA. The authors wanted to investigate whether virtual environments would enable people with moderate aphasia to practice speech successfully with one or more conversational partners [32]. The results collected in twenty PWA, after five weeks of therapy intervention, revealed that the VR experience offered participants rich insights into aspects which go beyond the therapeutic outcomes. Indeed, PWAs experienced conversational initiative, positive emotional, and social outcomes and their therapeutic benefits were well-maintained on a measure of everyday communication (mean scores across the three time points: week 1: 6.5 vs. week 7: 7.2 vs. week 13: 7.4, Communication Activities of Daily Living (CADL-2) test). However, as also observed by the authors [32], one limitation of their study was related to the lack of a control group inclusion which should have undergone a different treatment. This allows no conclusions to be drawn about the relative merits of the therapy delivered in VR compared to “conventional” face to face therapy.
Kurland et al. [46] investigated the effects of a tablet-based home practice program with telepractice on treatment outcomes in twenty-one individuals with chronic aphasia. The main outcome measure was percent accuracy on naming sets of treated and untreated objects and actions. Overall, results showed that home practice was effective for all participants with severity moderating treatment effects, such that individuals with the most severe aphasia made and maintained fewer gains (difference between post- and pretreatment in naming accuracy, severe: 0.067 vs. moderate: 0.057 vs. mild: 0.123 for treated items; severe: 0.099 vs. moderate: 0.157 vs. mild: 0.138 for untreated items).
Marshall et al. [47] reported two single case studies exploring the impact of daily language stimulation delivered through EVA Park platform [32] for treated and untreated word production, connected speech, and functional communication. After the therapy, outcomes varied across the different test measurements. The noun therapy significantly improved the naming of treated words in case study 1 but not in case study 2 (case 1, pre-posttreatment: 25 out of 50 items vs. 44 out of 50 items), with good maintenance after five weeks (case 1, 41 out of 50 items). There was no generalisation to untreated words (case 1, pre-posttreatment 27 out of 50 items vs. 25 out of 50 items), connected speech, or functional communication.
Within a case series (), Carragher et al. [48] explored the effect of storytelling intervention delivered in EVA Park [32]. The intervention dose was four sessions per week for a total of five weeks (twenty hours total). Following intervention, two participants (“Ange” and “Sally”) showed substantial increases in the percentage of correct content words produced (Ange: 36.5%; Sally: 35.5%). The third participant demonstrated a more modest change with an increase of 12.1%.
Very recently, Palmer et al. [49] reported the first multicentre randomised controlled trial (BIG CACTUS) in patients with post stroke chronic aphasia (>6 months) to assess both the clinical and cost-effectiveness of self-managed computerised speech and language therapy (CSLT). Two hundred and seventy-five participants were randomly assigned to either six months of usual care (usual care group, ), daily self-managed CSLT plus usual care (CSLT group, ), or attention control plus usual care (attention control group, ). Coprimary outcomes were changes, between baseline and 6 months after randomization, in lexical retrieval of personally relevant words in a picture naming test and in functional communication ability measured with the use of Therapy Outcome Measures (TOMs). The key secondary outcome was change in self-perception of communication and social participation measured through the Communication Outcomes After Stroke (COAST) questionnaire self-rated by the patient. Word finding improvement was 16. 2% higher in the CSLT group than in the usual care group and 14. 4% higher than in the attention control group. Improvement in word finding was maintained 6 months after the intervention period. However, CSLT did not have an effect on conversation, self-perceived improvements in everyday communication, social participation, and quality of life [49].
Maresca et al. [50] employed a VR tablet in order to evaluate the effectiveness of a rehabilitation training for aphasia. Thirty PWA were randomly assigned into either the control or the experimental group. The study lasted six months and included two phases. During the first phase, the experimental group was trained through the VR tablet, while the control group underwent traditional therapy. In the second phase, the experimental group was discharged but it was provided with the VR tablet, while the control group was assigned to community services. Results showed that the experimental group improved in all investigated tasks except in writing, while the control group improved only in comprehension, depression, and quality of life.
In summary, although in the field of aphasia rehabilitation, technical devices have begun to be employed, to date, digital versions of traditional language therapy exercises have been mostly used [17]. Very few studies have explored digital applications, including VR settings, for conversation in social interaction (but see [33, 51, 52]). More importantly, none of the cited studies has investigated the impact of VR technology on the patient’s psychological well-being [but see 49].
Here, we report a video-based conversational training approach which makes use of semi-immersive VR environments to investigate their therapeutic benefits in enhancing language skills, communication efficacy, and psychosocial aspects (i.e., the self-esteem level; the patient’s emotional, health, and humoral states) in a group of eighteen nonfluent chronic PWA. The efficacy of the VR approach was compared to the results of a matched control group of eighteen PWA who underwent the same conversational training without VR support.
1.1. Aims
The study addressed the following research questions (RQs):
RQ1: does conversational therapy delivered via semi-immersive VR environments enhance language recovery in chronic post stroke aphasia?
RQ2: do therapy benefits generalize to measures of communication efficacy and psychological well-being?
RQ3: is VR therapy equivalent or more effective than conventional training?
1.2. Hypothesis
In line with previous literature [8, 13, 14] which suggests that language treatment should enhance functional communication in ecological contexts, we hypothesize that conversational therapy combined with VR would be effective for aphasia. Since a central aspect of conversational approach is to set up communicative exchanges between the therapist and the patient in ecological contexts [15, 16], we further believe that treatment benefit would generalize to communication efficacy and, possibly, to psychological well-being.
2. Materials and Methods
2.1. Participants
All patients were recruited from the neurological departments of different hospitals in Turin. Seventy-six have completed their speech therapy cycle and contacted the Experimental Laboratory of Aphasia of the Fondazione Carlo Molo Onlus in Turin in order to participate as volunteers in the research. A preliminary neuropsychological assessment was handled by an independent neuropsychologist who was blinded to the research. The inclusion criteria were fluent users of Italian, premorbidly right handed, a diagnosis of aphasia due to a single left hemisphere stroke occurring more than six months prior to the study; absence of cognitive impairment; ability to follow instructions; no hemispatial neglect; no articulatory disorder; no uncorrected visual impairment (self-report); and no hearing loss (screened via pure tone audiometry). Since our treatment was based on a conversational therapy approach aimed at enhancing verbal communication, we selected only nonfluent patients. Patients were not enrolled if they had a premorbid speech and language disorder caused by a neurological deficit other than stroke. Twenty patients were excluded because they did not meet the criteria. Fifteen people gave up for logistic reasons. Five had another stroke during the enrollment period. The thirty-six patients selected were randomly assigned to two different conditions by a researcher not involved in the research, using the Research Randomizer (https://www.randomizer.org/), a free web-based service that offers instant random sampling and random assignment. All have age between 32 and 77 years (59.75+/-11.21) with an educational level of 5 to 18 years (11.25+/-3.54). Eighteen patients were assigned to the experimental group and eighteen to the control group. In order to obtain more accurate results, the study included a sample size that would allow parametric statistics to be applied to the data.
Table 1 provides background details for the participants.
Participants
Age
Sex
Educational level
Time post onset
Etiology
S1
71
M
18
30
Frontotemporal hemorrhage
S2
50
F
8
28
Frontoparietal ischemia
S3
72
M
8
30
Frontotemporal ischemia
S4
68
M
13
40
Frontotemporal ischemia
S5
69
F
8
41
Frontal ischemia
S6
49
F
18
48
Temporoparietal hemorrhage
S7
53
M
13
36
Frontotemporal ischemia
S8
53
M
13
34
Frontoparietal ischemia
S9
71
M
13
54
Temporal ischemia
S10
32
M
15
40
Basal ganglia hemorrhage
S11
37
M
11
35
Temporoparietal hemorrhage
S12
51
M
13
30
Frontotemporal ischemia
S13
61
M
8
24
Temporoparietal ischemia
S14
48
M
8
24
Frontal hemorrhage
S15
72
F
5
30
Temporooccipital hemorrhage
S16
48
M
8
40
Frontal hemorrhage
S17
75
M
13
60
Temporoparietal ischemia
S18
70
M
8
30
Frontoparietal ischemia
S19
60
M
18
40
Frontotemporoparietal ischemia
S20
69
M
13
36
Frontotemporal ischemia
S21
56
F
13
35
Frontotemporal ischemia
S22
60
F
8
28
Temporal ischemia
S23
61
F
13
40
Frontotemporal ischemia
S24
53
M
13
42
Frontotemporal ischemia
S25
47
F
18
50
Frontotemporal ischemia
S26
61
M
13
54
Frontotemporal ischemia
S27
63
F
8
52
Frontotemporal hemorrhage
S28
70
F
8
60
Frontotemporal ischemia
S29
61
M
13
70
Frontotemporal ischemia
S30
38
M
13
54
Temporooccipital ischemia
S31
69
M
8
60
Frontotemporal ischemia
S32
70
M
8
58
Temporoparietal hemorrhage
S33
63
M
8
56
Frontotemporal ischemia
S34
60
M
9
52
Frontal ischemia
S35
77
F
13
50
Temporoparietal ischemia
S36
63
F
7
48
Temporoparietal ischemia