Doubly selective multiple quantum chemical shift imaging and T 1 relaxation time measurement of glutathione (GSH) in the human brain in vivo

ArticleinNMR in Biomedicine 26(1) · January 2013with6 Reads
Impact Factor: 3.04 · DOI: 10.1002/nbm.2815 · Source: PubMed

    Abstract

    Mapping of a major antioxidant, glutathione (GSH), was achieved in the human brain in vivo using a doubly-selective multiple quantum filtering based chemical shift imaging (CSI) of GSH at 3 T. Both in vivo and phantom tests in CSI and single voxel measurements were consistent with excellent suppression of overlapping signals from creatine, γ-Amino butyric acid (GABA) and macromolecules. GSH concentration in the fronto-parietal region was 1.20 ± 0.16 µmol/g (mean ± SD, n = 7). The longitudinal relaxation time (T(1) ) of GSH in the human brain was 397 ± 44 ms (mean ± SD, n = 5), which was substantially shorter than that of other metabolites. This GSH-CSI method permits us to address regional differences of GSH in the human brain under conditions where oxidative stress has been implicated, including multiple sclerosis, aging and neurodegenerative diseases. Copyright © 2012 John Wiley & Sons, Ltd.