Article

Lithium Treatment Reduces Brain Injury Induced by Focal Ischemia with Partial Reperfusion and the Protective Mechanisms Dispute the Importance of Akt Activity

Stanford Stroke Center, Stanford University, Stanford, California, United States
Aging and Disease (Impact Factor: 3.07). 06/2012; 3(3):226-33.
Source: PubMed

ABSTRACT

Lithium is a mood stabilizer shown to have neuroprotective effects against several chronic and acute neuronal injuries, including stroke. However, it is unknown whether lithium treatment protects against brain injury post-stroke in a rat model of permanent distal middle cerebral artery occlusion (MCAo) combined with transient bilateral common carotid artery occlusion (CCAo), a model that mimics human stroke with partial reperfusion. In addition, whether lithium treatment alters Akt activity as measured by the kinase activity assay has not been reported, although it is known to inhibit GSK3β activity. After stroke, Akt activity contributes to neuronal survival while GSK3β activity causes neuronal death. We report that a bolus of lithium injection at stroke onset robustly reduced infarct size measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48 h post-stroke and inhibited cell death in the ischemic penumbra, but not in the ischemic core, as shown by TUNEL staining performed 24 h post-stroke. However, lithium treatment did not alter the reduction in Akt activity as measured by Akt kinase assay. We further showed that lithium did not alter phosphorylated GSK3β protein levels, or the degradation of β-catenin, a substrate of GSK3β, which is consistent with previous findings that long-term treatment is required for lithium to alter GSK3β phosphorylation. In summary, we show innovative data that lithium protects against stroke in a focal ischemia model with partial reperfusion, however, our results dispute the importance of Akt activity in the protective effects of lithium.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain microvascular endothelial cell (BMVEC) injury induced by ischemia-reperfusion (I/R) is the initial phase of blood-brain barrier (BBB) disruption, which results in a poor prognosis for ischemic stroke patients. Autophagy occurs in ischemic brain and has been shown to exhibit protective effects on endothelial cell against stress. However, the potential effects of BMVEC autophagy on BBB permeability during I/R and the mechanisms underlying these effects have yet to be elucidated. In the current study, we answered these questions by using chemical modulators of autophagy, including rapamycin and lithium carbonate acting, respectively, as mammalian target of rapamycin (mTOR)-dependent and mTOR-independent autophagy inducers and 3-methyladenine (3-MA) as an autophagy inhibitor. To mimic I/R injury, BMVECs were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), and a rat transient middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed. All the drugs were given at 0.5 h before OGD/R or MCAO/R. First, enhancement of autophagy by rapamycin and lithium carbonate attenuated, whereas suppression of autophagy by 3-MA intensified BMVEC apoptosis and the high level of ROS induced by OGD/R. In addition, rapamycin and lithium carbonate pretreatments significantly reversed the decreased level of tight junction protein zonula occludens-1 (ZO-1) induced by OGD/R and promoted the distribution of ZO-1 on cell membranes. Finally, pretreatments with rapamycin and lithium carbonate reduced evans blue extravasation and brain water content in the ischemic hemisphere of the rat. In contrast, 3-MA pretreatment exerted opposite effects both in vitro and in vivo. These results may indicate a beneficial effect of BMVEC autophagy on BBB integrity during I/R injury.
    No preview · Article · Jul 2014 · Translational Stroke Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the remarkable discoveries in the field of psychopharmacology from late 1940s is Lithium (Li) that reminds of old but still gold. It continues to be a distinctive mood stabilizer that matches various standards recommended for mood stabilizers. Apart from this Li is also known to affect immune cell functions. Lithium response and regulations of different immune cells in bipolar patients, related immune disorders are not well defined. Here, we provide an overview of literature with regard to Li's effects on different immune cells. However, the use of Li is currently limited to bipolar disorders and there is no empirical evidence for immune cell disorders. The objective of this article is to provide the evaluations of Li responses towards the different immune cells based on the existing studies. Further, more studies are needed to understand the mechanistic basis and heterogeneous responses of Li's effect in bipolar, also unravel relative immune disorders.
    No preview · Article · Jan 2015 · Immunopharmacology and Immunotoxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Numerous studies have demonstrated the possible neuroprotective role of lithium treatment against neurological disorders. However, the role of lithium in delayed phase of neuronal death against focal ischemia has not been explored. Therefore, the present study was designed to investigate the effect and molecular mechanisms of post-lithium treatment against cerebral ischemic reperfusion (I/R) injury and associated cognitive deficits in rats. Methods: I/R injury was induced by right middle cerebral artery occlusion and lithium (40 and 60 mg/kg) were given intraperitoneally, 24 h after the insult and continued for 1 week with 24-h interval. Using Lasser Doppler, cerebral blood flow was monitored before, during and after MCAO induction. Besides behavioral, biochemical, and histological evaluation, levels of tumor necrosis factor alpha (TNF-α) and brain-derived neurotrophic factor (BDNF) were also estimated. Results: I/R injury resulted in significant elevation of neurological deficits, oxidative stress, neuroinflammation, and cognitive impairments. We found that lithium injection, 24 h after I/R-injury continued for 1 week, dose dependently prevented behavioral abnormality and cognitive impairments. Moreover, lithium attenuated the levels of oxidative stress and pro-inflammatory-cytokines TNF-α level. Further, lithium treatments significantly reduced neuronal damage and augmented healthy neuronal count and improved neuronal density in hippocampus. These neuroprotective effects of delayed lithium treatment were associated with upregulation of neurotrophic factor BDNF levels. Conclusion: Delayed lithium treatment provides neuroprotection against cerebral I/R injury and associated cognitive deficits by upregulating BDNF expression that opens a new avenue to treat I/R injury even after active cell death.
    No preview · Article · Nov 2015 · Journal of Receptor and Signal Transduction Research