Molecular Pathways: The Hedgehog Signaling Pathway in Cancer

ArticleinClinical Cancer Research 18(18):4883-8 · June 2012with10 Reads
DOI: 10.1158/1078-0432.CCR-11-2509 · Source: PubMed
The Hedgehog (Hh) signaling pathway regulates embryonic development and may be aberrantly activated in a wide variety of human cancers. Efforts to target pathogenic Hh signaling have steadily progressed from the laboratory to the clinic, and the recent approval of the Hh pathway inhibitor vismodegib for patients with advanced basal cell carcinoma represents an important milestone. On the other hand, Hh pathway antagonists have failed to show significant clinical activity in other solid tumors. The reasons for these negative results are not precisely understood, but it is possible that the impact of Hh pathway inhibition has not been adequately measured by the clinical endpoints used thus far or that aberrancies in Hh signal transduction limits the activity of currently available pathway antagonists. Further basic and correlative studies to better understand Hh signaling in human tumors and validate putative antitumor mechanisms in the clinical setting may ultimately improve the success of Hh pathway inhibition to other tumor types. Clin Cancer Res; 18(18); 4883-8. ©2012 AACR.
    • "GLI3 acts as negative effector of Hh signaling by repressing the transcription of Hh target genes, while GLI2 can act as either positive or negative effector, depending on both post-transcriptional and post-translational modifications [73, 74]. The Hh signaling pathway is involved in the regulation of cell differentiation, proliferation, stem cell maintenance, and carcinogenesis [73, 75, 76]. Aberrant Hh signaling activation may be implicated in many types of cancer, including skin, leukemia, lung, brain, and gastrointestinal cancers [73]. "
    [Show abstract] [Hide abstract] ABSTRACT: Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment.
    Full-text · Article · Mar 2016
    • "Additionally , the observation of Hh pathway components in endothelial cells leads us to believe that these molecules are capable of contributing to tumor angiogenesis, since CD163+ macrophages express IHH, a pathway ligand, and are known to be associated with tumor neovascularization [21, 22, 24]. In normal adult tissue, the signaling pathways that participate in embryonic development, such as the Hh pathway, normally remain inactive except when participating in tissue repair or stem cell maintenance313233. When deregulated, a variety of mechanisms are capable of activating the Hh pathway , some of which are dependent on the Hh ligand. "
    [Show abstract] [Hide abstract] ABSTRACT: The present study aimed to evaluate the role of Hedgehog (Hh) molecule expression in association with the clinical aspects of oral squamous cell carcinoma (OSCC), as well as angiogenesis and CD163+ macrophages. Twenty-eight cases of OSCC, nine cases of tumor-free resection margins (TM), and four cases of non-neoplastic oral mucosa (NNM) were submitted to immunohistochemistry to detect proteins Sonic Hedgehog (SHH), Indian Hedgehog (IHH), GLI1, CD163, and CD105. Protein colocalization with respect to SHH/CD163, IHH/CD163, GLI1/CD163, and GLI1/CD105 was assessed by immunohistochemical double staining. In tumor parenchyma, SHH and IHH were present in the cytoplasm of neoplastic cells, while GLI1 was observed in cytoplasm and nucleus. Endothelial cells were found to express SHH, IHH, and GLI1 within CD105+ vessels, and a positive correlation between infiltrating macrophage density (IMD) and microvascular density (MVD) was observed in cases of OSCC and TM. When compared to TM and NNM, the OSCC cases demonstrated higher immunoreactivity for SHH (p = 0.01), IHH (p = 0.39), GLI1 (p = 0.03), IMD (p = 0.0002), and MVD (p = 0.0002). Our results suggest the participation of the Hh pathway in OSCC by way of autocrine and paracrine signaling, in addition to the participation of both SHH and IHH ligands. Endothelial cells were also found to exhibit positivity with respect to Hh pathway components and we surmise that these molecules may play a role in tumor angiogenesis. CD163+ macrophages were also observed to express IHH, a ligand of this pathway, in addition to being associated with tumor neovascularization.
    Full-text · Article · Jan 2016
    • "In the absence of HH ligand, protein patched homolog 1 (PTCH1), a twelve transmembrane protein receptor prevents the localization of SMO, a seven pass transmembrane G-protein coupled receptor-like protein, to the cell surface thereby inhibiting its activity (Figure 1). In canonical HH signaling, the HH ligand binds to PTCH1 receptor, triggering the phosphorylation and accumulation of SMO in the cilia [13]. Phosphorylated SMO then facilitates the dissociation of GLI proteins from kinesin-family protein, kinesin superfamily 7 (Kif7), and suppressor of fused (SUFU) [14]. "
    [Show abstract] [Hide abstract] ABSTRACT: The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for aberrant GLI1 expression and discuss GLI1-mediated HH signaling on DNA damage responses, carcinogenesis and chemoresistance.
    Full-text · Article · Nov 2015
Show more