Long-Term Magnetic Resonance Imaging of Stem Cells in Neonatal Ischemic Injury

Radiology, School of Medicine, Loma Linda University, Loma Linda, CA
Annals of Neurology (Impact Factor: 9.98). 02/2011; 69(2):282 - 291. DOI: 10.1002/ana.22168
Source: PubMed


Quantitative magnetic resonance imaging (MRI) can serially and noninvasively assess the degree of injury in rat pup models of hypoxic ischemic injury (HII). It can also noninvasively monitor stem cell migration following iron oxide prelabeling. Reports have shown that neural stem cells (NSCs) may help mediate neuroprotection or stimulate neuroreparative responses in adult and neonatal models of ischemic injury. We investigated the ability of high-field MRI to monitor and noninvasively quantify the migration, proliferation, and location of iron oxide–labeled NSCs over very long time periods (58 weeks) in real time while contemporaneously correlating this activity with the evolving severity and extent of neural damage.Methods
Labeled clonal murine NSCs (mNSCs) were implanted 3 days after unilateral HII in 10-day-old rat pups into the contralateral striatum or ventricle. We developed methods for objectively quantifying key aspects of dynamic NSC behavior (eg, viability; extent, and speed of migration; degree of proliferation; extent of integration into host parenchyma). MRI images were validated with histological and immunohistochemical assessments.ResultsmNSCs rapidly migrated (100 μm/day) to the lesion site. Chains of migrating NSCs were observed in the corpus callosum. In pups subjected to HII, though not in intact control animals, we observed a 273% increase in the MR-derived volume of mNSCs 4 weeks after implantation (correlating with the known proliferative behavior of endogenous and exogenous NSCs) that slowly declined over the 58-week time course, with no adverse consequences. Large numbers of now quiescent mNSCs remained at the site of injury, many retaining their iron oxide label.InterpretationOur studies demonstrate that MRI can simultaneously monitor evolving neonatal cerebral injury as well as NSC migration and location. Most importantly, it can noninvasively monitor proliferation dynamically for prolonged time periods. To be able to pursue clinical trials in newborns using stem cell therapies it is axiomatic that safety be insured through the long-term real time monitoring of cell fate and activity, particularly with regard to observing unanticipated risks to the developing brain. This study supports the feasibility of reliably using MRI for this purpose.Ann Neurol 2011

Download full-text


Available from: Andre Obenaus
  • Source
    • "T2-weighted images (T2WI) were acquired at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days) post induction of HII. This range of time points was chosen based on previous studies that revealed the dynamic nature of the evolving HII injury (Obenaus et al., 2011a). All animal protocols were approved by the Loma Linda University (LLU) Institutional Animal Care and Use Committee. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects.
    Full-text · Article · Oct 2014 · Medical Image Analysis
  • Source
    • "Billerica, MA), as previously reported (Obenaus et al., 2011). Two scanners were required to image the large number of pups at each time point (10–12 animals). "
    [Show abstract] [Hide abstract]
    ABSTRACT: While hypothermia (HT) is the standard-of-care for neonates with hypoxic ischemic injury (HII), the mechanisms underlying its neuroprotective effect are poorly understood. We examined ischemic core/penumbra and cytokine/chemokine evolution in a 10-day-old rat pup model of HII. Pups were treated for 24 hr after HII with HT (32℃; n = 18) or normothermia (NT, 35℃; n = 15). Outcomes included magnetic resonance imaging (MRI), neurobehavioral testing, and brain cytokine/chemokine profiling (0, 24, 48, and 72 hr post-HII). Lesion volumes (24 hr) were reduced in HT pups (total 74%, p < .05; penumbra 68%, p < .05; core 85%, p = .19). Lesion volumes rebounded at 72 hr (48 hr post-HT) with no significant differences between NT and HT pups. HT reduced interleukin-1β (IL-1β) at all time points (p < .05); monocyte chemoattractant protein-1 (MCP-1) trended toward being decreased in HT pups (p = .09). The stem cell signaling molecule, stromal cell-derived factor-1 (SDF-1) was not altered by HT. Our data demonstrate that HT reduces total and penumbral lesion volumes (at 24 and 48 hr), potentially by decreasing IL-1β without affecting SDF-1. Disassociation between the increasing trend in HII volumes from 48 to 72 hr post-HII when IL-1β levels remained low suggests that after rewarming, mechanisms unrelated to IL-1β expression are likely to contribute to this delayed increase in injury. Additional studies should be considered to determine what these mechanisms might be and also to explore whether extending the duration or degree of HT might ameliorate this delayed increase in injury. © The Author(s) 2014.
    Full-text · Article · Oct 2014 · ASN Neuro
  • Source
    • "Whereas our previous study has shown in normal brains a good correlation between MRI and FePro-labelled endogenous neural progenitor cells 24, tracking FePro-labelled cells in the ischaemic brain is clearly more challenging. There are a few studies that have transplanted iron-oxide or gadolinium labeled ES or NSC cells into the contralateral, non-ischaemic hemisphere (rather than in the ipsilateral stroked hemisphere), and observed migration of cells towards the ischaemic lesion 19, 42– 44. In these studies, transplanted cells were capable of migration via the corpus callosum into the ishaemic hemisphere, and could be visualised using MRI. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficacy of neural stem/progenitor cell (NPC) therapies after cerebral ischaemia could be better evaluated by monitoring in vivo migration and distribution of cells post-engraftment in parallel with analysis of lesion volume and functional recovery. Magnetic resonance imaging (MRI) is ideally placed to achieve this, but still poses several challenges. We show that combining the ferumoxide MRI contrast agent Endorem with protamine sulphate (FePro) improves iron oxide uptake in cells compared to Endorem alone and is non-toxic. Hence FePro complex is a better contrast agent than Endorem for monitoring NPCs. FePro complex-labelled NPCs proliferated and differentiated normally in vitro, and upon grafting into the brain 48 hours post-ischaemia they were detected in vivo by MRI. Imaging over four weeks showed the development of a confounding endogenous hypointense contrast evolution at later timepoints within the lesioned tissue. This was at least partly due to accumulation within the lesion of macrophages and endogenous iron. Neither significant NPC migration, assessed by MRI and histologically, nor a reduction in the ischaemic lesion volume was observed in NPC-grafted brains. Crucially, while MRI provides reliable information on engrafted cell location early after an ischaemic insult, pathophysiological changes to ischaemic lesions can interfere with cellular imaging at later timepoints.
    Full-text · Article · Nov 2013 · F1000 Research
Show more