Chapter

Ligand‐Gated Ion Channels

University College London, London, UK
DOI: 10.1038/npg.els.0000154 In book: eLS
1 Follower
 · 
4 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 5-(Trifluoromethyl)-6-(1-methyl-azepan-4-yl)methyl-1H-quinolin-2-one (TMAQ) is a novel nicotinic acetylcholine receptor (nAChR) agonist with strong selectivity for beta4-containing receptors. TMAQ also exhibits remarkable species selectivity, being a potent agonist of nAChRs containing the human beta4 subunit but having no detectable agonist activity on nAChRs containing the rat beta4 subunit. With the aim of identifying subunit domains and individual amino acids, which contribute to the species selectivity of TMAQ, a series of chimeric and mutated beta4 subunits has been constructed. Recombinant receptors containing wild-type, chimeric, or mutated beta4 subunits have been examined by radioligand binding, intracellular calcium assays, and electrophysiological recording. Two adjacent amino acids located within the extracellular loop D domain of the beta4 subunit (amino acids 55 and 56) have been identified as playing a critical role in determining the agonist potency of TMAQ. Mutagenesis of these two residues within the rat beta4 subunit to the corresponding amino acids in the human beta4 subunit (S55N and I56V mutations) confers sensitivity to TMAQ. The converse mutations in the human beta4 subunit (N55S and V56I) largely abolish sensitivity to TMAQ. In contrast, these mutations have little or no effect on sensitivity to the nonselective nicotinic agonist epibatidine. Despite acting as a potent agonist of human beta4-containing nAChRs, TMAQ acts as an antagonist of rat beta4-containing receptors. Our experimental data, together with homology models of the rat and human alpha3beta4 nAChRs, suggest that amino acids 55 and 56 may be involved in the coupling of agonist binding and channel gating.
    Full-text · Article · Mar 2007 · Molecular Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in both vertebrates and invertebrates. In insects, nAChRs are the target site for several naturally occurring and synthetic compounds that exhibit potent insecticidal activity. Several compounds isolated from plants are potent agonists or antagonists of nAChRs, suggesting that these may have evolved as a defence mechanism against insects and other herbivores. Nicotine, isolated from the tobacco plant, has insecticidal activity and has been used extensively as a commercial insecticide. Spinosad, a naturally occurring mixture of two macrocyclic lactones isolated from the microorganism Saccharopolyspora spinosa, acts upon nAChRs and has been developed as a commercial insecticide. Since the early 1990s, one of the most widely used and rapidly growing classes of insecticides has been the neonicotinoids. Neonicotinoid insecticides are potent selective agonists of insect nAChRs and are used extensively in both crop protection and animal health applications. As with other classes of insecticides, there is growing evidence for the evolution of resistance to insecticides that act on nAChRs.
    Full-text · Article · Apr 2007 · Invertebrate Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinic acetylcholine receptors (nAChRs) are members of an extensive super-family of neurotransmitter-gated ion channels. In humans, nAChRs are expressed within the nervous system and at the neuromuscular junction and are important targets for pharmaceutical drug discovery. They are also the site of action for neuroactive pesticides in insects and other invertebrates. Nicotinic receptors are complex pentameric transmembrane proteins which are assembled from a large family of subunits; seventeen nAChR subunits (alpha1-alpha10, beta1-beta4, gamma, delta and epsilon) have been identified in vertebrate species. This review will discuss nAChR subunit diversity and factors influencing receptor assembly and trafficking.
    Full-text · Article · Jun 2008 · Molecular Membrane Biology
Show more