ArticlePDF Available

Abstract and Figures

The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process) as an energy cost. The energy return on investment (EROI) for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel) is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy) and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.
Content may be subject to copyright.
A preview of the PDF is not available
... The EROI of crude oil was approximately 100 in the early stages of development, but now the EROI of oil has decreased drastically, to approximately 6.0 (Murphy 2014). Unconventional energy sources, such as tar sands and oil shale, are generally harder to extract than conventional oil and are expected to have a lower EROI, which means that the production process releases more carbon dioxide and other greenhouse gases than conventional liquid fuel (Cleveland and O'Connor 2011). The EROIs of tar sands and oil shale are 3~6 and 1~4, respectively (Gupta and Hall 2011). ...
Chapter
Full-text available
As the tropics are exposed to large amounts of solar radiation, solar energy amelioration is highly important in tropical ecosystems. Among mechanisms of high solar energy amelioration, the water cycle is the first function that removes solar radiation energy in the form of latent heat through evaporation at the sea surface and evapotranspiration from forests. The carbon cycle is the second function as it fixes solar radiation energy into carbohydrates in plants (and forests) through photosynthesis. In addition, forests have a function in the water–carbon linkage, and it is assumed that the water–TREE–carbon linkage is a key function in the tropics, where a TREE (a simplified forest function) is a bioapparatus that serves as natural capital. The TREE model includes functions such as solar panels (leaves), batteries (stems), air conditioning (evapotranspiration), carbon sequestration (biochar), fertilizer production (N2 fixation), water dams (water reserves in the soil), and soil conservation (through the application of organic matter).
Thesis
Full-text available
There is broad scientific consensus that to avoid catastrophic climate change, global warming should be stabilised well below 2 °C compared to the pre-industrial period. Alarmingly, the window of opportunity to bring down greenhouse gas emissions in line with this objective is rapidly closing. Existing climate mitigation literature agrees that the time when gradual emission reductions could address the issue of climate change is over, and that nothing short of a profound transformation of the energy system, economy, and lifestyles is required to accomplish the necessary emission reductions. Multiple scenarios have been produced by integrated assessment models (IAMs) that explore different mitigation avenues to accomplish a low-carbon energy transition. In this thesis, I analyse whether existing scenarios adequately represent biophysical constraints to the transition. Moreover, I explore if existing scenarios consider the full range of mitigation options to reduce emissions, and whether the scenarios assume adequate energy to enable a flourishing life for all. Finally, I discuss potential implications that a transition to a low-carbon energy system may have for the economy. Existing mitigation scenarios estimate emissions and energy pathways that would be compatible with limiting global warming to 1.5‒2 °C. However, at present, these scenarios do not estimate the amount of energy needed to build and maintain a low-carbon energy system, nor the amount of greenhouse gas emissions that would be associated with such a transition. This is a major gap in the literature, as it remains unclear how much of the remaining carbon budget would be tied to the transition, and how much of it would effectively remain for society to produce goods and provide services using fossil fuels. I calculate that the emissions associated with the transition could range from 70 GtCO2 to 395 GtCO2, with a cross-scenario average of 195 GtCO2. This corresponds to approximately 0.1 °C of additional global warming. I show that the transition could drive up the energy requirements of the energy system and may require a decrease in per capita net energy use of 10%‒34% during the initial push for the transition. Nonetheless, in contrast to what has been argued in previous studies, a low-carbon energy transition would not necessarily lead to a decline in the Energy-Return-on-Energy-Invested (EROI) of the overall energy system in the long-term. I conclude that a continued growth in energy use may be incompatible with the goal of avoiding dangerous climate change. Although use of negative emissions technologies may unlock additional energy from fossil fuels, the overall increase in available energy may be exaggerated in existing scenarios, due to overestimation of realistic mitigation potential and disregard of the high energy requirements of these technologies. Furthermore, use of negative emissions technologies may decrease the efficiency of energy provisioning to society, leading to increased economic expenditure for energy. The conclusion that a low-carbon energy transition may limit the prospects of growth in energy use raises concern, as energy is a key requirement to produce goods and services. How do existing mitigation scenarios address the socioeconomic implications of this energy constraint? I find that existing mitigation scenarios perpetuate the striking inequalities of energy use between the Global North and Global South. Lack of equitable convergence is further underlined by the scenarios that assume negative emissions. Although these scenarios allow for higher global energy use, the additional energy is overwhelmingly allocated to the countries in the Global North, which have the highest per-capita energy consumption. Moreover, existing mitigation scenarios do not consider that limits to energy growth may have a negative effect on the economy. On the contrary, mitigation scenarios typically assume economic growth is to increase in the future, despite lower energy use. To square economic growth with decreasing energy use, mitigation scenarios assume rapid and unprecedented improvements in the efficiency of energy use in the global economy. However, feasibility of accomplishing such improvements has been fiercely contested. To explore if there are alternative pathways to accomplishing a low-carbon energy transition, I outline a series of scenarios that assume lower rates of global economic growth. I demonstrate that lower economic growth makes it possible to accomplish sufficient emission reductions with more moderate energy efficiency improvements and a slower build-up of a low-carbon energy system. I discuss the concerns regarding negative implications that lower growth may have on social wellbeing and the ability to pay for the transition. I argue that post-growth policies focused on wealth redistribution may lead to desirable social outcomes without compromising the aim of avoiding dangerous climate change.
Article
Full-text available
The Canadian province of Alberta is the main crude oil producer in Canada. Its conventional crude production has declined over the last decades, while production from unconventional sources, i.e. the oil sands, has risen significantly. Two types of crude are produced out of raw oil sands: crude bitumen and synthetic crude. Crude bitumen refers to raw bitumen cleansed from solid particles after extraction on-site which must be diluted with light hydrocarbons (natural gas, condensate, etc.) for shipment via pipelines. ‘Diluted bitumen’ refers to crude bitumen after blending with light hydrocarbons. Synthetic crude is produced via upgrading (distillation and/or cracking) of crude bitumen, resulting in a crude oil stream nearly identical chemically to conventional crude. Past researchers who estimated the net energy delivered by oil sands-derived crude using the energy return on energy invested (EROI) as an indicator have either estimated the EROI of one type of crude only or analysed the total EROI of oil sands extracted via both open-pit or in-situ mining. No research has estimated the disaggregated EROI of the two types of crude independently, making a rigorous comparison of the net-energy potentials of the two crude streams difficult. This paper provides disaggregated estimates of the EROI of diluted bitumen and synthetic crude produced via open-pit mining. I find the Standard EROI (EROIST) of diluted bitumen to be 11.6: 1 on weighted average from 1997 to 2016 and increasing over time. I find synthetic crude’s EROIST to be 4.1: 1 on weighted average over the period.
Book
Building on insights from ecological economics and philosophy of technology, this book offers a novel, interdisciplinary approach to understand the contradictory nature of Solar photovoltaic (PV) technology. Solar photovoltaic (PV) technology is rapidly emerging as a cost-effective option in the world economy. However, reports about miserable working conditions, environmentally deleterious mineral extraction and toxic waste dumps corrode the image of a problem-free future based on solar power. Against this backdrop, Andreas Roos explores whether ‘ecologically unequal exchange’ – an asymmetric transfer of labour time and natural resources – is a necessary condition for solar PV development. He demonstrates how the massive increase in solar PV installation over recent years would not have been possible without significant wage/price differences in the world economy - notably between Europe/North America and Asia- and concludes that solar PV development is currently contingent on environmental injustices in the world economy. As a solution, Roos argues that solar technology is best coupled with strategies for degrowth, which allow for a transition away from fossil fuels and towards a socially just and ecologically sustainable future. This book will be of great interest to students and scholars of solar power, philosophy of technology, and environmental justice.
Chapter
Oil and gas dominate the global energy mix since WWII. Fossil fuels have had a central role in the continuous growth of the economy, population, and living standards. Nonetheless, a multitude of physical, environmental, economic, political, and social challenges are jeopardizing the sustainability of the oil and gas industry. The global diminishing energy return, the water use intensity and carbon emissions, as well as the negative impacts on biodiversity, land use, and the local environment are among the primary concerns of the oil and gas industry. Additionally, uncertainties regarding future fossil fuel demand and prices discourage investment in oil and gas production and could negatively impact the supply of oil and gas in a near future. A planned decrease in oil and gas production would also damage the economy of producing countries while the social consequences in terms of employment still need to be anticipated. As for any economic activity, the adaptation of the oil and gas industry to a resource-constrained world is certainly the condition for its sustainability. The oil and gas sector responds to these challenges by increasing energy and water use efficiency, decarbonizing oil and gas production, reusing and recovering resources, and implementing sustainability and social transition plans.
Book
Full-text available
Introducción Vivimos los tiempos en que se anuncia el fin del capitalismo: la sociedad de la explotación y la competencia es incapaz de reproducirse como lo ha hecho durante siglos, lo que vaticina un cambio radical de época. En los últimos 50 años, las señales de tal incapacidad se acumulan y encuentran su expresión más nítida en la destrucción del ambiente, dado que la explotación capitalista no puede proseguir si no cuenta con algún tipo de base material. A ello se suma la descomposición de las sociedades y los territorios que hacían posible la acumulación de valor. El debate sobre el fin del capitalismo se ha fortalecido tras la revolución mundial de 1968, en la que se rompió el consenso político y cultural producto de la segunda guerra mundial. En esta controversia se tiene tanto la vertiente polémica, en la que se discute si el capitalismo cuenta o no con las capacidades para superar sus contradicciones, como la posición que considera las relaciones y dinámicas que permiten reconocer el fin del sistema. En los años recientes, de la mano de las catástrofes ambientales y sociales, así como de los informes sobre el cambio climático y la extinción de la vida en el planeta, el fin de época gana momentum para convertirse en uno de los principales temas del debate público y del diálogo social: ya no es solo un tema de especialistas sino una interpretación de la realidad que marca el rumbo de nuestras sociedades y propicia acciones y prácticas antisistémicas. En este punto, conviven las luchas antisistémicas con las reacciones más conservadoras que, en la defensa a ultranza del orden de cosas existente, también construyen escenarios distópicos anunciando el fin del ciclo histórico. Emergen así acciones e interpretaciones sobre un cambio de época. La disputa más clara es entre aquellos sujetos sociales que actúan para crear un orden que supere al capitalismo, abriendo un horizonte en el que las formas de interacción social sean más creativas y autónomas; por otro lado, están quienes impulsan respuestas autoritarias y proyectan relaciones sociales que radicalicen la explotación, el patriarcado y el racismo. Así, el aire de la época se presenta como un desgaste radical de la lógica interna del capitalismo que coexiste con una lucha entre distintas posiciones sociales por construir escenarios de transición. Asistimos a un gran ciclo de disputas, en una situación de colapso. En este trabajo nos preguntamos acerca de los límites que ha alcanzado el capitalismo con el fin de entender los escenarios de la disputa por sustituir al sistema imperante. El sistema agoniza, pero, como lo establece la hipótesis de la bifurcación propuesta por Immanuel Wallerstein, se trata de un macro-proceso cuya trayectoria y resultados son inciertos. Las relaciones que permitieron la reproducción del capitalismo durante más de 500 años han llegado a su límite. Al no poder reproducirse en forma coherente, encontramos que el capitalismo entra en un ciclo histórico de “caos determinado”, marcado por el tránsito hacia nuevas relaciones y formas de articulación social. Para esta interpretación, la bifurcación tiene dos posibilidades extremas: por una parte, la desintegración de las relaciones sociales básicas del capitalismo (mercados, relación salarial, monopolización de los medios de producción) y de sus instituciones esenciales (corporaciones trasnacionales, fuerzas armadas, gobierno, democracia representativa, organizaciones normalizadoras) dando paso a lo que de manera sintética se denomina barbarie, un mundo aún peor del que vivimos; por otra parte, la construcción de relaciones sociales que superen las instituciones del capitalismo así como la explotación de la llamada naturaleza y de las personas: idea resumida en la creación de los otros mundos posibles regidos por los principios de autonomía y autodeterminación. El carácter caótico e incierto de la bifurcación deriva de la complejidad que caracteriza a la sociedad capitalista, de su diversidad histórica y social, así como de las dificultades que aún tenemos para entender la totalidad del sistema. Para abordar esta complejidad proponemos estudiar y establecer las principales líneas de fuerza que marcan la ruptura de la reproducción del sistema, proceso que denominamos dislocación sistémica, entendido como la generalización de un modo de reproducción que pierde sus regularidades y solo logra reproducirse mediante contradicciones que se amplifican sin cesar; la tendencia principal del proceso de dislocación es la generación de catástrofes en todos los órdenes de la sociedad y de la relación de ésta con la llamada naturaleza. Concentramos nuestra investigación en los procesos de ruptura de las regularidades sistémicas. Tomar esta perspectiva de análisis nos permite enfocarnos en los sujetos protagónicos, los procesos disruptivos y las relaciones de fuerza que definen el sentido de la dislocación, proponiendo una interpretación de procesos que se han estudiado de manera aislada. ndice Introducción Primera parte. Dos interpretaciones sobre la debacle capitalista Capítulo 1. La dislocación del capitalismo · Raúl Ornelas Bernal Capítulo 2. 12 hipótesis sobre la trayectoria del capitalismo contemporáneo · Daniel Inclán Solís Segunda parte. Corporaciones y súper ricos: núcleo del poder mundial Capítulo 3. Las corporaciones trasnacionales en la economía mundial · Raúl Ornelas Bernal Capítulo 4. El reino del exceso. Élites económicas e hiperconcentración de la riqueza · Sandy Ramírez Gutiérrez Tercera parte. Tendencias disruptivas en el capitalismo contemporáneo Capítulo 5. Las corporaciones trasnacionales y la dislocación del capitalismo · Raúl Ornelas Bernal Capítulo 6. Preservación del capitalismo y destrucción del ambiente: obstinación corporativa y estrategias prosistémicas · Maritza Islas Vargas Capítulo 7. Las corporaciones trasnacionales en el centro de la destrucción del ambiente en el siglo XXI. El caso de la industria petrolera · Cristóbal Reyes Núñez y Josué García Veiga Participantes
Article
Full-text available
Since the Pennsylvania oil rush of 1859, petroleum has quickly become the dominant fuel of industrial society. The “Peak Oil” debate focused on whether or not there was an impending production crunch of cheap oil, and whilst there have been no shortages across the globe, a shift from conventional to unconventional oil liquids has occurred. One aspect of this shift was not fully explored in previous discussions–although of some importance in a low-carbon energy transition context: the extent to which the net-energy supply of oil products is affected by the use of lower quality energy sources. To fill this gap, this paper incorporates standard EROI (energy-return-on-investment) estimates and dynamic decline functions in the GlobalShift all-liquids bottom-up model on a global scale. We determine the energy necessary for the production of oil liquids (including direct and indirect energy costs) to represent today 15.5% of the energy production of oil liquids, and growing at an exponential rate: by 2050, a proportion equivalent to half of the gross energy output will be engulfed in its own production. Our findings thus question the feasibility of a global and fast low-carbon energy transition. We therefore suggest an urgent return of the peak oil debate, but including net-energy issues and avoiding a narrow focus on ‘peak supply’ vs ‘peak demand’.
Book
Full-text available
Az atomenergia a globális végső energiafogyasztás alig 2%-át fedezi, a világ országainak 84%-ában nem része az energiamixnek. Jelentősége a fejlett gazdaságokban rohamosan szorul vissza, a még működő kapacitások felszámolása történik. Kapacitásbővülés jellemzően a fejlődő térség azon országaiban figyelhető meg, ahol a rendszer nem demokratikusan működik. Az atomenergia 70 éves útja 17 különösen súlyos balesettel szegélyezett. Az ezekre visszavezethető biztonsági elvárások folyamatosan szigorodnak, ami drámai mértékű árnövekedést eredményezett az elmúlt 3 évtizedben. Ez a tény, és a konkurens megújuló energia alapú technológiák árzuhanása azt eredményezi, hogy új atomerőművek piaci alapon többé nem építhetők. A hazánkban tervezett paksi beruházás költségeit is az adófizetők fogják megfizetni, miközben nem alkothatnak népszavazás keretében véleményt a várhatóan 10 000-20 000 milliárd forint végső költséggel (vagyis minden egyes magyar állampolgárra vetítve 1-2 millió forint kiadással) járó projektről. A hatalmas költségek miatt az atomenergia a korrupció melegágya, amire szerte a világban akadnak elrettentő példák. Az atomerőművek nem csak rossz, 33% körüli energetikai hatékonysággal működnek, de a teljes életciklust vizsgáló nemzetközi kutatások szerint a végeredmény az is lehet, hogy a működtetés negatív eredménnyel, vagyis energiaveszteséggel jár – ha az uránérc-bányászattal és a több százezer évre feladatokat adó hulladékkezeléssel kapcsolatos energiaigényeket is figyelembe vesszük. Egyre több rendszerirányító számol be arról, hogy az atomerőművek (és a széntüzelés) által termelt zsinóráram működési nehézségeket okoz számukra. Ezek a szerintük „elavult” létesítmények – rugalmatlan termelésük miatt – évről évre fokozódó mértékben veszélyeztetik a fogyasztók biztonságos energiaellátását, mert nem képesek a rohamos ütemben terjedő és igen olcsón termelő szélerőművek és napelemes rendszerek támogatására. Az atomenergia az eddigi üzemeltetési tapasztalatok alapján tehát nem olcsó, nem biztonságos és a legkevésbé sem tiszta. A paksi atomerőmű bővítését továbbá átláthatónak sem lehet nevezni, ugyanis arról nem folyt sem megfelelő szakmai vita, sem társadalmi párbeszéd. Ellenben az utóbbi évtizedre adatigénylési perek, az adatok kiadásának megtagadása és titkosítása volt jellemző, ezzel elvéve a lehetőséget a szélesebb körben vett tudományos közösségtől és a társadalomtól a megalapozott véleményalkotást illetően, illetve kizárva őket a döntéshozatali folyamatokból.
Article
Full-text available
This study realized in collaboration with five remote and Indigenous communities across Canada investigates the main barriers and potential solutions to developing stable and sustainable wood-based bioenergy systems. Our results highlight that despite the differences in available biomass and geographical context, these communities face common policy, economic, operational, cultural, social, and environmental risks and barriers to developing bioenergy. The communities identified and ranked the biggest barriers as follows; the high initial investment of bioenergy projects, the logistical and operational challenges of developing a sustainable wood supply chain in remote locations, and the limited opportunities for community leadership of bioenergy projects. Environmental risks have been ranked as the least important by all the communities, except for the communities in Manitoba, which ranked it as the second most important risk. However, all the communities agreed that climate change is the main environmental driver disturbing the wood-based bioenergy supply chain. To de-risk the wood-based bioenergy system, we suggest that stable and sustainable supply chains can be implemented by restoring community-based resources management supported by local knowledge and workforce. Using local knowledge can also help reduce the impacts caused by biomass harvesting on the ecosystem and avoid competition with traditional land uses. Including positive externalities to cost benefit analysis, when comparing bioenergy systems to existing energy installation, will likely make bioenergy projects more attractive for the community financially. Alternatively, supporting co-learning between partners and among communities can improve knowledge and innovation sharing.
Article
Full-text available
Abstract Depletion and technological change exert opposing forces on the cost of delivering energy to society. One technique for evaluating the costs of energy systems is net energy analysis, which compares,the quantity of energy delivered to society by an energy system to the energy used directly and indirectly in the delivery process, a quantity called the energy return on investment (EROI). Such an investigationinvolves aggregating different energy flows. A variety of methods have been proposed, but none has received universal acceptance. This paper shows that the method,of aggregation has crucial effects on the results of the analysis. It is argued that that economic,approaches such as the index or marginal product method,are superior because they account for differences in quality among,fuels. The thermal equivalent and quality-corrected EROI for petroleum extraction in the U.S. show the same general pattern: a rise to a maximum in the early 1970s, a sharp decline throughout the 1970s, a recovery in the 1980s, and then another modest decline in the 1990s. However, the quality-corrected EROI is consistently much lower than the thermal equivalent EROI, and it declines faster and to a greater extent than the thermal-equivalent EROI. The results indicate that quality corrections have important effects on the results of energy analyses
Article
Full-text available
A series of hypotheses is presented about the relation of national energy use to national economic activity (both time series and cross-sectional) which offer a different perspective from standard economics for the assessment of historical and current economic events. The analysis incorporates nearly 100 years of time series data and 3 years of cross-sectional data on 87 sectors of the United States economy. Gross national product, labor productivity, and price levels are all correlated closely with various aspects of energy use, and these correlations are improved when corrections are made for energy quality. A large portion of the apparent increase in U.S. energy efficiency has been due to our ability to expand the relative use of high-quality fuels such as petroleum and electricity, and also to relative shifts in fuel use between sectors of the economy. The concept of energy return on investment is introduced as a major driving force in our economy, and data are provided which show a marked decline in energy return on investment for all our principal fuels in recent decades. Future economic growth will depend largely on the net energy yield of alternative fuel sources, and some standard economic models may need to be modified to account for the biophysical constraints on human economic activity.
Article
Full-text available
Without mitigation or technology improvements, full-fuel-cycle carbon dioxide (CO 2) emissions from oil shale derived liquid fuels are likely to be 25 to 75% higher than those from conventional liquid fuels, depending on the details of the process used. The emissions of CO 2 from oil shale derived fuels come from three stages: retorting of shale, upgrading and refining of raw shale oil, and combustion of the finished transportation fuels. Emissions from these stages represent approximately 25-40%, 5-15%, and 50-65% of total fuel-cycle emissions, respectively. The most uncertain source of emissions is the retorting stage, due to variation in emissions with shale quality and retorting technology used. Mitigation options include higher thermal efficiency, minimizing carbonate decomposition, CO 2 sequestration by geologic injection, enhanced oil recovery, mineralization in spent retorts, or the use of non-fossil sources for process heat.
Chapter
Shale oil, known also as kerogen oil or oil-shale oil, is an unconventional oil produced from oil shale by pyrolysis, hydrogenation, or thermal dissolution. The amount of shale oil that can be recovered from a given deposit depends upon many factors. Geothermal heating, or other factors, may have degraded some or all of a deposit, so that the amount of recoverable energy may be significantly decreased. Some deposits or portions thereof, such as large areas of the Devonian black shales in the eastern United States, may be too deeply buried to mine economically in the foreseeable future. Surface land uses may greatly restrict the availability of some oil shale deposits for development, especially those in the industrial western countries. The obvious need today is new and improved methods for the economic recovery of energy and by-products from oil shale. The bottom line in developing a large oil shale industry would be governed by the price of petroleum-based crude oil. When the price of shale oil is comparable to that of crude oil because of diminishing resources of crude, then shale oil may find a place in the world fossil energy mix.
Chapter
Oil shale represents the richest areal concentration of hydrocarbons on earth, measuring more than 1 million barrels per acre in Colorado, for example. Recovery technologies require the use of heat and can readily be designed to operate in an energy self-sufficient mode. 25 gpt oil shale contains enough energy to be totally self-sufficient while producing excess heat that can be converted to power for export. Overall thermal efficiencies depend primarily on grade, but variations in thermal efficiency will also depend on technology configurations. Of the three major process steps - mining, retorting, and upgrading - only the retorting step is unconventional. This paper provides the basis upon which the energy efficiencies of retort technology can be evaluated on a resource- and technology-specific basis.
Article
American Shale Oil LLC (AMSO) is one of three companies holding an Oil Shale RD&D Lease in Colorado from the U.S. Bureau of Land Management. AMSO is pursuing a unique strategy of recovering shale oil initially from the 2000-ft-deep illitic oil shale below the saline zone in order to isolate production from protected sources of ground water. Our method of heat distribution is also unique. We use refluxing oil to transport heat to the retort boundary, which will advance by thermo-mechanical fragmentation (spalling) due to the compressive stress caused by heating externally confined oil shale with an internal free surface. Heat is provided from a horizontal heater in an "L" shaped well, and oil and gas are recovered from a parallel horizontal well 100 ft or so above the heater well. Process heat will be provided by a downhole burner. We plan a pilot test in 2010 to prove the general concept and a semi-works test in 2013-2014 to provide a demonstration of commercial viability. Our commercial concept is to use panels of parallel horizontal heater and production wells about 2000-ft long and about 100-ft apart. Each well would produce about a million barrels over 2 to 4 years. Such an approach will disturb only about 10% of the surface area. We are also exploring how to permanently sequester CO 2 made during process heat generation by mineralization in spent oil shale retorts.
Article
The goal of net energy analysis is to assess the amount of useful energy delivered by an energy system, net of the energy costs of delivery. The standard technique of aggregating energy inputs and outputs by their thermal equivalents diminishes the ability of energy analysis to achieve that goal because different types of energy have different abilities to do work per heat equivalent. This paper describes physical and economic methods of calculating energy quality, and incorporates economic estimates of quality in the analysis of the energy return on investment (EROI) for the extraction of coal and petroleum resources in the U.S. from 1954 to 1987. EROI is the ratio of energy delivered to energy used in the delivery process. The quality-adjusted EROI is used to answer the following questions: (1) are coal and petroleum resources becoming more scarce in the U.S.?, (2) is society’s capability of doing useful economic work changing?, and (3) is society’s allocation of energy between the extraction of coal and petroleum optimal? The results indicate that petroleum and coal became more scarce in the 1970s although the degree of scarcity depends on the type of quality factor used. The quality-adjusted EROI shed light on the coal-petroleum paradox: when energy inputs and outputs are measured in thermal equivalents, coal extraction has a much larger EROI than petroleum. The adjustment for energy quality reduces substantially the difference between the two fuels. The results also suggest that when corrections are made for energy quality, society’s allocation of energy between coal and petroleum extraction meets the efficiency criteria described by neoclassical and biophysical economists.
Article
The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.
Article
We calculate the greenhouse gas (GHG) emissions from producing liquid fuels from Green River oil shale with the Alberta Taciuk Processor (ATP). Kerogen contained in oil shale can be retorted to produce liquid and gaseous hydrocarbons. The ATP is an above-ground oil shale retort that combusts the coke or "char" deposited on the shale during retorting to fuel the retorting process. Using life cycle assessment (LCA), we calculate the energy inputs and outputs of each process stage. We then calculate the resulting full-fuel-cycle GHG emissions from producing reformulated gasoline using the ATP. Full-fuel-cycle GHG emissions are conservatively calculated at ≈130-150 g CO 2 equiv/MJ of gasoline produced. These emissions are 1.5 to 1.75 times larger than emissions from conventionally produced gasoline. The results depend most sensitively on the grade of shale used and the rate of carbonate mineral decomposition, which causes inorganic carbon dioxide (CO 2) release.