Solving structure with sparse, randomly-oriented x-ray data

Cornell University, Laboratory of Atomic and Solid State Physics, Ithaca, NY, USA.
Optics Express (Impact Factor: 3.49). 06/2012; 20(12):13129-37. DOI: 10.1364/OE.20.013129
Source: PubMed


Single-particle imaging experiments of biomolecules at x-ray free-electron lasers (XFELs) require processing hundreds of thousands of images that contain very few x-rays. Each low-fluence image of the diffraction pattern is produced by a single, randomly oriented particle, such as a protein. We demonstrate the feasibility of recovering structural information at these extremes using low-fluence images of a randomly oriented 2D x-ray mask. Successful reconstruction is obtained with images averaging only 2.5 photons per frame, where it seems doubtful there could be information about the state of rotation, let alone the image contrast. This is accomplished with an expectation maximization algorithm that processes the low-fluence data in aggregate, and without any prior knowledge of the object or its orientation. The versatility of the method promises, more generally, to redefine what measurement scenarios can provide useful signal.

Download full-text


Available from: Kartik Ayyer, Dec 04, 2015
  • Source
    • "Struct. Dyn. 2, 041601 (2015) ultralow-signal experimental snapshots obtained by cryoEM (Schwander et al., 2012), or even a conventional X-ray source (Philipp et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-ray free-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenic electron microscopy of biological systems. Electron microscopy of biological entities has now reached a spatial resolution of about 0.3 nm, with a rapidly emerging capability to map discrete and continuous conformational changes and the energy landscapes of biomolecular machines. Nonetheless, single-particle imaging by X-ray free-electron lasers remains important for a range of applications, including the study of large “electron-opaque” objects and time-resolved examination of key biological processes at physiological temperatures. After summarizing the state of the art in the study of structure and conformations by cryogenic electron microscopy, we identify the primary opportunities and challenges facing X-ray-based single-particle approaches, and possible means for circumventing them.
    Full-text · Article · Jul 2015 · Structural Dynamics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump-probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a 'diffract-and-destroy' mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes.
    No preview · Article · Sep 2012 · Reports on Progress in Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-ray pulses produced by free-electron lasers can be focussed to produce high-resolution diffraction signal from single nanoparticles before the onset of considerable radiation damage.1-3 These two-dimensional (2D) diffraction patterns are inherently noisy and have no direct means of signal-averaging because the particles themselves are currently injected at random, unknown three-dimensional (3D) orientations into the particle-radiation interaction region. Simulations have successfully recovered 3D reconstructions from such remarkably noisy and fully unoriented 2D diffraction data.4 However, actual experimental data5 show that extraneous noise (either from background scattering or detector noise) can limit the resolution of the reconstruction or even jeopardize reconstruction attempts. This paper studies the second and more severe of these two effects through a simplified version of this reconstruction problem. A straightforward consideration of conditional probabilities 4, 6 can help define when the extraneous noise overwhelms reconstruction attempts. Nevertheless, an ensemble of data with considerable numbers of bright fluctuations may still reconstruct successfully. Incidentally, we also extend a specialized reconstruction algorithm 4, 6 to recover distinct species within an ensemble of illuminated samples. We expect our simplified simulations to provide insights that would have taken considerably longer to develop when restricted to the full 3D reconstruction problem.
    No preview · Article · Oct 2012 · Proceedings of SPIE - The International Society for Optical Engineering
Show more