Improving metabolic flux predictions using absolute gene expression data

Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. .
BMC Systems Biology (Impact Factor: 2.44). 06/2012; 6(1):73. DOI: 10.1186/1752-0509-6-73
Source: PubMed


Constraint-based analysis of genome-scale metabolic models typically relies upon maximisation of a cellular objective function such as the rate or efficiency of biomass production. Whilst this assumption may be valid in the case of microorganisms growing under certain conditions, it is likely invalid in general, and especially for multicellular organisms, where cellular objectives differ greatly both between and within cell types. Moreover, for the purposes of biotechnological applications, it is normally the flux to a specific metabolite or product that is of interest rather than the rate of production of biomass per se.
An alternative objective function is presented, that is based upon maximising the correlation between experimentally measured absolute gene expression data and predicted internal reaction fluxes. Using quantitative transcriptomics data acquired from Saccharomyces cerevisiae cultures under two growth conditions, the method outperforms traditional approaches for predicting experimentally measured exometabolic flux that are reliant upon maximisation of the rate of biomass production.
Due to its improved prediction of experimentally measured metabolic fluxes, and of its lack of a requirement for knowledge of the biomass composition of the organism under the conditions of interest, the approach is likely to be of rather general utility. The method has been shown to predict fluxes reliably in single cellular systems. Subsequent work will investigate the method's ability to generate condition- and tissue-specific flux predictions in multicellular organisms.

Download full-text


Available from: Ettore Murabito
  • Source
    • "The second, non-discretized approach utilizes the absolute gene expression levels to derive a flux description of a specific metabolic state (Lee et al, 2012), or for constraining reactions' maximal flux capacity for the purpose of building a specific model (Colijn et al, 2009; Fig 2). While these approaches maintain the basic structure of the network and are more sensitive to subtle differences in expression levels, their drawback is in their underlying implicit assumption that there is a strong monotonic positive association between gene expression levels and flux rates, an assumption that is known to hold only partially (Bordel et al, 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
    Full-text · Article · Jun 2015 · Molecular Systems Biology
  • Source
    • "Constraint based techniques, including flux balance analysis (FBA) and flux variability analysis (FVA), provide quantitative predictions of cellular behavior such as metabolic flux patterns and cellular growth rates. These are computed by applying constraints , which can be assigned from experimentally measured nutrient uptake rates (Orth et al., 2010) and intracellular fluxes (Sauer, 2006), or inferred through interpretation of gene expression data (Lee et al., 2012). These predictions provide insights into the metabolic pathways active under different growth conditions (Liao et al., 2011), gene essentiality (Joyce and Palsson, 2008; Dobson et al., 2010; Heavner et al., 2012), and as a result, the fitness optimality of a given strain (Harcombe et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sustainable production of target compounds such as biofuels and high-value chemicals for pharmaceutical, agrochemical, and chemical industries is becoming an increasing priority given their current dependency upon diminishing petrochemical resources. Designing these strains is difficult, with current methods focusing primarily on knocking-out genes, dismissing other vital steps of strain design including the overexpression and dampening of genes. The design predictions from current methods also do not translate well-into successful strains in the laboratory. Here, we introduce RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting strain designs for overproduction of targets. The method uses flux variability analysis to profile each reaction within the system under differing production percentages of target-compound and biomass. Using these profiles, reactions are identified as potential knockout, overexpression, or dampening targets. The identified reactions are ranked according to their suitability, providing flexibility in strain design for users. The software was tested by designing a butanol-producing Escherichia coli strain, and was compared against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable design predictions, when predictions from these methods are compared to a successful butanol-producing experimentally-validated strain. Overall RobOKoD provides users with rankings of predicted beneficial genetic interventions with which to support optimized strain design.
    Full-text · Article · Mar 2015 · Frontiers in Cell and Developmental Biology
  • Source
    • "This approach is similar to that adopted by Lee et al . ( 2012 ) , but by using QP , we find a single solution and avoid the iter - ative approach they describe . The calculations were done when the model was grown on heterotrophic media . After the minimal distance between experimental and model predicted fluxes was found via the QP problem as described above , we performed a Spearman correlation "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.
    Full-text · Article · Mar 2015 · Frontiers in Plant Science
Show more