ArticlePDF Available

Environmental impact assessment of open pit mining in Iran

Authors:

Abstract and Figures

Mining is widely regarded as having adverse effects on environment of both magnitude and diversity. Some of these effects include erosion, formation of sinkhole, biodiversity loss and contamination of groundwater by chemical from the mining process in general and open-pit mining in particular. As such, a repeatable process to evaluate these effects primarily aims to diminish them. This paper applies Folchi method to evaluate the impact of open-pit mining in four Iranian mines that lacked previous geo-environmental assessment. Having key geologic resources, these mines are: Mouteh gold mine, Gol-e-Gohar and Chogart iron mines, and Sarcheshmeh copper mine. The environmental components can be defined as public health and safety, social relationships, air and water quality, flora and fauna hence, various impacting factors from the mining activities were estimated for each environmental component. For this purpose, each impacting factor was first given a magnitude, based solely on the range of possible scenarios. Thereafter, a matrix of weighted factors was derived to systematically quantify and normalize the effects of each impacting factor. The overall impact upon each individual environmental component was then calculated by summing the weighted rates. Here, Folchi method was applied to evaluate those environmental conditions. Based on the acquired results, the present paper finally concludes that amongst four case histories in Iran, Sarcheshmeh copper mine significantly affects the environment, with critical level of air pollution there.
Content may be subject to copyright.
ORIGINAL ARTICLE
Environmental impact assessment of open pit mining in Iran
M. Monjezi ÆK. Shahriar ÆH. Dehghani Æ
F. Samimi Namin
Received: 10 November 2007 / Accepted: 4 August 2008 / Published online: 26 August 2008
ÓSpringer-Verlag 2008
Abstract Mining is widely regarded as having adverse
effects on environment of both magnitude and diversity.
Some of these effects include erosion, formation of sink-
hole, biodiversity loss and contamination of groundwater
by chemical from the mining process in general and open-
pit mining in particular. As such, a repeatable process to
evaluate these effects primarily aims to diminish them.
This paper applies Folchi method to evaluate the impact of
open-pit mining in four Iranian mines that lacked previous
geo-environmental assessment. Having key geologic
resources, these mines are: Mouteh gold mine, Gol-e-
Gohar and Chogart iron mines, and Sarcheshmeh copper
mine. The environmental components can be defined as
public health and safety, social relationships, air and water
quality, flora and fauna hence, various impacting factors
from the mining activities were estimated for each envi-
ronmental component. For this purpose, each impacting
factor was first given a magnitude, based solely on the
range of possible scenarios. Thereafter, a matrix of
weighted factors was derived to systematically quantify
and normalize the effects of each impacting factor. The
overall impact upon each individual environmental com-
ponent was then calculated by summing the weighted rates.
Here, Folchi method was applied to evaluate those envi-
ronmental conditions. Based on the acquired results, the
present paper finally concludes that amongst four case
histories in Iran, Sarcheshmeh copper mine significantly
affects the environment, with critical level of air pollution
there.
Keywords Environmental effects Open pit mines
Folchi method Gol-e-Gohar mine Chogart mine
Sarcheshmeh mine Mouteh mine
Introduction
The rapid growth of population along with the increased
capacity of extracting natural resources around the globe
has contributed in endangering the environment. As a
matter of fact, due to growing mining activities, attention
to the environmental problems and controlling pollution
becomes unavoidable. Environmental protection therefore,
is one of the most important issues in the sustainable
development of a country. Currently, there are no limita-
tions to the capacity of mine production but it is, however,
necessary to maintain a suitable condition for miners
as well as the general public (Chakraborty et al. 2002;
Tadesse 2000).
Mining and related industries have a long recorded
history in Iran. A variety of mines exists in the country,
some of which date back several thousand years. Mining in
Iran can be divided into two periods: unscientific and sci-
entific. In this regard, the year 1847 can be regarded as a
turning point from unscientific to scientific and systematic
M. Monjezi (&)
Faculty of Engineering, Tarbiat Modares University,
Tehran, Iran
e-mail: monjezi@modares.ac.ir; monjezi.masoud@gmail.com
K. Shahriar H. Dehghani
Faculty of Mining and Metallurgical Engineer,
Amirkabir University of Technology, Tehran, Iran
e-mail: k.shahriar@aut.ac.ir
H. Dehghani
e-mail: dehghan@aut.ac.ir
F. Samimi Namin
Faculty of Engineering, Zanjan University, Zanjan, Iran
e-mail: farhad_s_n@aut.ac.ir
123
Environ Geol (2009) 58:205–216
DOI 10.1007/s00254-008-1509-4
extraction of ore (Pezeshkan et al. 2005). Recently, much
attention has been paid on the mine engineering in Iran due
to diversity and abundance of minerals such as, iron, lead,
zinc, chromites and variety of building stones across the
country.
At present, Iranian mines are owned by both the private
and the public (governmental) sectors. Generally, the pri-
vate sector-controlled mines are smaller in size and pose
little environmental hazards compared to the government-
controlled mines, which are much larger and often require
a processing plant especially for copper, gold, lead, zinc
etc. The ore processing could prove more harmful to the
environment than ore extraction itself (Sare et al. 2001;
Driussi and Jansz 2006; Bozkurt et al. 2008; Hansen et al.
2008). Therefore, scientific and engineering studies are
essential to assess the environmental impacts and develop
methods to reduce or control them.
Various studies have been conducted so far on the
devastating effects of mining on the environment and the
ways to assess them. Some of those researcher are: White
(1991), Pain et al. (1998), Tadesse (2000), Gobling (2001),
Haupt et al. (2001), Blodgett and Kuipers (2002), Folchi
(2003). In due course, Gobling used an entropy method to
evaluate the environmental impact of a copper mill plant.
Blodgett and Kuipers studied the effect of mining on both
surface and groundwater reservoirs. By examining the
clay-rich mine tailings, Krekeler et al. (2007) explored the
environmental and economic impact of the phosphate ore
processing. According to Younger et al. (2005), in envi-
ronmental management, socio-economic issues in the form
of improving public perceptions are just as important as
scientific investigations. Hamilton (2000) used a database
to identify the unusual and unexpected concentrations of
elements in the mine tailings. His procedure for environ-
mental assessment was based on identification of exposure
levels of elements which are considered safe as well as
those known to be hazardous to the environment. Hancock
and Turley (2006) used numerical modeling to design a
proposed waste-rock dump. Marescotti et al. (2008) cal-
culated active acid mine drainage (AMD) of open-air
tailing and waste-rock dumps from the Libiola mine, using
the Maximum Potential Acidity, the Acid Neutralizing
Capacity and the Net Acid Producing Potential. Smith and
Williams (1996a,b; parts I & II) concluded that Geosta-
tistical and Indicator Kriging (IK) techniques can be used
effectively to identify metal concentrations in mine waste
sites. Assessment of the amount of pollutants in soil
drainage can be made by estimating the amount of drainage
passing through the soil bottom during a given a time
period. This estimation can be a stochastic model (Fern-
a
´ndez-Ga
´lvez et al. 2007). The pseudo-total metal
concentrations and the potential mobile fractions of metals
may serve as a preliminary evaluation of risks posed by
contaminated soil from an abandoned uranium mine
(Pereira et al. 2008). Antunes et al. (2008) performed an
environmental risk assessment by categorizing soils based
on their toxicity profiles. The above investigations are very
useful however often approach through limited aspects of
environmental impact.
With the exception of the Folchi technique, existing
evaluation methods are limited in scope, with just one or
two aspects of environmental impacts of mining and ore
processing. Folchi method simultaneously evaluate many
environmental impacts of mining operations i.e. ground
vibration, fly rock, air blast (Jimeno et al. 1995), water/air
pollution etc. Collection and monitoring of data is also
simple for this method.
The Folchi method is being widely used in Italy. Some
recent examples include its use at a limestone quarry close
to Paitone in Brescia in 2004, a limestone quarry of Sos-
sana in Vicenza in 2001, and a basalt quarry in Orvieto,
Terni in 2003. In the 1990s, the technique was applied to a
dam excavation inside a park of Orgosolo in Sardinia, a
1,000 m deep mineral water reservoir and related thermal
bath complex of Capoportiere in Latina and the construc-
tion of a 1,000 m long viaduct in Matera. Additional work
in the 1990s included the demolition of a radiation con-
taminated 100 m high chimney in the decommissioning of
a nuclear power plant of Garigliano in Caserta, and con-
struction of two urban waste composting plants as well as
an urban waste dump in Latina.
So far, a comprehensive study using the Folchi method
has not been conducted for the Iranian mines. Conse-
quently, the present paper tries to apply the Folchi method
in order to assess the environmental impacts of four
important Iranian mines i.e. Sarcheshmeh copper mine,
Chogart iron mine, Mouteh gold mine and Gol-e-Gohar
iron mine. The criteria for selecting these mines include
their proximity to the residential areas, placement in
environmentally and ecologically protected areas, number
of people employed, economic importance, mine size and
production.
The environmental impact of mining operations
The effects of open-pit mining and mineral processing
plants on the environment include land degradation, noise,
dust, poisonous gases, pollution of water, etc. (Dudka and
Adriano 1997). Figure 1shows typical pathways of com-
mon pollutant transfer from a tailing dam or from a
processing plant to a river if the waste management is not
efficient. If there is no impermeable layer, below the
deposit, the infiltration of meteoric precipitation through
deposit can transfer the pollutant(s) via groundwater flow.
The extraction process could itself modify the water flow
206 Environ Geol (2009) 58:205–216
123
and accelerate this transfer. Infiltration may also occur
below a decantation basin (Charbonnier 2001).
The above activities may change the topography and
vegetation, as well. From the noise and vibration point of
view, drilling and blasting operations as well as application
of heavy vehicles, crushers, and mills are very important
(Ashtiani 2005).
Blasting, haulage and transportation are the main rea-
sons for the dust however, it may be produced in nearly all
the phases of the processing plant, from the beginning point
(crusher) to the end (drying of ore concentration) (Rawat
2003; Shu et al. 2001).
Water pollution is another aspect of mine operations
greatly impacting the environment (Ferna
´ndez-Ga
´lvez
et al. 2007; Jordanov et al. 2007; Casiot et al. 2007; Shi-
kazono et al. 2008; Chalupnik and Wysocka 2008). If a
springhead is situated in the mine area, the pollution
endangers springs existed in the area (Blodgett and Kuipers
2002). Similarly, the contaminated water in the mining
operation has vital impacts on the rivers, agriculture, fresh
drinking waters and ecosystems, because of abundance of
heavy metals, suspended solid particles and decreasing
level of pH. Decreasing water level in the mines due to
drainage not only causes undesirable changes in the nearby
lakes but it can also threat the aquatics (Ritcy 1989; Baker
and Amacher 1982). The main reason of environment
pollution of the fresh water is acidic water, draining from
mines (Shu et al. 2001).
Mining operations with degradation of the land largely
contribute to the corrosion of soil—a phenomenon that can
be seen more in the surface mining activities (Sengupta
1993).
Mine waste can be defined as part of the materials
resulting from the exploration, mining and processing of
substances governed by legislation on mines and quarries.
It may consist of natural materials without any modifica-
tion other than crushing (ordinary mining waste, unusable
mineralized materials), processed to varying degrees dur-
ing the ore-dressing and enrichment phases, and possibly
containing chemical, inorganic and organic additives. As
overburden and topsoil are classified as waste (Charbonnier
2001), the characteristics of such spoil could be variable
and are influenced by the minerals and process methods
involved the specific environmental situation, and the type
of dumping and alteration.
Much of the mine wastes has high concentration of
heavy metals and toxic materials like lead, copper, zinc,
aluminum, mercury, marcasite and pyrite (FeS
2
), which are
harmful for the environment (Gang and Langmuir 1974;
Barnes 1979; Daskalakis and Helz 1999). Specifically,
wastes containing pyrite have the potentials of creating
dangerous AMD.
Pyrite is a common sulfide, often associated with valu-
able minerals in the mines. At the same time, in non-ferrous
metal mines, pyrite is separated as a gangue mineral from
the valuable metals through physical separation techniques
like froth flotation, and then disposed into tailing ponds or
dams as a waste (Petruk 2000; Wills 2006). As a matter of
fact, the air-oxidation of pyrite in the tailing pond creates
acid mine.
A few minerals including pyrite can be described as salts
with weak bases and strong acids. They chiefly result from
the oxidation of pyrite or marcasite (FeS
2
) exposed in the
mining of mineral deposits and coal. Such acid minerals,
which are dominantly Fe
3?
sulfates and to a minor extent
Al
3?
sulfates, typically appear from the evaporation of
pooled acid-mine waters or of the moisture in unsaturated
mine wastes or spoils that contain the sulfides (Langmuir
1997; Berner and Berner 1987). Acid mine drainage
(AMD) from mine wastes can interact with natural car-
bonates, salts, and induce variation in the pH levels in
natural waters (Granger and Warren 1969; Holland 1978;
Boulegue and Michard 1979; Faure 1991; Shahriar and
Samimi Namin 2007). Jha et al. (2008) proposed carrier-
micro encapsulation (CME) as a method to suppress both
the floatability and oxidation of pyrite. In this method,
pyrite is coated with a thin layer of metal oxide or
hydroxide using catechol solution as a carrier combined
with metal ions. The layer converts the pyrite surface from
hydrophobic to hydrophilic and thus, acts as a protective
coating against oxidation. Shin et al. (2008) used activated
carbon to absorbent AMD. Anoxic limestone drains
(ALDs) represent a well-established low cost passive
treatment alternative for neutralizing AMD (Hedin and
Watzlaf 1994; Taylor and Waters 2003; Cravotta 2003;
Kalin et al. 2006). Such drains, in their simplest form, are
merely basins or trenches filled with limestone through
which, the AMD is pumped or drained. The anoxic (i.e.
reducing) state of the ALDs is required to prevent dis-
solved ferrous iron from oxidizing and subsequently
precipitating within the bed as ferric hydroxide. Reducing
conditions are usually ensured by isolating the system from
the atmosphere and incorporating a reducing agent, e.g.
organic material or scrap iron (Kleiv and Thornhill 2008).
Fig. 1 Pollutant transfer (Charbonnier 2001)
Environ Geol (2009) 58:205–216 207
123
Compare to the underground mining, it can be said that
open-pit mining has more of a negative impact (Zhong
1998). Therefore, it is necessary to study the pollution
mechanism and develop technologies to address problems
affecting the environment.
Folchi method for open-pit mining
The Folchi method (2003) was first applied for a mining
project in the Italian city of Sardina. It is the numerical
expression of environmental effect of open pits. This
method consists of the following seven stages:
(1) Characterizing the pre-existing environmental con-
text in terms of geology, geotechnics, hydrology, weather,
economy, etc., (2) Identifying the impacting factors, which
could modify the pre-existing environmental conditions in
the mine life, (3) Defining the possible ranges for the
magnitude of the variation caused by each impacting fac-
tor, (4) Singling out the environmental components whose
pre-existing condition could be modified as a result of
mining, (5) Correlating each impacting factor and each
environmental component, (6) Estimating the specific
magnitude for each impacting factor, using the already
defined ranges, (7) Calculating the weighted sum of the
environmental impact on each environmental component.
In this method, some parameters such as general health
and safety, social relationships, weather and climate con-
ditions, vegetation and, animals are defined first, for an
area affected by a mining operation. Then, consequences of
effective (directly or indirectly) mining indexes on the each
of the environmental parameters are determined, by
applying a rating system for each parameter, based on
various concerned scenarios. The sum of all the ratings of
effective parameters determines overall effect on each of
the environmental indexes. According to this method,
impacting factors are as follows (Folchi 2003):
I. Alteration of area’s potential resources; II. Exposition,
visibility of the pit; III. Interference with surface water; IV.
Interference with underground water; V. Increase in
vehicular traffic; VI. Atmospheric release of gas and dust;
VII. Fly rock; VIII. Noise; IX. Ground vibration; and X.
Employment of local work force.
The possible scenarios for each impacting factor are
then considered and a magnitude is given to each of them.
Table 1shows various scenarios and their related magni-
tudes for each impacting factor.
Site descriptions
The Folchi method was first applied in four important
open-pits of Iran namely Sarcheshmeh copper mine,
Chogart iron mine, Gol-e-Gohar iron mine and Moutehh
gold mine (Fig. 2).
Mouteh gold mine
The Mouteh gold mine is located 295 km Southwest of
Tehran, 7 km northwest of Mouteh village in Mimeh town
of Isfahan province. The ore deposit is distributed in nine
distinct parts, i.e. Chah Khatoun, Senjedeh, Chah Bagh,
Tangeh Zar, Seh Calap, Darreh Ashki, Cheshmeh Gohar,
Ghorom Ghorom and Chah-e-Allameh, covering a total
area of about 150 sq. km. The Mouteh gold deposit
belongs to the Precambrian era and is a metamorphic
region with mica schist, quartzite, gneiss, biotite, and
amphibolite as common lithologies.
The mine is being exploited by open-pit mining. It has
mine reserves of approximately 3.5 Mt with an average
grade of 2.71 gr/t. The height of benches is 5 m, whereas
the angle of overall slopes and slope of working benches
are 528and 658, respectively. The distance of mine to mill
plant is 2–5 km. Figure 3a shows an exterior view of the
mine.
Mill plant recovery is 60% with a capacity of 600 t/d. It
has four stages of processing, i.e. crushing, grinding,
leaching and the gold room. Gold is being processed with
cyanide, which is recognized as extremely toxic and
damaging pollutant. The tailing dam can be extremely
hazardous. As the mine is situated in an environmentally
protected area, monitoring and controlling of pollution
indexes is a vital task. Figure 3b and c show the process-
ing plant and tailing dam of the Mouteh gold mine,
respectively.
Sarcheshmeh copper mine
This mine is situated at 160 km southwest of Kerman,
about 50 km south of the city of Rafsanjan in Kerman
province and is the largest copper mine in Iran (Fig. 4a).
The area belongs to the central part of an elongated NW-SE
mountain belt, which is principally composed of folded
volcano-sedimentary rocks. The geology of Sarcheshmeh
porphyry deposit is very complicated and various rock
types can be found there. Mineralization in this deposit is
associated with the Late Tertiary, with main minerals being
chalcocite, chalcopyrite, covellite, bornite and molybde-
nite. However, other minerals are also seen in the deposit,
which includes molybdenum, gold and silver. The oxide
zone of deposit consists mainly of cuprite, tenorite, mala-
chite and azurite. Pyrite is the gangue mineral, which
causes acidity of mine sewage. The proven reserve of
deposit is approximately 826 Mt with an average grade of
0.7%. This mine is also exploited by open-pit mining,
where the height and slope of working benches are 12.5 m
208 Environ Geol (2009) 58:205–216
123
and 62.58, respectively. The angle of overall slope ranges
from 328to 348. The distance of crusher to mine is 3 km.
The annual capacity of the mill plant is 51,000 tons con-
centrate with an average grade of 30% and a recovery of
65%. Figure 4b and c illustrate the mill plant and tailing
dam in Sarcheshmeh copper mine, respectively.
Chogart iron ore mine
Chogart iron ore mine is situated 12 km northeast of Bafgh,
125 km southeast of the city of Yazd in the Yazd province.
The deposit belongs to Cambrian era. There is a large
quantity of valuable minerals such as iron, manganese,
apatite, lead and zinc in this region. Mine design was ini-
tially carried out in 1970, and was based on approximately
134 Mt of mineable ore reserve. This mine is an open pit
operation where the height of benches is 12.5 m while the
overall pit slope and angle of individual working benches
are 508and 698, respectively. Mill plant recovery is 70%
and the amount of annual concentrate and waste production
is 3 and 1.3 Mt, respectively. Electric power consumption
of the mill plant is 40 kwh per tone of concentrate. Fig-
ure 5shows an exterior view of the mine site and mill plant
in Chogart iron mine.
Gol-E-Gohar iron ore mine
Gol-e-Gohar iron ore mine is located some 55 km south-
west of Sirjan in Kerman province. This area is a
combination of metamorphic (Paleozoic) and sedimentary
Table 1 Ranges of magnitude
for impacting factors Impacting factors Scenario Magnitude
I. Alteration of area’s
potential resources
Parks, protected areas 8–10
Urban area 6–8
Agricultural area, wood 3–6
Industrial area 1–3
II. Exposition, Visibility
of the pit
Can be seen from inhabited areas 6–10
Can be seen from main roads 2–6
Not visible 1–2
III. Interference with
above ground water
Interference with lakes and rivers 6–10
Interferences with non relevant water system 3–6
No interference 1–3
IV. Interference with
underground water
Water table superficial and permeable grounds 5–10
Water table deep and permeable grounds 2–5
Water table deep and un-permeable grounds 1–2
V. Increase in vehicular
traffic
Increase of 200% 6–10
Increase of 100% 3–6
No interference 1–3
VI. Atmospheric release
of gas and dust
Free emissions in the atmosphere 7–10
Emission around the given reference values 2–7
Emission well below the given reference values 1–2
VII. Fly rock No blast design and no clearance procedures 9–10
Blast design and no clearance procedures 4–9
Blast design and clearance procedures 1–4
Peak air overpressure at 1 km distance
VIII. Noise \141 db 8–10
\131 db 4–8
\121 db 1–4
IX. Ground vibration Cosmetic damage, above threshold 7–10
Tolerability threshold 3–7
Values under tolerability threshold 1–3
X. Employment of local
work force
Job opportunities
High 7–10
Medium 3–6
Low 1–2
Environ Geol (2009) 58:205–216 209
123
(Mesozoic) rocks, consisting mostly of gneiss, mica schist,
amphibolite, quartz schist and calcite types of rocks. The
operation in this mine is also an open pit facility. Here, the
height of benches is 15 m, whereas the angle of overall
slope and the angle of each working bench are 508and 708,
respectively. Mill plant recovery is 68%. The capacity of
the mill plant is 5 Mt concentrate per year while yearly
production of tailings is 1.35 Mt. The electricity con-
sumption for the production of one ton concentrate is
20 kwh. Figure 6a and b show the mine site and mill plant
of Gol-e-Gohar iron mine, respectively.
Results
In the present research, the environmental data related to
the above four case studies were collected and then using
the Folchi method each of the open-pit activities which
affect the environment was evaluated. Further, using the
magnitude ranges defined in Table 1, each impacting factor
of the proposed mining activity was assessed (Table 3).
Final scoring for each environmental component can be
acquired by multiplying Table 2into Table 3. For each
case study, the overall effect on each environmental com-
ponent is calculated by summing the weighted magnitudes
of all the impacting factors (Tables 4,5,6,7).
The Folchi method indicates that specific aspects of
environmental impact can be quantified. The most signifi-
cant impacts in the Sarcheshmeh copper mine are air
quality, above ground and flora and fauna with score values
of 100, 80 and 77.6, respectively. In the Mouteh gold mine,
environmental components of air quality, economy and use
of territory had score values of 80, 70 and 70, respectively.
The most affected environmental components in the Gol-e-
Gohar iron mine are underground, economy and social
relationships with scores of 76.7, 70 and 61.6, respectively.
Finally, the most affected environmental components for
the Chogart iron mine are economy, social relationships
and use of territory with 80, 66.2 and 65.7 score values,
respectively (Fig. 7).
Discussion
To compare all the above cases, the sum of scores for all
the environmental components can be calculated and then
evaluated for each case. The sum of component scores for
Sarcheshmeh, Chogart, Gol-e-Gohar and Mouteh mines are
766.5, 625.8, 570.3 and 528.2, respectively. Through this
calculation, it can be said that the Sarcheshmeh mine is the
most harmful for the environment while the Mouteh mine
Fig. 2 Location of case study mines in Iran
Fig. 3 Mouteh gold mine
210 Environ Geol (2009) 58:205–216
123
is the least one. As a matter of fact, some remedial mea-
sures must be taken for the affected environmental
components (e.g. air quality, water condition, etc.), which
are essential for the living creatures. Recently, a plant
converting SO
2
to H
2
SO
4
has been constructed for the
Sarcheshmeh mine which has been seriously affecting the
air quality, however, the air pollution is still higher than
the standard level. Also, the Sarcheshmeh mine has seri-
ously affected the water quality in the area (Table 5)
however; this component is marginal for the other cases. In
this regard, the Gol-e-Gohar mine is the least harmful
project in the short term consideration. Table 4shows high
ground vibration for Sarcheshmeh, Chogart and Gol-e-
Gohar mines for which reducing charge per delay is a
logical solution. Precautions should be made to improve air
quality at the Mouteh gold mine, which is placed in a
protected area.
The Folchi method has accounted many environmental
parameters not recognized by other approaches; hence it is
the best approach for evaluating mine operations in Iran.
This is the first such analysis performed in Iran. With due
attention to its usefulness and prevalent environment, the
approach could be used for all mines in Iran in particular
and the mines in neighboring countries in general.
Accordingly, the Folchi method can potentially be used as
an environmental regulation tool for Iran. There are several
benefits to apply this method e.g. it makes it possible to
simplify complex analysis by splitting it in a number of
easily quantified components, which can then be handled
one by one at a time, being reconstituted in a standardized
matrix to give a total magnitude value. This value can then
be used to compare mining operations of different types in
a consistent manner. This is a key requirement for use as a
regulatory tool.
One area of improvement for the Folchi method
relates to that fact that the method is a snap shot of
Fig. 4 Sarcheshmeh copper mine
Fig. 5 Mine and mill plant of Chogart iron mine
Fig. 6 Gol-e-Gohar iron mine
Environ Geol (2009) 58:205–216 211
123
conditions and thus is temporally limited. Several issues
arise as the impacts are to be assessed in a predefined
temporal window. Here, only those environmental prob-
lems are assessed that are evident at the time of
the evaluation. Operators can potentially take action to
skew assessment prior to a single evaluation. Incipient
environmental issues or issues which have been
improved but not fully rectified may be missed. Repeated
evaluations over a period of time would make the
approach more meaningful. Both scheduled and unan-
nounced site assessments should ideally be made quarterly
and annually.
The method in its present form however is not suitable
for major accident or catastrophic scenarios in the mines.
Moreover, the Flochi method is potential for storage
facilities of explosives and agro-chemical facilities, as
well. Efforts are also being made to refine and adapt the
method to address wider scenarios (R. Folchi, Personal
Table 2 Correlation matrix with values of the weighted influence of each impacting factor on each environ component
Impacting factors Environmental Components
Human
health and
safety
Social
relationship
Water
quality
Air
quality
Use of
territory
Flora
and
fauna
Above
ground
Underground Landscape Noise Economy
I. Alteration of area’s
potential resources
Med Min Nil Nil Max Min Nil Nil Max Nil Nil
0.80 0.77 0 0 5.71 0.63 0 0 2.86 0 0
II. Exposition, Visibility
of the pit
Nil Min Nil Nil Med Nil Nil Nil Max Min Nil
0 0.77 0 0 2.86 0 0 0 2.86 2.00 0
III. Interference with
above ground water
Max Nil Max Nil Nil Max Med Nil Max Nil Nil
1.60 0 4.44 0 0 2.50 6.67 0 2.86 0 0
IV. Interference with
underground water
Min Nil Max Nil Nil Nil Nil Med Nil Nil Nil
0.40 0 4.44 0 0 0 0 6.67 0 0 0
V. Increase in vehicular
traffic
Max Max Nil Nil Min Max Nil Nil Min Nil Nil
1.60 3.08 0 0 1.43 2.50 0 0 0.71 0 0
VI. Atmospheric release
of gas and dust
Max Min Min Max Nil Max Min Nil Min Nil Nil
1.60 0.77 1.11 10.00 0 2.50 3.33 0 0.71 0 0
VII. Fly rock Max Nil Nil Nil Nil Med Nil Nil Nil Nil Nil
1.60 0 0 0 0 1.25 0 0 0 0 0
VIII. Noise Med Max Nil Nil Nil Min Nil Nil Nil Max Nil
0.80 3.08 0 0 0 0.63 0 0 0 8.00 0
IX. Ground vibration Max Med Nil Nil Nil Nil Nil Min Nil Nil Nil
1.60 1.54 0 0 0 0 0 3.33 0 0 0
X. Employment of local
work force
Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil Max
0 0 0 0 0 0 0 0 0 0 10.00
Total 10 10 10 10 10 10 10 10 10 10 10
Table 3 Rating of
environmental parameters
in the case study of mines
Impacting factors Mouteh Sarcheshmeh Chogart Gol-E-Gohar
I. Alteration of area’s potential resources 9 3 7 3
II. Exposition, Visibility of the pit 5 3 5 2
III. Interference with above ground water 3 7 2 3
IV. Interference with underground water 4 7 6 7
V. Increase in vehicular traffic 3 9 8 6
VI. Atmospheric release of gas and dust 8 10 6 5
VII. Fly rock 4 5 5 5
VIII. Noise 1 7 6 7
IX. Ground vibration 1 7 6 9
X. Employment of local work force 7 7 8 7
212 Environ Geol (2009) 58:205–216
123
Communications, 2008). Broadly speaking, the method
seems potential for a number of settings and could be
involved in the extraction of various geological resources
including petroleum operations.
Conclusions
The Folchi method allows for quantitative analysis of
mining activities especially to highlight the environmental
Table 4 Final scoring for each environmental component in Mouteh gold mine
Impacting factors Environmental Components
Human
health and
safety
Social
relationship
Water
quality
Air
quality
Use of
territory
Flora
and
fauna
Above
ground
Underground Landscape Noise Economy
I. Alteration of area’s
potential resources
7.2 6.9 0 0 51.4 5.7 0 0 25.7 0 0
II. Exposition, Visibility
of the pit
0 3.9 0 0 14.3 0 0 0 14.3 10 0
III. Interference with
above ground water
4.8 0 13.3 0 0 7.5 20 0 8.6 0 0
IV. Interference with
underground water
1.6 0 17.8 0 0 0 0 26.7 0 0 0
V. Increase in vehicular
traffic
4.8 9.2 0 0 4.3 7.5 0 0 2.1 0 0
VI. Atmospheric release
of gas and dust
12.8 6.2 8.9 80 0 20 26.6 0 5.7 0 0
VII. Fly rock 6.4 0 0 0 0 5 0 0 0 0 0
VIII. Noise 0.8 3.1 0 0 0 0.6 0 0 0 8 0
IX. Ground vibration 1.6 1.5 0 0 0 0 0 3.3 0 0 0
X. Employment of local
work force
00000000 0070
Total 40 30.8 40 80 70 46.3 46.7 30 56.4 18 70
Table 5 Final scoring for each environmental component in Sarcheshmeh copper mine
Impacting factors Environmental Components
Human
health and
safety
Social
relationship
Water
quality
Air
quality
Use of
territory
Flora
and
fauna
Above
ground
Underground Landscape Noise Economy
I. Alteration of area’s
potential resources
2.4 2.3 0 0 17.1 1.9 0 0 8.6 0 0
II. Exposition, Visibility
of the pit
0 2.3 0 0 8.6 0 0 0 8.6 6 0
III. Interference with
above ground water
11.2 0 31.3 0 0 17.5 46.7 0 20 0 0
IV. Interference with
underground water
2.8 0 31.3 0 0 0 0 46.7 0 0 0
V. Increase in vehicular
traffic
14.4 27.7 0 0 12.9 22.5 0 0 6.4 0 0
VI. Atmospheric release
of gas and dust
16 7.7 11.1 100 0 25 33.3 0 7.1 0 0
VII. Fly rock 8 0 0 0 0 6.3 0 0 0 0 0
VIII. Noise 5.6 21.6 0 0 0 4.4 0 0 0 56 0
IX. Ground vibration 11.2 10.8 0 0 0 0 0 23.3 0 0 0
X. Employment of local
work force
00000000 0070
Total 71.6 72.4 73.3 100 38.6 77.6 80 70 50.7 62 70
Environ Geol (2009) 58:205–216 213
123
effects of the mining. Going through the four existing
mines of Iran, it thus indicates that the Gol-e-Gohar iron
mine is the least destructive for the environment while the
Sarcheshmeh copper mine is the most one. The method
applied in the current research may be an important tool for
future environmental regulation development in Iran. The
Table 6 Final scoring for each environmental component in Chogart iron mine
Impacting factors Environmental Components
Human
health and
safety
Social
relationship
Water
quality
Air
quality
Use of
territory
Flora
and
fauna
Above
ground
Underground Landscape Noise Economy
I. Alteration of area’s
potential resources
5.6 5.4 0 0 40 4.4 0 0 20 0 0
II. Exposition, Visibility
of the pit
0 3.9 0 0 14.3 0 0 0 14.3 10 0
III. Interference with
above ground water
3.2 0 8.9 0 0 5 13.3 0 5.7 0 0
IV. Interference with
underground water
2.4 0 26.6 0 0 0 0 40 0 0 0
V. Increase in vehicular
traffic
12.8 24.6 0 0 11.4 20 0 0 5.7 0 0
VI. Atmospheric release
of gas and dust
9.6 4.6 6.7 60 0 15 20 0 4.3 0 0
VII. Fly rock 8 0 0 0 0 6.3 0 0 0 0 0
VIII. Noise 4.8 18.5 0 0 0 3.8 0 0 0 0 0
IX. Ground vibration 9.6 9.2 0 0 0 0 0 20 0 48 0
X. Employment of local
work force
00000000 0080
Total 56 66.2 42.2 60 65.7 54.4 33.3 60 50 58 80
Table 7 Final scoring for each environmental component in Gole-e-Gohar iron mine
Impacting factors Environmental Components
Human
health and
safety
Social
relationship
Water
quality
Air
quality
Use of
territory
Flora
and
fauna
Above
ground
Underground Landscape Noise Economy
I. Alteration of area’s
potential resources
2.4 2.3 0 0 17.1 1.9 0 0 8.6 0 0
II. Exposition, Visibility
of the pit
0 1.5 0 0 5.7 0 0 0 5.7 4 0
III. Interference with
above ground water
4.8 0 13.3 0 0 7.5 20 0 8.6 0 0
IV. Interference with
underground water
2.8 0 31.3 0 0 0 0 46.7 0 0 0
V. Increase in vehicular
traffic
9.6 18.5 0 0 8.6 15 0 0 4.3 0 0
VI. Atmospheric release
of gas and dust
8 3.9 5.6 50 0 12.5 16.7 0 3.6 0 0
VII. Fly rock 8 0 0 0 0 6.3 0 0 0 0 0
VIII. Noise 5.6 21.6 0 0 0 4.4 0 0 0 56 0
IX. Ground vibration 14.4 13.9 0 0 0 0 0 30 0 0 0
X. Employment of local
work force
00000000 0070
Total 55.6 61.6 50 50 31.4 47.6 36.7 76.7 30.7 60 70
214 Environ Geol (2009) 58:205–216
123
approach is also flexible and potentially useful in different
settings. The Folchi method may also permit the possibility
of fair, repeatable comparisons of environmental assess-
ments of mine operations, globally.
References
Antunes SC, Castro BB, Pereira R, Gonc¸alves F (2008) Contribution
for tier 1 of the ecological risk assessment of Cunha Baixa
uranium mine (Central Portugal): II. Soil ecotoxicological
screening. Sci Total Environ 390:387–395
Ashtiani M (2005) Environmental Considerations in the Mines. Paper
presented at the 1st Environmental Considerations in the Mines,
National Conference, Kerman, Iran, pp 30–38
Baker DE, Amacher MC (1982) Nickel, copper, Zinc and Cadmium.
In: Page AL, Miller RH, Keeney DR (eds) Methods of soil
analysis: part 2. Chemical and microbiological properties, 2nd
edn. Agronomy no.9. American Society of Agronomy and Soil
Science Society of America, Madison, pp 323 ±336
Barnes HL (1979) Geochemistry of hydro thermal ore deposits. Wiley
Inter science, NY
Berner EK, Berner RA (1987) The global water cycle, Geo chemistry
and environment. Prentice Hall, Inc., Englewood Cliffs
Blodgett S, Kuipers JR (2002) Technical Report on underground
hard-rock mining: subsidence and hydrologic environmental
impacts. Center for Science in Public Participation, pp 36–38
Boulegue G, Michard G (1979) sulphur speciation and redox
processes in reducing environments in chemical modeling in
aques systems. In: Jenne EA (ed) Am. Chem. Soc. Symp. Ser.
Washington, DC
Bozkurt S, Moreno L, Neretnieks I (2008) Long-term processes in
waste deposits. Sci Total Environ 250:101–121
Casiot C, Ujevic M, Munoz M, Seidel JL, Elbaz-Poulichet F (2007)
Antimony and arsenic mobility in a creek draining an antimony
mine abandoned 85 years ago (upper Orb basin, France). Appl
Geochem 22:788–798
Chakraborty MK, Ahmad M, Singh RS, Pal D, Bandopadhyay C,
Chaulya SK (2002) Determination of the emission rate from
various opencast mining operations. Environ Model Softw
17:467–480
Chalupnik S, Wysocka M (2008) Radium removal from mine waters
in underground treatment installations. J Environ Radioact (in
press)
Charbonnier P (2001) Management of mining, quarrying and ore-
processing waste in the European Union. BRGM service EPI,
France
Cravotta CAIII (2003) Size and performance of anoxic limestone
drains to neutralize acidic mine drainage. J Environ Qual
32:1277–1289
Daskalakis DK, Helz GR (1999) Solubility of CdS (Greenockite) in
sulphidic waters at 25°C. Environ Sci Technol 26:2462–2468
Driussi C, Jansz J (2006) Pollution minimisation practices in the
Australian mining and mineral processing industries. J Clean
Prod 14:673–681
Dudka S, Adriano DC (1997) Environmental impacts of metal ore
mining and processing: a review. J Environ Qual 26:590–602
Faure G (1991) Principles and applications of inorganic geochemis-
try. Macmillan Publ. Co, NY
Ferna
´ndez-Ga
´lvez J, Barahona E, Iriarte A, Mingorance MD (2007) A
simple methodology for the evaluation of groundwater pollution
risks. Sci Total Environ 378:67–70
Folchi R (2003) Environmental Impact Statement for Mining with
Explosives: A Quantitative Method, I.S.E.E. Paper presented at
the 29th Annual Conference on Explosives and Blasting
Technique. Northville, Tennessee, USA
Gang MA, Langmuir D (1974) Controls on heavy metals in surface
and ground waters affected by coal mine drainage. Paper
Fig. 7 Comparison between
the overall effects on each
environmental component
related to each mine
Environ Geol (2009) 58:205–216 215
123
presented at 5th Symp. Coal mine drainage research, Washing-
ton DC Natl. Coal Assoc
Gobling S (2001) Entropy Production as a Measure for Resource Use
Applied to Metallurgical Processes. Paper presented at The
Science and Culture of Industrial Ecology (ISIE Conference)
Granger HC, Warren CG (1969) Unstable sulphur compounds and the
origin of rull-type uranium deposits. Econ Geol 64:160–171
Hamilton EI (2000) Environmental variables in a holistic evaluation
of land contaminated by historic mine wastes: a study of multi-
element mine wastes in West Devon, England using arsenic as an
element of potential concern to human health. Sci Total Environ
249:171–221
Hancock GR, Turley E (2006) Evaluation of proposed waste rock
dump designs using the SIBERIA erosion model. Env Geol
49:765–779
Hansen Y, Broadhurst JL, Petrie JG (2008) Modelling leachate
generation and mobility from copper sulphide tailings–An
integrated approach to impact assessment. Miner Eng 21:288–
301
Haupt C, Mistry M, Wilde J (2001) Development of Measures to
Minimize Adverse Ecological Effects Generated by Abandoned
Mines in Developing Countries. INSTITUT FU
¨R BERGBAUK-
UNDE I. der Rheinisch-Westfa
¨lischen Technischen Hochschule
Aachen 51–54
Hedin RS, Watzlaf GR (1994) The effects of anoxic limestone drains
on mine water chemistry. US Bureau of Mines Special Publi-
cation SP 06A, pp 185–194
Holland HD (1978) The chemistry of the atmosphere and oceans.
Wiley, NY
Jha RKT, Satur J, Hiroyoshi N, Ito M, Tsunekawa M (2008) Carrier-
microencapsulation using Si–catechol complex for suppressing
pyrite floatability. Miner Eng (in press)
Jimeno LC, Jimeno LE, Carcedo FJA (1995) Drilling and blasting of
rocks. Geo-mining Technological Institute of Spain, pp 345–351
Jordanov SH, Maletic M, Dimitrov A, Slavkov D, Paunovic P (2007)
Waste waters from copper ores mining/flotation in ‘Bucbim’
mine: characterization and remediation. Desalination 213:65–71
Kalin M, Fyson A, Wheeler WN (2006) The chemistry of conven-
tional and alternative treatment systems for the neutralization of
acid mine drainage. Sci Total Environ 366:395–408
Kleiv RA, Thornhill M (2008) Predicting the neutralization of acid
mine drainage in anoxic olivine drains. Miner Eng 21:279–287
Krekeler MPS, Morton J, Lepp J, Tselepis CM, Samsonov M, Kearns
LE (2007) Mineralogical and geochemical investigation of clay-
rich mine tailings from a closed phosphate mine, Bartow Florida,
USA. Environmental Geology. doi:10.1007/s00254-007-0971-8
Langmuir D (1997) Aqueous Environmental Geochemistry. Prentice-
Hall, Englewood Cliffs
Marescotti P, Carbone C, De Capitani L, Grieco G, Lucchetti G,
Servida D (2008) Mineralogical and geochemical characterisa-
tion of open-air tailing and waste-rock dumps from the Libiola
Fe-Cu sulphide mine (Eastern Liguria, Italy). Env Geol 53:1613–
1626
Pain DJ, Sanchez A, Meharg AA (1998) The Donana ecological
disaster: Contamination of a world heritage estuarine marsh
ecosystem with acidified pyrite mine waste. Sci Total Environ
222:45–54
Pereira R, Antunes SC, Marques SM, Gonc¸alves F (2008) Contribu-
tion for tier 1 of the ecological risk assessment of Cunha Baixa
uranium mine (Central Portugal): I Soil chemical characteriza-
tion. Sci Total Environ 390:377–386
Petruk W (2000) Applied mineralogy in the mining industry, 1st edn.
Elsevier, Amsterdam
Pezeshkan M, Jazayeri SA, Damghani B (2005) Mines and Mining in
Iran. Public relations department of Iranian Mines and Mining
Industries Development and Renovation Organization (IMIDRO)
Rawat NS (2003) A study of physicochemical characteristics of
respirable dust in an Indian coal mine. Sci Total Environ 23:47–
54
Ritcy GM (1989) Tailings management: problems and solutions in the
mining industry. Environ Int 26:389–394
Sare IR, Mardel JI, Hill AJ (2001) Wear-resistant metallic and
elastomeric materials in the mining and mineral processing
industries—an overview. Wear 250:1–10
Sengupta M (1993) Environmental Impacts of Mining: Monitoring,
Restoration, and Control, CRC Press. ISBN 0873714415, pp 3–20
Shahriar K, Samimi Namin F (2007) A new approach to waste dump
site selection according to the fuzzy decision-making process.
Canadian Institute of mining, metallurgy and petroleum CIM,
vol 100. pp 1–6
Shikazono N, Zakir HM, Sudo Y (2008) Zinc contamination in river
water and sediments at Taisyu Zn–Pb mine area, Tsushima
Island, Japan. J Geochem Explor 98:80–88
Shin EJ, Lauve A, Carey M, Bukovsky E, Ranville JF, Evans RJ,
Herring AM (2008) The development of bio-carbon adsorbents
from Lodgepole Pine to remediate acid mine drainage in the
Rocky Mountains. Biomass Bioenergy 32:267–276
Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2001) Acidification
of lead/zinc mine tailings and its effect on heavy metal mobility.
Environ Int 26:389–394
Smith ML, Williams RE (1996a) Examination of methods for
evaluating remaining a mine waste site. Part I. Geostat Charact
Methodol Eng Geol 43:11–21
Smith ML, Williams RE (1996b) Examination of methods for
evaluating remaining a mine waste site. Part II. Indicator kriging
for selective remediation. Eng Geol 43:23–30
Tadesse S (2000) Environmental Policy in Mining: Corporate
Strategy and Planning for Closure. A contribution to published
book. ISBN 1–56670-365-4. pp 415–422
Taylor J, Waters J (2003) Treating ARD–how, when, where and why.
Min Environ Manag 11:6–9
White L (1991) Environmental Engineering - an Evolving Discipline
of Increasing Importance to Mining. Min Eng 43:1309
Wills BA (2006) Mineral processing technology: an introduction to
the practical aspects of ore treatment and mineral recovery, 7th
edn. Elsevier, Butterworth Heinemann, London
Younger PL, Coulton RH, Froggatt EC (2005) The contribution of
science to risk-based decision-making: lessons from the devel-
opment of full-scale treatment measures for acidic mine waters
at Wheal Jane, UK. Sci Total Environ 338:137–154
Zhong Z (1998) Overview of national mineral policy in China:
opportunities and challenges for the mineral industries. Resour
Policy 23:79–90
216 Environ Geol (2009) 58:205–216
123
... Many environmental impact evaluation methodologies have been developed for the mining activities (Wang et al. 2006), often relying on large interaction matrices (Monjezi et al. 2009). These matrices, firstly introduced by Leopold (1971) to assess the potential interactions between a project and environmental factors, have been developed and used in a large number of mining related studies (Aryafar et al. 2013). ...
... Eberts and Bair 1990), the use of environmental tracers (e.g. Darling et al. 2010), multi-criteria decision analysis such as the (fuzzy) analytical hierarchy process, input-output analysis, life cycle assessment and fuzzy set approaches (see Monjezi et al. 2009, for a review of those methods). ...
Preprint
Groundwater and rock are intensively exploited in the world. When a quarry is deepened the water table of the exploited geological formation might be reached. A dewatering system is therefore installed so that the quarry activities can continue, possibly impacting the nearby water catchments. In order to recommend an adequate feasibility study before deepening a quarry, we propose two interaction indices between extractive activity and groundwater resources based on hazard and vulnerability parameters used in the assessment of natural hazards. The levels of each index (low, medium, high, very high) correspond to the potential impact of the quarry on the regional hydrogeology. The first index is based on a discrete choice modelling methodology while the second is relying on an artificial neural network. It is shown that these two complementary approaches (the former being probabilistic while the latter fully deterministic) are able to predict accurately the level of interaction. Their use is finally illustrated by their application on the Boverie quarry and the Tridaine gallery located in Belgium. The indices determine the current interaction level as well as the one resulting from future quarry extensions. The results highlight the very high interaction level of the quarry with the gallery.
... Mining, from one perspective, makes organizations, networks, and countries well off. Notwithstanding, simultaneously, there has been an ascent in friendly indecencies such inbreeding, prostitution, drug abuse, and betting, which has prompted an overall unsteadiness in families and method for resource [13]. The financial impacts of mining incorporate the creation of gigantic measures of waste and contamination, unsettling influence of neighborhood organizations, networks, and native livelihoods, obliteration of regular natural surroundings, and the potential for the poisonous tradition of corrosive mine seepage. ...
Article
Full-text available
Both biological populations and the terrain suffer greatly from mining. Mining activities upset plant communities, and the habitats that result from the mining become depleted, creating an extremely difficult environment for the growth of plants. The mining leaves behind nutrient-deficient sandy spoils that are hostile to plants, and methods of reclamation and revegetation aside from natural colonisation are extremely slow. The deforestation in all of the mine belts indicates that the woods are the primary victims of these activities. As a result, the district's natural lush, green scenery has been replaced with mine waste in numerous areas. Despite its positive effects on the economy, the mining industry nevertheless has an adverse effect on the environment. India environment is greatly impacted by mines, both socially and biologically. The use of mining as a means of subsistence and for economic growth carries significant implications. in terms of the environment. Local ecosystems are often destroyed when mines are opened.
... It often results in a high productivity and requires large capital investments, low operating costs, and good safety conditions [1][2][3]. Due to growing open-pit mining activities, their effect on the environment has also increased [4][5][6]. The impacts of open-pit mining and mineral processing plants on the environment are diverse, as presented by Dudka et al. [7] and Firozjaei et al. [8] in their reviews, and include land degradation, as studied by Tran et al. [9,10] in their works; noise, dust, and poisonous gasses released during mining and processing, as evaluated by Saini et al. [11] in India and Popović et al. [12] in Serbia and Romania, who concluded that the most severe impact in these countries is caused by dust and greenhouse gasses above safety limits; and the pollution of water which was thoroughly analyzed for the mining industry in China by Li et al. [13]. ...
Article
Full-text available
Open-pit mining generates significant amounts of waste material, leading to the formation of large waste dumps that pose environmental risks such as land degradation and potential slope failures. The paper presents a stability analysis of waste dump slopes in open-pit mining, focusing on the Motru coalfield in Romania. To assess the stability of these dumps, the study employs the Shear Strength Reduction Method (SSRM) implemented in the COMSOL Multiphysics version 6 software, considering both associative and non-associative plasticity models. (1) Various slope angles were analyzed, and the Factor of Safety (FoS) was calculated, showing that the FoS decreases as the slope angle increases. (2) The study also demonstrates that the use of non-associative plasticity leads to lower FoS values compared to associative plasticity. (3) The results are visualized through 2D and 3D models, highlighting failure surfaces and displacement patterns, which offer insight into the rock mass behavior prior to failure. (4) The research also emphasizes the effectiveness of numerical modeling in geotechnical assessments of stability. (5) The results suggest that a non-associative flow rule should be adopted for slope stability analysis. (7) Quantitative results are obtained, with small variations compared to those obtained by LEM. (6) Dilatation angle, soil moduli, or domain changes cause differences of just a few percent and are not critical for the use of the SSRM in engineering.
... The impact of mining on water quality, particularly through the pollution of river systems with metals, is another critical area of concern [12]. Metals such as cadmium, copper, zinc, and manganese, common byproducts of mining activities, pose a significant risk to aquatic ecosystems [13]. ...
Article
Full-text available
Globally, prioritizing short-term economic gains from mineral extraction has led to a critical dilemma: a planet rich in resources struggles with environmental degradation and a diminishing ability to sustain future generations. Open-pit mining exemplifies this paradox, causing significant environmental damage. In Georgia, this extractive industry presents environmental problems. Despite these known consequences, the long-term impacts of mining activities remain understudied. This study addressed this gap by analyzing the effects of open-pit mining on terrain morphology, and water dynamics in the Kazreti region over a 50-year period (1970–2020) and vegetation health over 35-year period (1987–2022). By integrating water quality assessment, spatial analysis and remote sensing, we revealed the significant human-induced changes to the region’s ecosystem. Spatial analysis results suggested that over 156.7 million cubic meters of bedrock have been fragmented by mining in southern East Georgia, with 125.5 million cubic meters deposited in valleys. Consequently, discernible shifts in the trajectories of water flow were observed based on the hydrological model. Additionally, a comparative analysis of NDVI and EVI values revealed a decline in vegetation health near mining zones, while remote forest areas remained stable. June typically showed healthier vegetation due to cooler temperatures and optimal growing conditions, while August presented lower vegetation health due to increased heat stress. Water quality revealed significant loadings of Cu (58–1855 μg l⁻¹), Zn (54–2582 μg l⁻¹), Mn (1–2167 μg l⁻¹), and Cd (0.1–4.5 μg l⁻¹), in local river systems, which are higher than the Georgian official guideline values (Cu - 1000, Zn - 1000, Mn—100, Cd—1 μg l⁻¹). This study highlighted the need for a broader long-term monitoring strategy to assess the migration of these contaminants within the food web and the consequent socio-economic impact.
... In general, mines that are controlled by the private sector are smaller in size and have less environmental risks in comparison to mines controlled by the government. Government-controlled mines, on the other hand, are usually bigger and often need a processing plant, particularly for minerals including lead, zinc, gold, copper, etc. (Monjezi et al. 2009). Unfortunately, there is only limited information available in the existing literature about Cu mining in Iran. ...
Article
Full-text available
With a substantial rise in both domestic and worldwide copper mining rates over the past decade, Iran has become a major producer of copper in the Middle East. The increasing need for copper-based products in a variety of industries, including as information technology, electronics, transportation, and construction, is driving this rise. However, the expansion of copper mining activities has led to environmental degradation, particularly in mining sites where potentially hazardous elements (PTEs) have contaminated the soil. Despite these significant environmental impacts, they have often been overlooked, posing long-term environmental challenges as copper extraction continues. This research extensively reviews the literature (from 2000 to 2023) on soil contamination in Iran’s copper mining districts, focusing on PTEs. It evaluates the extent of potentially hazardous elements’ pollution in soils, comparing findings with global data, and explores remediation strategies employed in these regions. Results suggest that studies predominantly center around the Sarcheshmeh copper mine, highlighting copper, lead, and molybdenum as dominant PTE pollutants. Phytoremediation emerges as the primary remediation method used in these areas, indicating Iran's sustainable approach to addressing potentially hazardous elements’ contamination. This review recommends comprehensive monitoring of PTEs across all Iranian copper mines and further exploration of native plant species that successfully grow and stabilize potentially hazardous elements grow in copper mining areas remediation.
Article
Full-text available
With industrialization, economic growth, and increasing demand for minerals, mining raw materials from deep and low-grade deposits is increasing, highlighting the need to evaluate the environmental impacts of these mines. This study aims to provide a comprehensive sustainability assessment (SA) model for deep and large-scale open pit mines (DLSOP). The proposed model evaluates a total of 44 environmental factors in 11 groups. Z-numbers plus Delphi Fuzzy Analytical Hierarchy Process (ZFDAHP) and scenarios, evaluate DLSOP mine conditions with minimal uncertainty. Since the mining impacts spread over time (short-, medium-, and long-term) and space (local, regional, national, and global), the spatiotemporal scale (ST) of factors is used to calculate the dynamic sustainability score. This model considers the impact of the mine's depth and scale on the intensity of the positive and negative environmental impacts of mining and provides a final sustainability score on a scale of 0-10. Verification was done in Sungun Copper Mine (SCM) in northwest Iran to show the effectiveness of the proposed model. Waste, water, and climate change with 23.9%, 16.5%, and 15.6% importance weight, respectively, accounted for the greatest environmental impact in DLSOP mines. The static and dynamic environmental sustainability scores for SCM were 3.110 and 3.200 out of 10, respectively, showing that SCM should pay more attention to its activities towards environmental sustainability. The combined technique of this model increases the reliability and accuracy of previous models in DLSOP mines by considering a wide range of impact factors and taking into account the ST scale of impacts.
Article
The water–rock interactions significantly affect the dissolution and release of dissolved organic matter (DOM) during the reinjection of mine water into the underground reservoir. In this study, the surface characteristics and chemical composition of the natural medium from the open-pit coal mine were characterized. The waste consists mainly of quartz-dominated sandstone (43.64%) and mudstone dominated by sanidine (76.36%). During the 35-day experiment, two protein-like, one humus-like, and one fulvic acid-like substances were identified by PARAFAC. It was observed that the type of aqueous medium significantly affected the variational trend of DOM. Compared to the artificial medium, the fluorescence intensity of waste materials in the waste dump increased significantly during the reinjection process. Therefore, a positive correlation was observed between the fraction of mudstone in the aqueous medium and the DOM composition, mainly due to the dissolution of polycyclic aromatic hydrocarbon substances from the mudstone. The results revealed that the natural water storage medium had a certain water storage feasibility when compared with the expensive artificial medium. However, the fraction of mudstone in the water storage medium should be controlled to minimize the release of organic matter into the environment.
Article
Full-text available
The objective of this paper is to review the chemical processes which drive the performance of both conventional and passive treatment systems for Acid Mine Drainage and to compare the two. Several decades of research have improved the performance of both yet neither provides an environmentally acceptable, sustainable solution to the problem, which is still a major financial liability of the mining industry. A review of the literature and an examination of the underlying chemical reactions of both approaches suggest that the greatest potential for improvements lies with passive ecological systems. Future research areas are suggested⋯.
Book
Environmental Impacts of Mining is a comprehensive reference addressing some of the most significant environmental problems associated with mining. These issues include destruction of landscapes, destruction of agricultural and forest lands, sedimentation and erosion, soil contamination, surface and groundwater pollution, air pollution, and waste management. The book presents an agenda for minimizing environmental damage and offers solutions for the restoration and remediation of degraded areas. This book is a ““must have”” for environmental consultants, regulators, planners, workers in the mining industry, geologists, hydrologists, hazardous waste professionals, and instructors in the environmental sciences.
Book
Some members of Congress have expressed concern about recent environmental regulations and administrative initiatives. Criticism from lawmakers and industry leaders is primarily focused on environmental regulations promulgated by the Environmental Protection Agency (EPA). Some claim that EPA is overreaching its regulatory authority in several environmental arenas. The agriculture community has been vocal with its concerns, contending that EPA appears to be focusing its regulatory efforts on agriculture. Environmentalists, on the other hand, are encouraged by some of EPAs regulatory efforts, claiming that some agriculture operations do pose a public health and environmental risk and should be regulated. This book examines select environmental regulations that could affect agriculture.
Chapter
This chapter is designed to illustrate the general principles of applied mineralogy. Applied mineralogy in the mining industry is the application of mineralogical information to understanding and solving problems encountered during exploration and mining, and during processing of ores, concentrates, smelter products, and related materials. It involves characterizing minerals and materials, and interpreting the data with respect to exploration, mineral processing, tailings disposal and treatment, hydrometallurgy, pyrometallurgy, and refining. Numerous techniques for determining mineral characteristics have been developed in the last three decades as a consequence of the availability of new equipment, including scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM/EDX), environmental scanning electron microscope (E-SEM), microprobe (MP), image analyzer (IA), proton-induced X-ray analyzer (FIXE), secondary ion mass spectrometer (SIMS), time of flight-secondary ion mass spectrometer (ToF-SIMS), laser ionization mass spectrometer (LIMS), time of flight-laser ionization mass spectrometer (ToF-LIMS), infra-red analysis (IRA), cathodluminescence, and others. The results obtained by using the afore-mentioned equipment have augmented knowledge of mineral characteristics and have provided a better understanding of mineral behaviors during processing.
Article
This article describes the method used to quantify the Environmental Impact for the mining, by drilling and blasting, of a borrow pit for a gravity-dam. The affected environment was broken down into a number of components, such as public health and safety, social relationship, air and water quality, flora and fauna. The effect of the various impacting factors from the mining activities, both directly and indirectly, was then calculated for each environmental component. To do this, each impacting factor was first given a magnitude, a number based solely on the range of scenarios possible for the impacting factor. A matrix of weighting factors was then derived to systematically quantify, and normalise, the effects of each impacting factor on each environmental component. The overall impact upon each individual environmental component was then calculated by summing the weighted magnitudes for all the impacting factors. The method, which is outlined here in a schematic form, was originally developed for a mining operation in Sardinia, Italy. It has subsequently been successfully used for trough and other mining ventures and more general industrial activities, such as waste dumping, recycling and, energy production.
Article
In the preface the authors state, as reasons for producing this book, the need for an appropriate undergraduate-level text on water chemistry and the desire to provide broader coverage of atmospheric and environmental chemistry than is found in other existing books on this topic. They have attempted to write a book that could be understood by almost anyone with an elementarv knowledge of science, yet could still serve as a source of geochemical and environmental data for researchers in a variety of fields. The authors have succeeded admirably in achieving these difficult goals.