ChapterPDF Available

Abstract

Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user. In this introductory chapter we briefly discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent and structured way, the chapters included in this handbook and to help the reader navigate the extremely rich and detailed content that the handbook offers.
Chapter 1
Introduction to Recommender Systems
Handbook
Francesco Ricci, Lior Rokach and Bracha Shapira
Abstract Recommender Systems (RSs) are software tools and techniques providing
suggestions for items to be of use to a user. In this introductory chapter we briefly
discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent
and structured way, the chapters included in this handbook and to help the reader
navigate the extremely rich and detailed content that the handbook offers.
1.1 Introduction
Recommender Systems (RSs) are software tools and techniques providing sugges-
tions for items to be of use to a user [60, 85, 25]. The suggestions relate to various
decision-making processes, such as what items to buy, what music to listen to, or
what online news to read.
“Item” is the general term used to denote what the system recommends to users.
A RS normally focuses on a specific type of item (e.g., CDs, or news) and accord-
ingly its design, its graphical user interface, and the core recommendation technique
used to generate the recommendations are all customized to provide useful and ef-
fective suggestions for that specific type of item.
RSs are primarily directed towards individuals who lack sufficient personal ex-
perience or competence to evaluate the potentially overwhelming number of alter-
Francesco Ricci
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy e-mail: fricci@unibz.
it
Lior Rokach
Department of Information Systems Engineering, Ben-Gurion University of the Negev, Israel e-
mail: liorrk@bgu.ac.il
Bracha Shapira
Department of Information Systems Engineering, Ben-Gurion University of the Negev, Israel e-
mail: bshapira@bgu.ac.il
1
F. Ricci et al. (eds.), Recommender Systems Handbook,
DOI 10.1007/978-0-387-85820-3_1, © Springer Science+Business Media, LLC 2011
2 Francesco Ricci, Lior Rokach and Bracha Shapira
native items that a Web site, for example, may offer [85]. A case in point is a book
recommender system that assists users to select a book to read. In the popular Web
site, Amazon.com, the site employs a RS to personalize the online store for each
customer [47]. Since recommendations are usually personalized, different users or
user groups receive diverse suggestions. In addition there are also non-personalized
recommendations. These are much simpler to generate and are normally featured in
magazines or newspapers. Typical examples include the top ten selections of books,
CDs etc. While they may be useful and effective in certain situations, these types of
non-personalized recommendations are not typically addressed by RS research.
In their simplest form, personalized recommendations are offered as ranked lists
of items. In performing this ranking, RSs try to predict what the most suitable prod-
ucts or services are, based on the user’s preferences and constraints. In order to
complete such a computational task, RSs collect from users their preferences, which
are either explicitly expressed, e.g., as ratings for products, or are inferred by inter-
preting user actions. For instance, a RS may consider the navigation to a particular
product page as an implicit sign of preference for the items shown on that page.
RSs development initiated from a rather simple observation: individuals often
rely on recommendations provided by others in making routine, daily decisions
[60, 70]. For example it is common to rely on what one’s peers recommend when
selecting a book to read; employers count on recommendation letters in their re-
cruiting decisions; and when selecting a movie to watch, individuals tend to read
and rely on the movie reviews that a film critic has written and which appear in the
newspaper they read.
In seeking to mimic this behavior, the first RSs applied algorithms to leverage
recommendations produced by a community of users to deliver recommendations
to an active user, i.e., a user looking for suggestions. The recommendations were
for items that similar users (those with similar tastes) had liked. This approach is
termed collaborative-filtering and its rationale is that if the active user agreed in the
past with some users, then the other recommendations coming from these similar
users should be relevant as well and of interest to the active user.
As e-commerce Web sites began to develop, a pressing need emerged for pro-
viding recommendations derived from filtering the whole range of available alter-
natives. Users were finding it very difficult to arrive at the most appropriate choices
from the immense variety of items (products and services) that these Web sites were
offering.
The explosive growth and variety of information available on the Web and the
rapid introduction of new e-business services (buying products, product compari-
son, auction, etc.) frequently overwhelmed users, leading them to make poor deci-
sions. The availability of choices, instead of producing a benefit, started to decrease
users’ well-being. It was understood that while choice is good, more choice is not
always better. Indeed, choice, with its implications of freedom, autonomy, and self-
determination can become excessive, creating a sense that freedom may come to be
regarded as a kind of misery-inducing tyranny [96].
RSs have proved in recent years to be a valuable means for coping with the infor-
mation overload problem. Ultimately a RS addresses this phenomenon by pointing
1 Introduction to Recommender Systems Handbook 3
a user towards new, not-yet-experienced items that may be relevant to the users
current task. Upon a user’s request, which can be articulated, depending on the rec-
ommendation approach, by the user’s context and need, RSs generate recommen-
dations using various types of knowledge and data about users, the available items,
and previous transactions stored in customized databases. The user can then browse
the recommendations. She may accept them or not and may provide, immediately
or at a next stage, an implicit or explicit feedback. All these user actions and feed-
backs can be stored in the recommender database and may be used for generating
new recommendations in the next user-system interactions.
As noted above, the study of recommender systems is relatively new compared to
research into other classical information system tools and techniques (e.g., databases
or search engines). Recommender systems emerged as an independent research area
in the mid-1990s [35, 60, 70, 7]. In recent years, the interest in recommender sys-
tems has dramatically increased, as the following facts indicate:
1. Recommender systems play an important role in such highly rated Internet sites
as Amazon.com, YouTube, Netflix, Yahoo, Tripadvisor, Last.fm, and IMDb.
Moreover many media companies are now developing and deploying RSs as part
of the services they provide to their subscribers. For example Netflix, the online
movie rental service, awarded a million dollar prize to the team that first suc-
ceeded in improving substantially the performance of its recommender system
[54].
2. There are dedicated conferences and workshops related to the field. We refer
specifically to ACM Recommender Systems (RecSys), established in 2007 and
now the premier annual event in recommender technology research and appli-
cations. In addition, sessions dedicated to RSs are frequently included in the
more traditional conferences in the area of data bases, information systems and
adaptive systems. Among these conferences are worth mentioning ACM SIGIR
Special Interest Group on Information Retrieval (SIGIR), User Modeling, Adap-
tation and Personalization (UMAP), and ACM’s Special Interest Group on Man-
agement Of Data (SIGMOD).
3. At institutions of higher education around the world, undergraduate and graduate
courses are now dedicated entirely to RSs; tutorials on RSs are very popular at
computer science conferences; and recently a book introducing RSs techniques
was published [48].
4. There have been several special issues in academic journals covering research
and developments in the RS field. Among the journals that have dedicated issues
to RS are: AI Communications (2008); IEEE Intelligent Systems (2007); Inter-
national Journal of Electronic Commerce (2006); International Journal of Com-
puter Science and Applications (2006); ACM Transactions on Computer-Human
Interaction (2005); and ACM Transactions on Information Systems (2004).
In this introductory chapter we briefly discuss basic RS ideas and concepts. Our
main goal is not much to present a self-contained comprehensive introduction or
survey on RSs but rather to delineate, in a coherent and structured way, the chapters
4 Francesco Ricci, Lior Rokach and Bracha Shapira
included in this handbook and to help the reader navigate the extremely rich and
detailed content that the handbook offers.
The handbook is divided into five sections: techniques; applications and evalua-
tion of RSs; interacting with RSs; RSs and communities; and advanced algorithms.
The first section presents the techniques most popularly used today for build-
ing RSs, such as collaborative filtering; content-based, data mining methods; and
context-aware methods.
The second section surveys techniques and approaches that have been utilized to
evaluate the quality of the recommendations. It also deals with the practical aspects
of designing recommender systems; describes design and implementation consider-
ations; and sets guidelines for selecting the more suitable algorithms. The section
also considers aspects that may affect RS design (domain, device, users, etc.). Fi-
nally, it discusses methods, challenges and measures to be applied in evaluating the
developed systems.
The third section includes papers dealing with a number of issues related to how
recommendations are presented, browsed, explained and visualized. The techniques
that make the recommendation process more structured and conversational are dis-
cussed here.
The fourth section is fully dedicated to a rather new topic, exploiting user-
generated content (UGC) of various types (tags, search queries, trust evaluations,
etc.) to generate innovative types of recommendations and more credible ones. De-
spite its relative newness, this topic is essentially rooted in the core idea of a collab-
orative recommender,
The last selection presents papers on various advanced topics, such as: the ex-
ploitation of active learning principles to guide the acquisition of new knowledge;
suitable techniques for protecting a recommender system against attacks of mali-
cious users; and RSs that aggregate multiple types of user feedbacks and preferences
to build more reliable recommendations.
1.2 Recommender Systems Function
In the previous section we defined RSs as software tools and techniques providing
users with suggestions for items a user may wish to utilize. Now we want to refine
this definition illustrating a range of possible roles that a RS can play. First of all,
we must distinguish between the role played by the RS on behalf of the service
provider from that of the user of the RS. For instance, a travel recommender system
is typically introduced by a travel intermediary (e.g., Expedia.com) or a destination
management organization (e.g., Visitfinland.com) to increase its turnover (Expedia),
i.e., sell more hotel rooms, or to increase the number of tourists to the destination
[86]. Whereas, the user’s primary motivations for accessing the two systems is to
find a suitable hotel and interesting events/attractions when visiting a destination.
In fact, there are various reasons as to why service providers may want to exploit
this technology:
1 Introduction to Recommender Systems Handbook 5
Increase the number of items sold. This is probably the most important function
for a commercial RS, i.e., to be able to sell an additional set of items compared
to those usually sold without any kind of recommendation. This goal is achieved
because the recommended items are likely to suit the user’s needs and wants.
Presumably the user will recognize this after having tried several recommenda-
tions1. Non-commercial applications have similar goals, even if there is no cost
for the user that is associated with selecting an item. For instance, a content net-
work aims at increasing the number of news items read on its site.
In general, we can say that from the service provider’s point of view, the primary
goal for introducing a RS is to increase the conversion rate, i.e., the number of
users that accept the recommendation and consume an item, compared to the
number of simple visitors that just browse through the information.
Sell more diverse items. Another major function of a RS is to enable the user
to select items that might be hard to find without a precise recommendation.
For instance, in a movie RS such as Netflix, the service provider is interested
in renting all the DVDs in the catalogue, not just the most popular ones. This
could be difficult without a RS since the service provider cannot afford the risk
of advertising movies that are not likely to suit a particular user’s taste. Therefore,
a RS suggests or advertises unpopular movies to the right users
Increase the user satisfaction. A well designed RS can also improve the expe-
rience of the user with the site or the application. The user will find the recom-
mendations interesting, relevant and, with a properly designed human-computer
interaction, she will also enjoy using the system. The combination of effective,
i.e., accurate, recommendations and a usable interface will increase the user’s
subjective evaluation of the system. This in turn will increase system usage and
the likelihood that the recommendations will be accepted.
Increase user fidelity. A user should be loyal to a Web site which, when visited,
recognizes the old customer and treats him as a valuable visitor. This is a nor-
mal feature of a RS since many RSs compute recommendations, leveraging the
information acquired from the user in previous interactions, e.g., her ratings of
items. Consequently, the longer the user interacts with the site, the more refined
her user model becomes, i.e., the system representation of the user’s preferences,
and the more the recommender output can be effectively customized to match the
user’s preferences.
Better understand what the user wants. Another important function of a RS,
which can be leveraged to many other applications, is the description of the
user’s preferences, either collected explicitly or predicted by the system. The
service provider may then decide to re-use this knowledge for a number of other
goals such as improving the management of the item’s stock or production. For
instance, in the travel domain, destination management organizations can decide
to advertise a specific region to new customer sectors or advertise a particular
1This issue, convincing the user to accept a recommendation, is discussed again when we explain
the difference between predicting the user interest in an item and the likelihood that the user will
select the recommended item.
6 Francesco Ricci, Lior Rokach and Bracha Shapira
type of promotional message derived by analyzing the data collected by the RS
(transactions of the users).
We mentioned above some important motivations as to why e-service providers
introduce RSs. But users also may want a RS, if it will effectively support their tasks
or goals. Consequently a RS must balance the needs of these two players and offer
a service that is valuable to both.
Herlocker et al. [25], in a paper that has become a classical reference in this
field, define eleven popular tasks that a RS can assist in implementing. Some may
be considered as the main or core tasks that are normally associated with a RS,
i.e., to offer suggestions for items that may be useful to a user. Others might be
considered as more “opportunistic” ways to exploit a RS. As a matter of fact, this
task differentiation is very similar to what happens with a search engine, Its primary
function is to locate documents that are relevant to the user’s information need, but
it can also be used to check the importance of a Web page (looking at the position
of the page in the result list of a query) or to discover the various usages of a word
in a collection of documents.
Find Some Good Items: Recommend to a user some items as a ranked list along
with predictions of how much the user would like them (e.g., on a one- to five-
star scale). This is the main recommendation task that many commercial systems
address (see, for instance, Chapter 9). Some systems do not show the predicted
rating.
Find all good items: Recommend all the items that can satisfy some user needs.
In such cases it is insufficient to just find some good items. This is especially true
when the number of items is relatively small or when the RS is mission-critical,
such as in medical or financial applications. In these situations, in addition to the
benefit derived from carefully examining all the possibilities, the user may also
benefit from the RS ranking of these items or from additional explanations that
the RS generates.
Annotation in context: Given an existing context, e.g., a list of items, emphasize
some of them depending on the user’s long-term preferences. For example, a
TV recommender system might annotate which TV shows displayed in the elec-
tronic program guide (EPG) are worth watching (Chapter 18 provides interesting
examples of this task).
Recommend a sequence: Instead of focusing on the generation of a single rec-
ommendation, the idea is to recommend a sequence of items that is pleasing as
a whole. Typical examples include recommending a TV series; a book on RSs
after having recommended a book on data mining; or a compilation of musical
tracks [99], [39].
Recommend a bundle: Suggest a group of items that fits well together. For in-
stance a travel plan may be composed of various attractions, destinations, and
accommodation services that are located in a delimited area. From the point of
view of the user these various alternatives can be considered and selected as a
single travel destination [87].
1 Introduction to Recommender Systems Handbook 7
Just browsing: In this task, the user browses the catalog without any imminent
intention of purchasing an item. The task of the recommender is to help the user
to browse the items that are more likely to fall within the scope of the user’s inter-
ests for that specific browsing session. This is a task that has been also supported
by adaptive hypermedia techniques [23].
Find credible recommender: Some users do not trust recommender systems thus
they play with them to see how good they are in making recommendations.
Hence, some system may also offer specific functions to let the users test its
behavior in addition to those just required for obtaining recommendations.
Improve the profile: This relates to the capability of the user to provide (input)
information to the recommender system about what he likes and dislikes. This is
a fundamental task that is strictly necessary to provide personalized recommen-
dations. If the system has no specific knowledge about the active user then it can
only provide him with the same recommendations that would be delivered to an
“average” user.
Express self: Some users may not care about the recommendations at all. Rather,
what it is important to them is that they be allowed to contribute with their rat-
ings and express their opinions and beliefs. The user satisfaction for that activity
can still act as a leverage for holding the user tightly to the application (as we
mentioned above in discussing the service provider’s motivations).
Help others: Some users are happy to contribute with information, e.g., their
evaluation of items (ratings), because they believe that the community benefits
from their contribution. This could be a major motivation for entering informa-
tion into a recommender system that is not used routinely. For instance, with a
car RS, a user, who has already bought her new car is aware that the rating en-
tered in the system is more likely to be useful for other users rather than for the
next time she will buy a car.
Influence others: In Web-based RSs, there are users whose main goal is to ex-
plicitly influence other users into purchasing particular products. As a matter of
fact, there are also some malicious users that may use the system just to promote
or penalize certain items (see Chapter 25).
As these various points indicate, the role of a RS within an information system
can be quite diverse. This diversity calls for the exploitation of a range of different
knowledge sources and techniques and in the next two sections we discuss the data
a RS manages and the core technique used to identify the right recommendations.
1.3 Data and Knowledge Sources
RSs are information processing systems that actively gather various kinds of data
in order to build their recommendations. Data is primarily about the items to sug-
gest and the users who will receive these recommendations. But, since the data
and knowledge sources available for recommender systems can be very diverse,
ultimately, whether they can be exploited or not depends on the recommendation
8 Francesco Ricci, Lior Rokach and Bracha Shapira
technique (see also section 1.4). This will become clearer in the various chapters
included in this handbook (see in particular Chapter 11).
In general, there are recommendation techniques that are knowledge poor, i.e.,
they use very simple and basic data, such as user ratings/evaluations for items
(Chapters 5, 4). Other techniques are much more knowledge dependent, e.g., us-
ing ontological descriptions of the users or the items (Chapter 3), or constraints
(Chapter 6), or social relations and activities of the users (Chapter 19). In any case,
as a general classification, data used by RSs refers to three kinds of objects: items,
users, and transactions, i.e., relations between users and items.
Items. Items are the objects that are recommended. Items may be characterized
by their complexity and their value or utility. The value of an item may be positive if
the item is useful for the user, or negative if the item is not appropriate and the user
made a wrong decision when selecting it. We note that when a user is acquiring an
item she will always incur in a cost, which includes the cognitive cost of searching
for the item and the real monetary cost eventually paid for the item.
For instance, the designer of a news RS must take into account the complexity of
a news item, i.e., its structure, the textual representation, and the time-dependent im-
portance of any news item. But, at the same time, the RS designer must understand
that even if the user is not paying for reading news, there is always a cognitive cost
associated to searching and reading news items. If a selected item is relevant for the
user this cost is dominated by the benefit of having acquired a useful information,
whereas if the item is not relevant the net value of that item for the user, and its
recommendation, is negative. In other domains, e.g., cars, or financial investments,
the true monetary cost of the items becomes an important element to consider when
selecting the most appropriate recommendation approach.
Items with low complexity and value are: news, Web pages, books, CDs, movies.
Items with larger complexity and value are: digital cameras, mobile phones, PCs,
etc. The most complex items that have been considered are insurance policies, fi-
nancial investments, travels, jobs [72].
RSs, according to their core technology, can use a range of properties and fea-
tures of the items. For example in a movie recommender system, the genre (such
as comedy, thriller, etc.), as well as the director, and actors can be used to describe
a movie and to learn how the utility of an item depends on its features. Items can
be represented using various information and representation approaches, e.g., in a
minimalist way as a single id code, or in a richer form, as a set of attributes, but even
as a concept in an ontological representation of the domain (Chapter 3).
Users. Users of a RS, as mentioned above, may have very diverse goals and char-
acteristics. In order to personalize the recommendations and the human-computer
interaction, RSs exploit a range of information about the users. This information
can be structured in various ways and again the selection of what information to
model depends on the recommendation technique.
For instance, in collaborative filtering, users are modeled as a simple list contain-
ing the ratings provided by the user for some items. In a demographic RS, socio-
demographic attributes such as age, gender, profession, and education, are used.
User data is said to constitute the user model [21, 32]. The user model profiles the
1 Introduction to Recommender Systems Handbook 9
user, i.e., encodes her preferences and needs. Various user modeling approaches
have been used and, in a certain sense, a RS can be viewed as a tool that generates
recommendations by building and exploiting user models [19, 20]. Since no person-
alization is possible without a convenient user model, unless the recommendation is
non-personalized, as in the top-10 selection, the user model will always play a cen-
tral role. For instance, considering again a collaborative filtering approach, the user
is either profiled directly by its ratings to items or, using these ratings, the system
derives a vector of factor values, where users differ in how each factor weights in
their model (Chapters 5 and 4).
Users can also be described by their behavior pattern data, for example, site
browsing patterns (in a Web-based recommender system) [107], or travel search
patterns (in a travel recommender system) [60]. Moreover, user data may include re-
lations between users such as the trust level of these relations between users (Chap-
ter 20). A RS might utilize this information to recommend items to users that were
preferred by similar or trusted users.
Transactions. We generically refer to a transaction as a recorded interaction be-
tween a user and the RS. Transactions are log-like data that store important infor-
mation generated during the human-computer interaction and which are useful for
the recommendation generation algorithm that the system is using. For instance,
a transaction log may contain a reference to the item selected by the user and a
description of the context (e.g., the user goal/query) for that particular recommen-
dation. If available, that transaction may also include an explicit feedback the user
has provided, such as the rating for the selected item.
In fact, ratings are the most popular form of transaction data that a RS collects.
These ratings may be collected explicitly or implicitly. In the explicit collection of
ratings, the user is asked to provide her opinion about an item on a rating scale.
According to [93], ratings can take on a variety of forms:
Numerical ratings such as the 1-5 stars provided in the book recommender asso-
ciated with Amazon.com.
Ordinal ratings, such as “strongly agree, agree, neutral, disagree, strongly dis-
agree” where the user is asked to select the term that best indicates her opinion
regarding an item (usually via questionnaire).
Binary ratings that model choices in which the user is simply asked to decide if
a certain item is good or bad.
Unary ratings can indicate that a user has observed or purchased an item, or
otherwise rated the item positively. In such cases, the absence of a rating indicates
that we have no information relating the user to the item (perhaps she purchased
the item somewhere else).
Another form of user evaluation consists of tags associated by the user with the
items the system presents. For instance, in Movielens RS (http://movielens.umn.edu)
tags represent how MovieLens users feel about a movie, e.g.: “too long”, or “act-
ing”. Chapter 19 focuses on these types of transactions.
In transactions collecting implicit ratings, the system aims to infer the users opin-
ion based on the user’s actions. For example, if a user enters the keyword “Yoga” at
10 Francesco Ricci, Lior Rokach and Bracha Shapira
Amazon.com she will be provided with a long list of books. In return, the user may
click on a certain book on the list in order to receive additional information. At this
point, the system may infer that the user is somewhat interested in that book.
In conversational systems, i.e., systems that support an interactive process, the
transaction model is more refined. In these systems user requests alternate with sys-
tem actions (see Chapter 13). That is, the user may request a recommendation and
the system may produce a suggestion list. But it can also request additional user
preferences to provide the user with better results. Here, in the transaction model,
the system collects the various requests-responses, and may eventually learn to mod-
ify its interaction strategy by observing the outcome of the recommendation process
[60].
1.4 Recommendation Techniques
In order to implement its core function, identifying the useful items for the user, a
RS must predict that an item is worth recommending. In order to do this, the system
must be able to predict the utility of some of them, or at least compare the utility of
some items, and then decide what items to recommend based on this comparison.
The prediction step may not be explicit in the recommendation algorithm but we can
still apply this unifying model to describe the general role of a RS. Here our goal
is to provide the reader with a unifying perspective rather than an account of all the
different recommendation approaches that will be illustrated in this handbook.
To illustrate the prediction step of a RS, consider, for instance, a simple, non-
personalized, recommendation algorithm that recommends just the most popular
songs. The rationale for using this approach is that in absence of more precise in-
formation about the user’s preferences, a popular song, i.e., something that is liked
(high utility) by many users, will also be probably liked by a generic user, at least
more than another randomly selected song. Hence the utility of these popular songs
is predicted to be reasonably high for this generic user.
This view of the core recommendation computation as the prediction of the util-
ity of an item for a user has been suggested in [3]. They model this degree of utility
of the user ufor the item ias a (real valued) function R(u,i), as is normally done
in collaborative filtering by considering the ratings of users for items. Then the fun-
damental task of a collaborative filtering RS is to predict the value of Rover pairs
of users and items, i.e., to compute ˆ
R(u,i), where we denote with ˆ
Rthe estimation,
computed by the RS, of the true function R. Consequently, having computed this
prediction for the active user uon a set of items, i.e., ˆ
R(u,i1),.. ., ˆ
R(u,iN)the sys-
tem will recommend the items ij1,. . . ,ijK(KN) with the largest predicted utility.
Kis typically a small number, i.e., much smaller than the cardinality of the item data
set or the items on which a user utility prediction can be computed, i.e., RSs “filter”
the items that are recommended to users.
As mentioned above, some recommender systems do not fully estimate the utility
before making a recommendation but they may apply some heuristics to hypothe-
1 Introduction to Recommender Systems Handbook 11
size that an item is of use to a user. This is typical, for instance, in knowledge-based
systems. These utility predictions are computed with specific algorithms (see below)
and use various kind of knowledge about users, items, and the utility function itself
(see section 1.3) [25]. For instance, the system may assume that the utility function
is Boolean and therefore it will just determine whether an item is or is not useful
for the user. Consequently, assuming that there is some available knowledge (possi-
bly none) about the user who is requesting the recommendation, knowledge about
items, and other users who received recommendations, the system will leverage this
knowledge with an appropriate algorithm to generate various utility predictions and
hence recommendations [25].
It is also important to note that sometimes the user utility for an item is observed
to depend on other variables, which we generically call “contextual” [1]. For in-
stance, the utility of an item for a user can be influenced by the domain knowledge
of the user (e.g., expert vs. beginning users of a digital camera), or can depend on
the time when the recommendation is requested. Or the user may be more inter-
ested in items (e.g., a restaurant) closer to his current location. Consequently, the
recommendations must be adapted to these specific additional details and as a result
it becomes harder and harder to correctly estimate what the right recommendations
are.
This handbook presents several different types of recommender systems that vary
in terms of the addressed domain, the knowledge used, but especially in regard to
the recommendation algorithm, i.e., how the prediction of the utility of a recom-
mendation, as mentioned at the beginning of this section, is made. Other differences
relate to how the recommendations are finally assembled and presented to the user in
response to user requests. These aspects are also discussed later in this introduction.
To provide a first overview of the different types of RSs, we want to quote a
taxonomy provided by [25] that has become a classical way of distinguishing be-
tween recommender systems and referring to them. [25] distinguishes between six
different classes of recommendation approaches:
Content-based: The system learns to recommend items that are similar to the
ones that the user liked in the past. The similarity of items is calculated based on the
features associated with the compared items. For example, if a user has positively
rated a movie that belongs to the comedy genre, then the system can learn to rec-
ommend other movies from this genre. Chapter 3 provides an overview of content-
based recommender systems, imposing some order among the extensive and diverse
aspects involved in their design and implementation. It presents the basic concepts
and terminology of content-based RSs, their high level architecture, and their main
advantages and drawbacks. The chapter then surveys state-of-the-art systems that
have been adopted in several application domains. The survey encompasses a thor-
ough description of both classical and advanced techniques for representing items
and user profiles. Finally, it discusses trends and future research which might lead
towards the next generation of recommender systems.
Collaborative filtering: The simplest and original implementation of this ap-
proach [93] recommends to the active user the items that other users with similar
tastes liked in the past. The similarity in taste of two users is calculated based on
12 Francesco Ricci, Lior Rokach and Bracha Shapira
the similarity in the rating history of the users. This is the reason why [94] refers
to collaborative filtering as “people-to-people correlation.” Collaborative filtering is
considered to be the most popular and widely implemented technique in RS.
Chapter 4 presents a comprehensive survey of neighborhood-based methods for
collaborative filtering. Neighborhood methods focus on relationships between items
or, alternatively, between users. An item-item approach models the preference of a
user to an item based on ratings of similar items by the same user. Nearest-neighbors
methods enjoy considerable popularity due to their simplicity, efficiency, and their
ability to produce accurate and personalized recommendations. The authors will ad-
dress the essential decisions that are required when implementing a neighborhood-
based recommender system and provide practical information on how to make such
decisions.
Finally, the chapter deals with problems of data sparsity and limited coverage,
often observed in large commercial recommender systems. A few solutions to over-
come these problems are presented.
Chapter 5 presents several recent extensions available for building CF recom-
menders. Specifically, the authors discuss latent factor models, such as matrix fac-
torization (e.g., Singular Value Decomposition, SVD). These methods transform
both items and users to the same latent factor space. The latent space is then used
to explain ratings by characterizing both products and users in term of factors auto-
matically inferred from user feedback. The authors elucidate how SVD can handle
additional features of the data, including implicit feedback and temporal informa-
tion. They also describe techniques to address shortcomings of neighborhood tech-
niques by suggesting more rigorous formulations using global optimization tech-
niques. Utilizing such techniques makes it possible to lift the limit on neighborhood
size and to address implicit feedback and temporal dynamics. The resulting accuracy
is close to that of matrix factorization models, while offering a number of practical
advantages.
Demographic: This type of system recommends items based on the demo-
graphic profile of the user. The assumption is that different recommendations should
be generated for different demographic niches. Many Web sites adopt simple and
effective personalization solutions based on demographics. For example, users are
dispatched to particular Web sites based on their language or country. Or sugges-
tions may be customized according to the age of the user. While these approaches
have been quite popular in the marketing literature, there has been relatively little
proper RS research into demographic systems [59].
Knowledge-based: Knowledge-based systems recommend items based on spe-
cific domain knowledge about how certain item features meet users needs and pref-
erences and, ultimately, how the item is useful for the user. Notable knowledge-
based recommender systems are case-based [22, 87]. In these systems a similarity
function estimates how much the user needs (problem description) match the rec-
ommendations (solutions of the problem). Here the similarity score can be directly
interpreted as the utility of the recommendation for the user.
Constraint-based systems are another type of knowledge-based RSs (Chapter 6).
In terms of used knowledge, both systems are similar: user requirements are col-
1 Introduction to Recommender Systems Handbook 13
lected; repairs for inconsistent requirements are automatically proposed in situations
where no solutions could be found; and recommendation results are explained. The
major difference lies in the way solutions are calculated. Case-based recommenders
determine recommendations on the basis of similarity metrics whereas constraint-
based recommenders predominantly exploit predefined knowledge bases that con-
tain explicit rules about how to relate customer requirements with item features.
Knowledge-based systems tend to work better than others at the beginning of
their deployment but if they are not equipped with learning components they may be
surpassed by other shallow methods that can exploit the logs of the human/computer
interaction (as in CF).
Community-based: This type of system recommends items based on the pref-
erences of the users friends. This technique follows the epigram “Tell me who your
friends are, and I will tell you who you are”. [8, 14]. Evidence suggests that people
tend to rely more on recommendations from their friends than on recommendations
from similar but anonymous individuals [103]. This observation, combined with
the growing popularity of open social networks, is generating a rising interest in
community-based systems or, as or as they usually referred to, social recommender
systems [34]. This type of RSs models and acquires information about the social
relations of the users and the preferences of the user’s friends. The recommenda-
tion is based on ratings that were provided by the user’s friends. In fact these RSs
are following the rise of social-networks and enable a simple and comprehensive
acquisition of data related to the social relations of the users.
The research in this area is still in its early phase and results about the systems
performance are mixed. For example, [34, 64] report that overall, social-network-
based recommendations are no more accurate than those derived from traditional
CF approaches, except in special cases, such as when user ratings of a specific item
are highly varied (i.e. controversial items) or for cold-start situations, i.e., where the
users did not provide enough ratings to compute similarity to other users. Others
have showed that in some cases social-network data yields better recommendations
than profile similarity data [37] and that adding social network data to traditional
CF improves recommendation results [36]. The chapter 20 provides a survey of the
findings in this field and analyzes current results.
Hybrid recommender systems: These RSs are based on the combination of the
above mentioned techniques. A hybrid system combining techniques A and B tries
to use the advantages of A to fix the disadvantages of B. For instance, CF methods
suffer from new-item problems, i.e., they cannot recommend items that have no
ratings. This does not limit content-based approaches since the prediction for new
items is based on their description (features) that are typically easily available. Given
two (or more) basic RSs techniques, several ways have been proposed for combining
them to create a new hybrid system (see [25] for the precise descriptions).
As we have already mentioned, the context of the user when she is seeking a
recommendation can be used to better personalize the output of the system. For
example, in a temporal context, vacation recommendations in winter should be very
different from those provided in summer. Or a restaurant recommendation for a
14 Francesco Ricci, Lior Rokach and Bracha Shapira
Saturday evening with your friends should be different from that suggested for a
workday lunch with co-workers.
Chapter 7 presents the general notion of context and how it can be modeled in
RSs. Discussing the possibilities of combining several context-aware recommenda-
tion techniques into a single unified approach, the authors also provide a case study
of one such combined approach.
Three different algorithmic paradigms for incorporating contextual information
into the recommendation process are discussed: reduction-based (pre-filtering), con-
textual post filtering, and context modeling. In reduction-based (pre-filtering) meth-
ods, only the information that matches the current usage context, e.g., the ratings
for items evaluated in the same context, are used to compute the recommendations.
In contextual post filtering, the recommendation algorithm ignores the context in-
formation. The output of the algorithm is filtered/adjusted to include only the rec-
ommendations that are relevant in the target context. In the contextual modeling,
the more sophisticated of the three approaches, context data is explicitly used in the
prediction model.
1.5 Application and Evaluation
Recommender system research is being conducted with a strong emphasis on prac-
tice and commercial applications, since, aside from its theoretical contribution, is
generally aimed at practically improving commercial RSs. Thus, RS research in-
volves practical aspects that apply to the implementation of these systems. These
aspects are relevant to different stages in the life cycle of a RS, namely, the de-
sign of the system, its implementation and its maintenance and enhancement during
system operation.
The aspects that apply to the design stage include factors that might affect the
choice of the algorithm. The first factor to consider, the application’s domain, has a
major effect on the algorithmic approach that should be taken. [72] provide a taxon-
omy of RSs and classify existing RS applications to specific application domains.
Based on these specific application domains, we define more general classes of do-
mains for the most common recommender systems applications:
Entertainment - recommendations for movies, music, and IPTV.
Content - personalized newspapers, recommendation for documents, recommen-
dations of Web pages, e-learning applications, and e-mail filters.
E-commerce - recommendations for consumers of products to buy such as books,
cameras, PCs etc.
Services - recommendations of travel services, recommendation of experts for
consultation, recommendation of houses to rent, or matchmaking services.
As recommender systems become more popular, interest is aroused in the po-
tential advantages in new applications, such as recommending friends or tweets to
1 Introduction to Recommender Systems Handbook 15
follow as in www.tweeter.com. Hence, the above list cannot cover all the applica-
tion domains that are now being addressed by RS techniques; it gives only an initial
description of the various types of application domains.
The developer of a RS for a certain application domain should understand the
specific facets of the domain, its requirements, application challenges and limita-
tions. Only after analyzing these factors one could be able to select the optimal
recommender algorithm and to design an effective human-computer interaction.
Chapter 11 of this handbook provides guidelines for matching the application
domain to the recommendation technique. Burke and Ramezani in their chapter
provide a new classification of recommender systems. Unlike former classifications
of RSs (such as [25, 94, 3, 7]), Burke and Ramezani take an AI-centric approach, and
focus on the knowledge sources required for different recommendation approaches,
and the constraints related to them as a primer guideline to choosing the algorithm.
The chapter discusses the applicability of various recommendation techniques for
different types of problems and suggests decision-making guidelines in selecting
these techniques.
The chapter explicitly aims at system implementers as “recommenders” for the
right recommendation approach. The authors describe the knowledge sources that
are available to a recommender systems in different domains and identify what
knowledge sources are required for each recommendation technique. This implies
that the design of a recommender system should first emphasize the analysis of the
available sources of knowledge, and then decide about the algorithm accordingly.
Another example of the need to adjust the recommender approach to the domain
is described in Chapter 12, which deals with recommender systems for technology-
enhanced learning (TEL). TEL, which generally covers technologies that support
all forms of teaching and learning activities, aims at designing, developing and test-
ing new methods and technologies to enhance learning practices of both individuals
and organizations. TEL may benefit greatly from integrating recommender systems
technology to personalize the learning process and adjust it to the user’s former
knowledge, abilities and preferences. The chapter presents the particular require-
ments of RSs for TEL; the user tasks that are supported in TEL settings; and how
these tasks compare to typical user tasks in other RSs. For example, one particu-
lar user task for TEL –“find novel resources”– attempts to recommend only new
or novel items. Or, to cite another example, – “find new pathways” – is concerned
with recommending alternative pathways through the learning resources. The chap-
ter presents an analysis of the filtering approaches that could be useful for TEL along
with a survey of existing TEL systems illustrating the recommendation techniques
that have been deployed in these systems.
Chapter 10 discusses practical aspects of RS development and aims at providing
practical guidelines to the design, implementation and evaluation of personalized
systems. Besides the prediction algorithm, many other factors need to be considered
when designing a RS. Chapter 10 lists some of these elements: the type of target
users and their context; the devices that they would use; the role of the recommen-
dation within the application; the goal of the recommendation; and, as mentioned
previously, the data that is available.
16 Francesco Ricci, Lior Rokach and Bracha Shapira
The authors propose to build a model of the environment based on three dimen-
sions: system users; the characteristics of the data; and the overall application. The
recommender system design will be based on this model. The authors illustrate their
guidelines and the model on a news recommendation system that they have devel-
oped.
Another important issue related to the practical side of RS deployment is the
necessity of evaluating them. Evaluationis required at different stages of the systems
life cycle for various purposes [25, 1]. At design time, evaluation is required to
verify the selection of the appropriate recommender approach. In the design phase,
evaluation should be implemented off-line and the recommendation algorithms are
compared with user interactions. The off-line evaluation consists of running several
algorithms on the same datasets of user interactions (e.g., ratings) and comparing
their performance. This type of evaluation is usually conducted on existing public
benchmark data if appropriate data is available, or, otherwise, on collected data. The
design of the off-line experiments should follow known experiment design practices
[11] in order to ensure reliable results.
Evaluation is also required after the system has been launched. The algorithms
might be very accurate in solving the core recommendation problem, i.e., predicting
user ratings, but for some other reason the system may not be accepted by users, e.g.,
because the performance of the system is not as expected. At this stage it is usually
beneficial to perform on-line evaluation with real users of the system and analyze
system logs in order to enhance system performance. In addition, most of the al-
gorithms include parameters, such as weights thresholds, the number of neighbors,
etc., requiring constant adjustment and calibration.
Another type of evaluation is a focused user study that can be conducted when
the on-line evaluation is not feasible or too risky. In this type of evaluation, a con-
trolled experiment is planned where a small group of users are asked to perform
different tasks with various versions of the system. It is then possible to analyze
the users performance and to distribute questionnaires so that users may report on
their experience. In such experiments it is possible to collect both quantitative and
qualitative information about the systems.
Evaluation is also discussed in Chapter 12 in the context of TEL systems. The
authors provide a detailed analysis of the evaluation methods and tools that can be
employed for evaluating TEL recommendation techniques against a set of criteria
that are proposed for each of the selected components (e.g., user model, domain
model, recommendation strategy and algorithm).
Chapter 8 details three types of experiments that can be conducted in order to
evaluate recommender systems. It presents their advantages and disadvantages, and
defines guidelines for choosing the methods for evaluation them. Unlike existing
discussions of evaluation in the literature that usually speaks about the accuracy of
an algorithms prediction [25] and related measures, this chapter is unique in its ap-
proach to the evaluation discussion since it focuses on property-directed evaluation.
It provides a large set of properties (other than accuracy) that are relevant to the
systems success. For each of the properties, the appropriate type of experiment and
1 Introduction to Recommender Systems Handbook 17
relevant measures are suggested. Among the list of properties are: coverage, cold
start, confidence, trust, novelty, risk, and serendipity.
When discussing the practical aspects of RSs, it may be beneficial to analyze
real system implementations. The idea is to test theoretically intuitive assumptions
in order to determine if they work in practice. The major problem that one must face
in this case comes from the fact that the owners of commercial RSs are generally
unwilling to reveal their practices and there are only relatively few opportunities for
such cooperation.
Chapter 9 reports on such an opportunity and describes the operation of a real
RS, illustrating the practical aspects that apply to the implementation stage of the
RS development and its evaluation. This description focuses on the integration of
a RS into the production environment of Fastweb, one of the largest European IP
Television (IPTV) providers. The chapter describes the requirements and consider-
ations, including scaling and accuracy, that led to the choice of the recommender
algorithms. It also describes the off-line and on-line evaluations that took place and
illustrates how the system is adjusted accordingly.
1.6 Recommender Systems and Human Computer Interaction
As we have illustrated in previous sections, researchers have chiefly been concerned
with designing a range of technical solutions, leveraging various sources of knowl-
edge to achieve better predictions about what is liked and how much by the target
user. The underlying assumption behind this research activity is that just presenting
these correct recommendations, i.e., the best options, should be enough. In other
words, the recommendations should speak for themselves, and the user should def-
initely accept the recommendations if they are correct. This is clearly an overly
simplified account of the recommendation problem and it is not so easy to deliver
recommendations.
In practice, users need recommendations because they do not have enough
knowledge to make an autonomous decision. Consequently, it may not be easy for
them to evaluate the proposed recommendation. Hence, various researchers have
tried to understand the factors that lead to the acceptance of a recommendation by a
given user [105, 30, 24, 97, 33].
[105] was among the first to point out that the effectiveness of a RS is depen-
dent on factors that go beyond the quality of the prediction algorithm. In fact, the
recommender must also convince users to try (or read, buy, listen, watch) the rec-
ommended items. This, of course, depends on the individual characteristics of the
selected items and therefore on the recommendation algorithm. The process also
depends, however, on the particular human/computer interaction supported by the
system when the items are presented, compared, and explained. [105] found that
from a users perspective, an effective recommender system must inspire trust in
the system; it must have a system logic that is at least somewhat transparent; it
should point users towards new, not-yet-experienced items; it should provide details
18 Francesco Ricci, Lior Rokach and Bracha Shapira
about recommended items, including pictures and community ratings; and finally, it
should present ways to refine recommendations.
[105] and other similarly oriented researchers do not diminish the importance of
the recommendation algorithm, but claim that its effectiveness should not be evalu-
ated only in terms of the accuracy of the prediction, i.e., with standard and popular
IR metrics, such as MAE (Mean Absolute Error), precision, or NDCG (Normalized
Discounted Cumulative Gain) (see also Chapters 8 5, 9). Other dimensions should
be measured that relate to the acceptance of the recommender system and its recom-
mendations. These ideas have been remarkably well presented and discussed also by
[33]. In that work the authors propose user-centric directions for evaluating recom-
mender systems, including: the similarity of recommendation lists, recommendation
serendipity, and the importance of user needs and expectations in a recommender.
Following the remarks made in [105], let us introduce some important points
raised by HCI research that are further discussed in this handbook.
1.6.1 Trust, Explanations and Persuasiveness
First of all let us focus on trust. There are two different notions of trust that are
discussed in this handbook: trust about the other users of the recommender and trust
about a system’s recommendations.
Chapter 20 focuses on the first notion and considers a class of recommender
systems termed “social recommender systems”. These systems attempt to generate
more useful recommendations derived from information about user profiles and re-
lationships between users that nowadays can be found virtually everywhere; e.g.
in social networking sites such as Facebook, LinkedIn and MySpace. Since trust-
based recommender systems mainly exploit the trust relationships found in these
social networking sites to build new recommendation algorithms (e.g., [34]), they
still operate on the core rating prediction problem but use trust relationships. The
main claimed advantage is that users will be aware of the nature of the recommen-
dations, i.e., how they have been identified, and will tend to place greater trust in
these recommendations. In other words, the mutual trust of users can be exploited
also for increasing the trust in the system.
Trust in system recommendations is discussed in Chapter 15. In this chapter the
main scope is actually the role of explanations in RSs and trust emerges as one out of
seven roles that can be played by explanations in RSs. These roles are: transparency
- explaining how the system works; scrutability - allowing users to tell the system
it is wrong [50]; trust - increasing user confidence in the system; effectiveness -
helping users make good decisions; persuasiveness - convincing users to try or buy;
efficiency - helping users make decisions faster; and satisfaction - increasing the
ease of use or enjoyment.
This chapter also illustrates a range of approaches for building explanations. In
the collaborative filtering style, i.e., the explanation is of the form “Other users sim-
ilar to you liked this item”. In content-based style explanations, the item’s attributes
1 Introduction to Recommender Systems Handbook 19
which most affected the item to be recommended to the user are illustrated. For ex-
ample, in a movie recommendation, an explanation may be of the form “This movie
was recommended because it stars Bruce Wills who you seem to like”, or “Item X
was recommended because of features A and B which are shared by items Y and
Z, which you rated highly”. In case-based style explanations, the system refers to
items that are similar to the recommended one, for example, “The item was recom-
mended because you said you own item X” or “These items are recommended based
on your most recently viewed items”. And finally, in knowledge-based style expla-
nations, the system explains the differences between the recommended item and
another item and how it serves the user’s goal: “This room has an ocean view and is
larger than the previous recommended room, which will make it more romantic as
you requested”.
Moving back to trust, we see that it serves as a means of obtaining the main goal
of the recommender, i.e., to convince the user to accept the recommendations and
try out one of the recommended items. This issue is ultimately related to the per-
suasiveness of the full RS, i.e., how the various elements of the RS, including what
and how an item is recommended, actually operate during the human/computer in-
teraction. This topic is discussed in the Chapter 14. Here the authors stress that a
recommendation is seen as credible advice and is actually taken into account not
only because of the user’s perceptions of the recommendation but also due to the
fundamental role of the system which is perceived as an advice-giver. Indeed, the
literature about persuasion suggests that people are likely to accept recommenda-
tions from credible sources and we therefore conclude that the credibility of the RS
is vital to increasing the likelihood of recommendation acceptance. Hence, the au-
thors discuss how the credibility of RSs can be enhanced, providing a synopsis of
credibility-related research.
1.6.2 Conversational Systems
Another severe limitation of many algorithmic approaches to RSs is due to the fact
that these algorithms have been designed to collect all the input data only once.
They then terminate their job by returning their recommendations. In many cases,
this model is not effective since users may not be fully aware of their preferences
until they have interacted to a certain extent with the system and roughly understand
the range of alternatives. Or they may want to browse several alternative options
before being convinced that some of the recommendations may suit them. There is
also the possibility that the system may be initially wrong in its suggestions and the
user may be willing to provide additional information that can fix these problems,
and eventually obtain some better recommendations.
These aspects have been stressed and tackled by researchers engaged in following
a line of research that is commonly known as “conversational RSs” [27, 110, 67, 60].
Conversational RSs use a diverse range of techniques for rating prediction or rank-
ing. However, they all try to support an interactive process where both the user and
20 Francesco Ricci, Lior Rokach and Bracha Shapira
the system may query or provide information to the other partner. The critical issue
here is how to design the dialogue, i.e., the conversational strategy and what actions
the user and the system must perform in the various stages of the interaction. The
supported dialogue must be effective, i.e., the user should terminate the conversation
with a solution of the task (e.g., book a flight) and in a quick way (small number of
conversational steps). In this handbook two chapters deal with this important topic.
Chapter 13 provides a comprehensive account of the research conducted in
critiquing-based systems. Critiquing-based interfaces, or dialogue models, given an
initial set of user preferences (e.g., preferred values for some item features) present
to the user recommended items and support the user in formulating “critiques”, such
as “Show me more like item A, but cheaper”.
Critiquing-based systems have attracted great interest in domains where there
is a need for more sophisticated and interactive decision/recommendation support
systems, such as in travel applications [88, 32, 100], or computer systems [82, 83].
Critiquing-based systems were initially designed as effective approaches to user
preference elicitation problems, but have now become important for some additional
motivations or applications, such as group recommendations, mixed-initiative rec-
ommendations, adaptive user interface, recommendation explanation, mobile rec-
ommenders.
Another approach related to conversational systems is preference-based [67].
Preference-based are similar to critiquing-based approaches since they present up-
front the user with some recommendations, which are not considered to be the best
but then let the user express preferences about some items. This additional informa-
tion is used to refine the system representation of the user’s preferences (user model)
enabling the system to generate new and better recommendations.
Chapter 16 surveys these novel methods and systems focusing on three facets of
the user-system interaction of such preference-based recommenders: initial prefer-
ence elicitation; preference revision; and presentation of recommendation results.
This chapter derives from the analysis of some systems as a collection of usability
guidelines that can be applied in a wide and scalable way. Moreover, to select the
guidelines, the authors do not focus on accuracy alone, but take into account that
humans have limited cognitive resources and are not likely to achieve a high level
of accuracy if the required effort is excessive. They identify and select methods
that produce high recommendation accuracy involving an effort level that users are
willing to make.
Previously mentioned approaches (critiquing- and preference-based) have been
mostly applied to case-based reasoning systems [22], where the retrieval component
is based on a similarity metric. In such cases, a query can always retrieve and rank
all the products contained in the catalogue since a product is always, to some extent,
similar to a probe product (query). If the query language supports other constraints
(e.g. equality or range constraints) the query may fail to return a product satisfy-
ing the query [47, 71, 31]. In this case several techniques have been proposed for
repairing the query by relaxing the minimum amount of constraints to make it sat-
isfiable. This topic is also covered in a chapter dedicated to constraint-based RSs
(Chapter 6).
1 Introduction to Recommender Systems Handbook 21
1.6.3 Visualization
We have highlighted so far some HCI issues that have been tackled in RS research
and which are discussed in this handbook. In summary, we have noted that how the
system presents and visualizes the computed recommendation is obviously a critical
factor for the acceptance of the recommendations and the RS.
Presentation and explanation techniques are not easily separable; a good presen-
tation technique is also capable of explaining recommendations but also in moti-
vating the user to make further requests, including requests for explanations. One
common aspect in the technologies presented so far is the fact that recommendations
are presented as a list of items. The length of this list can vary but the output of the
core recommendation algorithm is normally a ranked list and this has been always
exploited in the presentation.
In this handbook we include a chapter that illustrates a presentation approach
that deviates from this paradigm. In Chapter 17 the authors observe that much in-
formation is lost in the ranked list visualization approach, since two products, both
of which match the user query or the user model, can differ from each other based
on a completely different set of product characteristics. If one is using a two dimen-
sional, map-based visualization of the recommendations, it is possible to retain part
of this information. In the map, one can position, in a restricted area of the map, rec-
ommendations that are similar to each other. This chapter presents two approaches
for building this two-dimensional map of the recommendations and discusses its
advantages and disadvantages.
1.7 Recommender Systems as a Multi-Disciplinary Field
Designing and developing RSs is a multi-disciplinary effort that has benefited from
results obtained in various computer science fields especially machine learning and
data mining, information retrieval, and human-computer interaction. This is also
clear in the chapters included in this handbook and the discussion presented above.
Here we want to briefly address these relationships.
Machine learning and data mining, subfields of artificial intelligence, allow a
computer to learn to optimally perform a certain task using examples, data or past
experiences [109]. For example, data mining can be used to learn from transaction
data that customers who bought “Da Vinci Code” also bought “The Five People
You Meet in Heaven”. Consequently, recommendations can be constructed using
the information provided by these associations.
Many RSs are centered around the use of various machine learning and data min-
ing algorithms to predict user evaluations for items, or for learning how to correctly
rank items for a user. Chapter 2 of this handbook provides an overview of the main
data mining techniques used in the context of RSs preprocessing methods, such as:
sampling or dimensionality reduction; classification techniques, such as Bayesian
22 Francesco Ricci, Lior Rokach and Bracha Shapira
networks and support vector machines; clustering techniques such as k-means algo-
rithm; and association rules.
Other chapters that illustrate and exemplify the relationships between RSs and
data mining are: Chapter 12, discussing the usage of active learning for selective in-
formation acquisition; Chapter 5, devoted to advanced optimization techniques for
building rating prediction models; Chapter 7, presenting various rating prediction
methods that exploit contextually tagged transactional data; Chapter 24, presenting
data mining techniques that exploit the evaluations of items over several criteria
to better predict the overall user evaluations; Chapter 25, focusing on data mining
solutions to detect attacks to a recommender system and for building more robust al-
gorithmic solutions; Chapter 4, illustrating various instance based-learning options
currently used in collaborative filtering systems; Chapter 19 illustrating the use of
data mining solutions operating on a multiway array or a hypergraph with hyper-
edges, i.e., (user, resource, tag) triples; Chapter 20 presenting various data mining
solutions on trust networks.
Information retrieval (IR) aims to assist users in storing and searching various
forms of content, such as texts, images and videos [63]. With IR tools, users can
quickly find information that is both relevant and comprehensive for their needs.
While IR did not begin with the Web, the WWW played an important role in estab-
lishing new ideas mainly due to the development of Web search engines.
Both IR and RSs are faced with similar filtering and ranking problems. IR gener-
ally focuses on developing global retrieval techniques, often neglecting the individ-
ual needs and preferences of users. Still [25] argues that recommender systems are
not clearly separated from information retrieval. The “individualized” and “interest-
ing and useful” criteria that RSs try to achieve are the core differences between RSs
and information retrieval or search engines.
Recently, modern Web search engine have also relied on recommendation tech-
niques to address Web search challenges and to implement advanced search features.
For example, search engines recommend similar queries to the current user query.
Various engines also attempt to apply some form of personalization by generating
results to a user query that are not only relevant to the query terms but are also
tailored to the users context (e.g., her location), and her search history.
Chapter 18 discusses the research goals of IR and personalized Web search from
the RS perspective. The authors illustrate how techniques that originated in recent
RS research may be applied to address search engine challenges. The chapter fo-
cuses on two promising ideas for search engines improvement: personalization and
collaboration. The chapter describes a number of different approaches to personal-
izing Web searches by exploiting user preferences and context information to affect
search results. In addition, the chapter discusses recent work in the area of collab-
orative information retrieval, which attempts to take advantage of the potential for
cooperation between friends, colleagues or users with similar needs in implement-
ing a variety of information-seeking tasks. This new line of research, termed social
search, benefits from the social medium property of the Web in providing search
results that are affected by the experience and preferences of similar users. The
authors foresee a “convergence of recommender systems and search systems” and
1 Introduction to Recommender Systems Handbook 23
believe that integrating these sources in search engine algorithms would result in
highly satisfied users receiving the right information at the right time.
Other chapters that are related to IR research and illustrate techniques that are
studied in this area include: Chapter 19, addressing problems related to the retrieval
of tag-based information content and Chapter 3, presenting an overview of content-
based approaches that are strongly rooted in current search engine technologies.
Finally, RSs are ultimately targeted to provide useful information to users and for
that reason HCI plays a fundamental role in the ultimate acceptance of the computed
recommendations. In fact, several field studies have clearly indicated that from a
user’s perspective, HCI aspects related to the usability of the system have a tremen-
dous effect on the willingness of users to actually explore a systems recommenda-
tions and provide input to the system in return for more effective recommendations.
These topics were discussed previously in Section 1.6.
1.8 Emerging Topics and Challenges
1.8.1 Emerging Topics Discussed in the Handbook
It is clear from the previous pages that RS research is evolving in many and diverse
directions and new topics are emerging or becoming more important subjects of in-
vestigation. The reader is also referred to the proceedings of the last editions of the
ACM RecSys conferences and several other excellent review papers for additional
material [7, 3]. In this handbook we cover some of these topics. Indeed, several have
been already presented, such as: context-aware recommender (Chapter 7); new visu-
alization techniques (Chapter 17); community-based personalized search (Chapter
18); trust-based RS (Chapter 20). Other important topics are covered in the last two
sections of this handbook and we want now to briefly introduce these chapters.
Chapter 19 presents social tagging systems (STS) a new RS-related topic that is
emerging due to the growth of Web 2.0 applications. STS like Flickr, Bibsonomy,
or Delicious, allow the ordinary user to publish and edit content as well as gen-
erate and share tags (i.e., free keywords). STS users are experiencing information
overload problems since STS are used by millions of users who enter into the sys-
tem uncontrolled content and tags that pose retrieving difficulties for traditional IR
systems. Thus, RSs are required to assist users in finding relevant Information and
some commercial STS are starting to offer recommendations (e.g., Delicious).
The chapter discusses the new challenges that RSs for STS face, such as new
recommender tasks. These include not only traditional recommendations regarding
content, but also recommendations for relevant tags and even other relevant users.
Tag recommendation (i.e., recommending to the users relevant tags for an item),
has different characteristics than traditional recommendations since the system can
recommend recurrent tags, unlike traditional RSs that usually do not recommend
the same item twice. In addition, RSs for STS deal with a three-dimensional prob-
24 Francesco Ricci, Lior Rokach and Bracha Shapira
lem (user, resource, tag), rather than the traditional two-dimensional problem (user,
item), and this affects the complexity of the algorithms. The chapter includes a state-
of-the-art survey about the new generation of RSs built to serve STS. It also details
the challenges of deploying RS for real world STS, and offers new algorithms for
dealing with the challenges of content in both STS and tag recommendation.
Chapter 21 deals with those situations when it would be good if the system could
recommend information or items that are relevant to a group of users rather than to
an individual. For instance, a RS may select television programs for a group to view
or a sequence of songs to listen to, based on models of all group members. Recom-
mending to groups is clearly more complicated than recommending to individuals.
Assuming that we know precisely what is good for individual users, the issue is how
to combine individual user models. In this chapter, the authors discuss how group
recommendation works, what its problems are, and what advances have been made
so far.
Chapter 22 discusses the ubiquitous issue of aggregating preferences, criteria or
similarities. Normally such aggregation is done by using either the arithmetic mean
or maximum/minimum functions. But many other aggregation functions which
could deliver flexibility and adaptability, and ultimately more relevant recommen-
dations, are often overlooked. In this chapter the authors review the basics of ag-
gregation functions and their properties and present the most important families,
including generalized means, Choquet and Sugeno integrals, ordered weighted av-
eraging, triangular norms and conorms, as well as bipolar aggregation functions.
Such functions can model various interactions between the inputs, including con-
junctive, disjunctive and mixed behavior.
In Chapter 23, the authors focus on another fundamental problem of RSs, i.e., the
need to actively look for new data during the operational life of the recommender.
This issue is normally neglected on the assumption that there is not much space for
controlling what data (e.g., ratings) the system can collect since these decisions are
taken by the users when visiting the system. Actually, the RS provokes the users
with its recommendations and many systems actually explicitly ask for user prefer-
ences during the recommendation process. Hence, by tuning the process, users can
be pushed to provide a range of different information. Specifically they can be re-
quested to rate particular items and the knowledge of the users opinions about these
items could be estimated as particularly beneficial according to various criteria, e.g.,
to provide more diverse recommendations or simply to improve the prediction accu-
racy of the system for some users or for the whole population of users. At this point
active learning comes in; it can augment RSs, helping users to become more self-
aware of their own likes/dislikes, leading to more meaningful and useful questions.
At the same time active learning can provide new information to the system that
can be analyzed for subsequent recommendations. Hence, applying active learning
to RSs enables personalization of the recommending process [61]. This is accom-
plished by allowing the system to actively influence the items the user is exposed to
(e.g. the items displayed to the user during sign-up or during regular use), as well as
by enabling the user to explore his/her interests freely.
1 Introduction to Recommender Systems Handbook 25
Chapter 24 introduces another emerging topic, i.e., multi-criteria recommender
systems. In the majority of RSs the utility associated with an item is usually consid-
ered a single criterion value, e.g., an overall evaluation or rating of an item by a user.
But recently this assumption has been judged as limited because the suitability of
the recommended item for a particular user may depend on several aspects that the
user can take into consideration when making his or her choice. The incorporation
of multiple criteria that can affect the users opinions may lead to more effective and
accurate recommendations.
Chapter 24 provides an overview of multi-criteria RSs. First, it defines the rec-
ommendation problem as a multi-criteria decision-making problem and reviews
methods and techniques that can support the implementation of multi-criteria rec-
ommenders. Then, it focuses on the category of multi-criteria rating recommender
techniques that provide recommendations by modeling the users utility for an item
as a vector of ratings along several criteria. A review of current algorithms that
use multi-criteria ratings for calculating the rating prediction and generating recom-
mendations is provided. The chapter concludes with a discussion on open issues and
future challenges for these recommenders.
The last chapter of this handbook (Chapter 25) surveys articles dealing with se-
curity issues. This topic has become a major issue in the past few years. Recent
works on the topic include [28, 45, 102, 112]. The chapter analyzes algorithms de-
signed to generate more robust recommendations, i.e., recommendations that are
harder for malicious users to influence. In fact, collaborative recommender systems
are dependent on the goodwill of their users, i.e., there is an implicit assumption that
users will interact with the system with the aim of getting good recommendations
for themselves while providing useful data for their neighbors. However, users will
have a range of purposes in interacting with RSs and in some cases, these purposes
may be counter to those of the system owner or those of the majority of its user
population. Namely these users may want to damage the Web site hosting the rec-
ommender or to influence the recommendations provided to visitors, e.g., to score
some items better or worse rather than to arrive at a fair evaluation.
In this chapter the authors provide a model of efficient attacks, i.e., attacks that
can, with relatively low cost, produce a large impact on system output. Since these
attacks may very well be launched against a site, it makes sense to detect them so
that countermeasures can be taken as soon as possible. At the same time, researchers
have studied a number of algorithms that are intended to robustly withstand attacks
and which have lower impact curves relative to efficient attacks. These approaches
are also surveyed in this chapter. With the combination of these techniques, re-
searchers have sought, not to eliminate attacks, but to control their impact to the
point where they are no longer cost-effective.
26 Francesco Ricci, Lior Rokach and Bracha Shapira
1.8.2 Challenges
The list of newly emerging and challenging RS research topics is not limited to
those described in the chapters that we have mentioned above. Moreover, covering
all of them is not within the scope of this short introduction. The reader is referred
to the final discussion sections in this handbook for other outstanding problems.
Below we briefly note additional challenging topics that we consider important
for the development of the research on RSs and which are not covered in the hand-
book.
Scalability of the algorithms with large and real-world datasets. As the research
on core techniques progresses and matures, it becomes clear that a fundamental
issue for RSs is to determine how to embed the core recommendation techniques
in real operational systems and how to deal with massive and dynamic sets of data
produced by the interactions of users with items (ratings, preferences, reviews,
etc.). A solution that works fine when tested off-line on relatively small data sets
may become inefficient or even totally inapplicable on very large datasets. New
approaches and large-scale evaluation studies are needed [91, 92, 33, 38, 116, 75,
75].
Proactive recommender systems, i.e., recommenders that decide to provide rec-
ommendations even if not explicitly requested [90, 24, 62, 80]. The largest ma-
jority of the recommender systems developed so far follow a “pull” model [94];
where the user originates the request for a recommendation. In the scenarios
emerging today, where computers are ubiquitous and users are always connected,
it seems natural to imagine that a RS can detect implicit requests. It therefore
needs to predict not only what to recommend, but also when and how to “push”
its recommendations. In this way the RS can become proactive without being
perceived as disturbing.
Privacy preserving recommender systems [81, 26, 79, 56, 17, 28, 102, 16, 5, 53,
70, 114]. RSs exploit user data to generate personalized recommendations. In
the attempt to build increasingly better recommendations, they collect as much
user data as possible. This will clearly have a negative impact on the privacy of
the users and the users may start feeling that the system knows too much about
their true preferences. Therefore, there is a need to design solutions that will
parsimoniously and sensibly use user data. At the same time these solutions will
ensure that knowledge about the users cannot be freely accessed by malicious
users.
Diversity of the items recommended to a target user [104, 66, 69, 55, 54, 46, 119].
In a recommendation list, it is more likely that the user will find a suitable item if
there is a certain degree of diversity among the included items. There is often no
value in having perfect recommendations for a restricted type of product, unless
the user has expressed a narrow set of preferences. There are many situations, es-
pecially in the early stage of a recommendation process, in which the users want
to explore new and diverse directions. In such cases, the user is using the recom-
mender as a knowledge discovery tool. The research on this topic is still in an
1 Introduction to Recommender Systems Handbook 27
early stage, and there is a need to characterize the nature of this “diversity”, i.e.,
whether we are looking for diversity among different recommendation sessions
or within a session, and how to combine the diversity goal with the accuracy of
the recommendation.
Integration of long-term and short-term user preferences in the process of build-
ing a recommendation list [6, 40, 74]. Recommender systems may be divided
in two classes: those that build a long-term profile, generated by aggregating all
the user transaction data collected by the system (e.g., collaborative filtering)
and those that are more focused on capturing the ephemeral preferences of the
user, e.g., as in case-based approaches. Obviously both aspects are important and
either the precise user task or the availability of items may come under consid-
eration in resolving the preference integration problem. In fact, new research is
required to build hybrid models that can correctly decide to drift or not toward
the contingent user’s preferences when there is enough evidence to suggest that
the user’s short-term preferences are departing from the long-term ones.
Generic user models and cross domain recommender systems are able to mediate
user data through different systems and application domains [41, 18, 52, 19, 20,
49, 15]. Using generic user model techniques, a single RS can produce recom-
mendations about a variety of items. This is normally not possible for a general
RS which can combine more techniques in a hybrid approach, but cannot easily
benefit from user preferences collected in one domain to generate recommenda-
tions in a different one.
Distributed recommender systems that operate in open networks [38, 116, 92,
113, 17, 102]. The computational model of the largest majority of RSs adheres
to a typical client-server architecture, where the user-client requests recommen-
dations to the server-recommender which replies with the suggestions. This is
clearly a severe limitation and suffers from all the classical problems of central-
ized systems. The emerging scenario of grid or cloud computing can become
an excellent opportunity to implement more robust and flexible computational
models for RSs.
Recommender that optimize a sequence of recommendations [120, 99, 10, 59,
61, 107, 106]. We mentioned already that conversational RSs have emerged in
the attempt to improve the quality of recommendations provided by the systems
based on a simpler approach: a one-time request/response. Conversational RSs
can be further improved by implementing learning capabilities that can optimize
not only the items that are recommended but also how the dialogue between the
user and the system must unfold in all possible situations.
Recommenders designed to operate in mobile devices and usage contexts [117,
98, 55, 51, 4, 115, 111, 57, 29, 9, 77, 76, 89, 73, 44, 95, 13]. Mobile computing is
emerging as the most natural platform for personal computing. Many recommen-
dation requests are likely to be made when the user is on the move, e.g., at shops
or hotels in a visited city. This necessitates “mobilizing” the user interface and to
design computational solutions that can efficiently use the still limited resources
(computational power and screen size) of the mobile devices.
28 Francesco Ricci, Lior Rokach and Bracha Shapira
Finally, before ending this introduction, we want to present some additional chal-
lenges that were discussed in a tutorial held at the latest RecSys conference in New
York, October 22-25, 2009 [http://recsys.acm.org/tutorial3.pdf]. John Riedl (Uni-
versity of Minnesota), Todd Beaupre (Yahoo!) and John Sanders (Netflix) men-
tioned eight important challenges for the research on recommender systems: trans-
parency, exploration versus exploitation, guided navigation, time value, user ac-
tion interpretation, evaluating recommenders, scalability, academic/industry part-
nerships.
Some of these issues have already been discussed in this introduction. For exam-
ple, transparency was introduced when we discussed the role of the explanation of
a recommendation, and we stressed the important role it plays in order to present a
recommendation as more acceptable for the user. Also the evaluation of RSs, i.e., the
range of possible and important dimensions that can be measured in an evaluation
is a topic fully addressed in another chapter (Chapter 8).
The time value of recommendations is also partially discussed in our remarks
about context-aware recommenders (Chapter 7). However, the challenge refers to
the fact that a given set of recommendations may not be applicable forever but there
could be a time interval when these items can be recommended. This is clear, for
instance, when it comes to news items; people want to be informed about the most
recent events and news cannot be meaningfully recommended even one day after
the initial announcement.
Exploration vs. exploitation is touched upon in active learning (Chapter 23). This
challenge refers to the fundamental dilemma that a designer must properly tackle,
i.e., whether to keep recommending items that the system can now identify as good
recommendations, given the data currently available for the system or to further
explore user preferences (e.g., asking to rate additional and particular items) in order
to build newer and possibly even better recommendations in the future.
indexGuided navigation Guided navigation refers to combining classical rec-
ommendation lists, i.e., suggestions with tools that let the user navigate more au-
tonomously in the space of possible options. User action interpretation refers to
the possibility that in addition to explicit ratings there could be many more actions
performed by the user operating the recommender that can be detected, analyzed
and used to build a better prediction model. The idea is that every single user action
should be exploited in the recommendation process. But it is challenging to interpret
the user’s actions, i.e., the intent behind an action, and there are actions that should
be discarded because they were not produced by genuine users, such as, actions per-
formed by different users on the same browser, or false and malicious registrations
or data or log data caused by robots or crawlers.
Scalability was also mentioned earlier. We stress again that this is clearly an issue
about which discussion is missing in the current literature since it has been mostly
investigated by practitioners.
Finally the discussion in that workshop became quite animated when the matter
of cooperation between industry and academia was touched upon. Industry has spe-
cific problems but is not making them clearly visible. This is happening for many
reasons, including the need to not disclose to competitors critical information. Con-
1 Introduction to Recommender Systems Handbook 29
versely, academia is looking for problems that can be tackled in a framework of the
resources and time available to them and will generally address a topic only if it is
likely to have an impact in the scientific community. This has made and will make
industry-academic cooperation difficult. But RSs is a research field that requires
new concrete challenges and there is a real risk of stagnation if we fail to tackle the
useful but risky challenges in favor of solved or mature problems.
We hope that this handbook, as a useful tool for practitioners and researchers,
will contribute to further develop knowledge in this exciting and useful research
area. In this way we believe that we can reduce the risk that these two groups will
follow different roads. Currently the research on RSs has greatly benefited from
the combined interest and efforts that industry and academia have invested in this
field. We therefore wish the best to both groups as they read this handbook and we
hope that it will attract even more researchers to work in this highly interesting and
challenging field.
References
1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual in-
formation in recommender systems using a multidimensional approach. ACM Trans. Inf.
Syst. 23(1), 103–145 (2005)
2. Adomavicius, G., Tuzhilin, A.: Personalization technologies: a process-oriented perspective.
Commun. ACM 48(10), 83–90 (2005)
3. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A sur-
vey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering 17(6), 734–749 (2005)
4. Ahn, H., Kim, K.J., Han, I.: Mobile advertisement recommender system using collaborative
filtering: Mar-cf. In: Proceedings of the 2006 Conference of the Korea Society of Manage-
ment Information Systems, pp. 709–715 (2006)
5. A¨
ımeur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Alambic : a privacy-preserving
recommender system for electronic commerce. Int. J. Inf. Sec. 7(5), 307–334 (2008)
6. Aimeur, E., V´
ezeau, M.: Short-term profiling for a case-based reasoning recommendation
system. In: R.L. de M´
antaras, E. Plaza (eds.) Machine Learning: 2000, 11th European Con-
ference on Machine Learning, pp. 23–30. Springer (2000)
7. Anand, S.S., Mobasher, B.: Intelligent techniques for web personalization. In: Intelligent
Techniques for Web Personalization, pp. 1–36. Springer (2005)
8. Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT Professional
11(4), 38–44 (2009)
9. Averjanova, O., Ricci, F., Nguyen, Q.N.: Map-based interaction with a conversational mobile
recommender system. In: The Second International Conference on Mobile Ubiquitous Com-
puting, Systems, Services and Technologies, 2008. UBICOMM ’08, pp. 212–218 (2008)
10. Baccigalupo, C., Plaza, E.: Case-based sequential ordering of songs for playlist recommen-
dation. In: T. Roth-Berghofer, M.H. G¨
oker, H.A. G¨
uvenir (eds.) ECCBR, Lecture Notes in
Computer Science, vol. 4106, pp. 286–300. Springer (2006)
11. Bailey, R.A.: Design of comparative experiments. Cambridge University Press Cambridge
(2008)
12. Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Communica-
tion of ACM 40(3), 66–72 (1997)
13. Bellotti, V., Begole, J.B., hsin Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., King, T.H.,
Newman, M.W., Partridge, K., Price, B., Rasmussen, P., Roberts, M., Schiano, D.J., Walen-
30 Francesco Ricci, Lior Rokach and Bracha Shapira
dowski, A.: Activity-based serendipitous recommendations with the magitti mobile leisure
guide. In: M. Czerwinski, A.M. Lund, D.S. Tan (eds.) CHI, pp. 1157–1166. ACM (2008)
14. Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisels, A., Shani, G., Naamani, L.: Recom-
mender system from personal social networks. In: K. Wegrzyn-Wolska, P.S. Szczepaniak
(eds.) AWIC, Advances in Soft Computing, vol. 43, pp. 47–55. Springer (2007)
15. Berkovsky, S.: Mediation of User Models: for Enhanced Personalization in Recommender
Systems. VDM Verlag (2009)
16. Berkovsky, S., Borisov, N., Eytani, Y., Kuflik, T., Ricci, F.: Examining users’ attitude towards
privacy preserving collaborative filtering. In: International Workshop on Data Mining for
User Modeling, at User Modeling 2007, 11th International Conference, UM 2007, Corfu,
Greece, June 25, 2007, Proceedings (2007)
17. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy
of a distributed collaborative filtering. In: RecSys ’07: Proceedings of the 2007 ACM con-
ference on Recommender systems, pp. 9–16. ACM Press, New York, NY, USA (2007)
18. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-technique mediation of user models. In: Proceed-
ings of International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems
[AH2006], pp. 21–30. Dublin (2006)
19. Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in
recommender systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2008)
20. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-representation mediation of user models. User
Modeling and User-Adapted Interaction 19(1-2), 35–63 (2009)
21. Billsus, D., Pazzani, M.: Learning probabilistic user models. In: UM97 Workshop on Ma-
chine Learning for User Modeling (1997). URL http://www.dfki.de/˜bauer/
um-ws/
22. Bridge, D., G¨
oker, M., McGinty, L., Smyth, B.: Case-based recommender systems. The
Knowledge Engineering review 20(3), 315–320 (2006)
23. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-
Adapted Interaction 6(2-3), 87–129 (1996)
24. Bulander, R., Decker, M., Schiefer, G., Kolmel, B.: Comparison of different approaches for
mobile advertising. Mobile Commerce and Services, 2005. WMCS ’05. The Second IEEE
International Workshop on pp. 174–182 (2005)
25. Burke, R.: Hybrid web recommender systems. In: The Adaptive Web, pp. 377–408. Springer
Berlin / Heidelberg (2007)
26. Canny, J.F.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Pri-
vacy, pp. 45–57 (2002)
27. Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recom-
mender systems. In: Proceedings of the 2003 International Conference on Intelligent User
Interfaces, January 12-15, 2003, Miami, FL, USA, pp. 12–18 (2003)
28. Cheng, Z., Hurley, N.: Effective diverse and obfuscated attacks on model-based recom-
mender systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender
systems, pp. 141–148. ACM, New York, NY, USA (2009)
29. Church, K., Smyth, B., Cotter, P., Bradley, K.: Mobile information access: A study of emerg-
ing search behavior on the mobile internet. ACM Trans. Web 1(1), 4 (2007)
30. Cosley, D., Lam, S.K., Albert, I., Konstant, J.A., Riedl, J.: Is seeing believing? how rec-
ommender system interfaces affect users’ opinions. In: In Proceedings of the CHI 2003
Conference on Human factors in Computing Systems. Fort Lauderdale, FL (2003)
31. Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.: Plausible
repairs for inconsistent requirements. In: Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI’09), pp. 791–796. Pasadena, California, USA (2009)
32. Fisher, G.: User modeling in human-computer interaction. User Modeling and User-Adapted
Interaction 11, 65–86 (2001)
33. George, T., Merugu, S.: A scalable collaborative filtering framework based on co-clustering.
In: Proceedings of the 5th IEEE Conference on Data Mining (ICDM), pp. 625–628. IEEE
Computer Society, Los Alamitos, CA, USA (2005)
1 Introduction to Recommender Systems Handbook 31
34. Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In:
Trust Management, 4th International Conference, iTrust 2006, Pisa, Italy, May 16-19, 2006,
Proceedings, pp. 93–104 (2006)
35. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an
information tapestry. Commun. ACM 35(12), 61–70 (1992)
36. Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs.
social filtering. In: GROUP ’07: Proceedings of the 2007 international ACM conference on
Supporting group work, pp. 127–136. ACM, New York, NY, USA (2007)
37. Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Per-
sonalized recommendation of social software items based on social relations. In: RecSys
’09: Proceedings of the third ACM conference on Recommender systems, pp. 53–60. ACM,
New York, NY, USA (2009)
38. Han, P., Xie, B., Yang, F., Sheng, R.: A scalable p2p recommender system based on dis-
tributed collaborative filtering. Expert systems with applications (2004)
39. Hayes, C., Cunningham, P.: Smartradio-community based music radio. Knowledge Based
Systems 14(3-4), 197–201 (2001)
40. He, L., Zhang, J., Zhuo, L., Shen, L.: Construction of user preference profile in a personalized
image retrieval. In: Neural Networks and Signal Processing, 2008 International Conference
on, pp. 434–439 (2008)
41. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff,
M.: Gumo - the general user model ontology. In: User Modeling 2005, 10th International
Conference, UM 2005, Edinburgh, Scotland, UK, July 24-29, 2005, Proceedings, pp. 428–
432 (2005)
42. Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In:
In proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, pp.
241–250 (2000)
43. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering
recommender systems. ACM Transaction on Information Systems 22(1), 5–53 (2004)
44. Horozov, T., Narasimhan, N., Vasudevan, V.: Using location for personalized POI recommen-
dations in mobile environments. In: Proc. Int’l Sym. Applications on Internet, pp. 124–129.
EEE Computer Society (2006)
45. Hurley, N., Cheng, Z., Zhang, M.: Statistical attack detection. In: RecSys ’09: Proceedings
of the third ACM conference on Recommender systems, pp. 149–156. ACM, New York, NY,
USA (2009)
46. Hwang, C.S., Kuo, N., Yu, P.: Representative-based diversity retrieval. In: Innovative Com-
puting Information and Control, 2008. ICICIC ’08. 3rd International Conference on, pp.
155–155 (2008)
47. Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: 3rd
International IEEE Conference on Intelligent Systems, pp. 355–360 (2006)
48. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems An Introduc-
tion. Cambridge University Press (2010)
49. Jessenitschnig, M., Zanker, M.: A generic user modeling component for hybrid recommen-
dation strategies. E-Commerce Technology, IEEE International Conference on 0, 337–344
(2009). DOI http://doi.ieeecomputersociety.org/10.1109/CEC.2009.83
50. Kay, J.: Scrutable adaptation: Because we can and must. In: Adaptive Hypermedia and
Adaptive Web-Based Systems, 4th International Conference, AH 2006, Dublin, Ireland, June
21-23, 2006, Proceedings, pp. 11–19 (2006)
51. Kim, C.Y., Lee, J.K., Cho, Y.H., Kim, D.H.: Viscors: A visual-content recommender for the
mobile web. IEEE Intelligent Systems 19(6), 32–39 (2004)
52. Kobsa, A.: Generic user modeling systems. In: P. Brusilovsky, A. Kobsa, W. Nejdl (eds.) The
Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 136–154. Springer (2007)
53. Kobsa, A.: Privacy-enhanced personalization. In: D. Wilson, H.C. Lane (eds.) FLAIRS Con-
ference, p. 10. AAAI Press (2008)
54. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender sys-
tems. IEEE Computer 42(8), 30–37 (2009)
32 Francesco Ricci, Lior Rokach and Bracha Shapira
55. Kramer, R., Modsching, M., ten Hagen, K.: Field study on methods for elicitation of prefer-
ences using a mobile digital assistant for a dynamic tour guide. In: SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pp. 997–1001. ACM Press, New York,
NY, USA (2006)
56. Lam, S.K., Frankowski, D., Riedl, J.: Do you trust your recommendations? an exploration of
security and privacy issues in recommender systems. In: G. M ¨
uller (ed.) ETRICS, Lecture
Notes in Computer Science, vol. 3995, pp. 14–29. Springer (2006)
57. Lee, H., Park, S.J.: Moners: A news recommender for the mobile web. Expert Systems with
Applications 32(1), 143 – 150 (2007)
58. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative
filtering. IEEE Internet Computing 7(1), 76–80 (2003)
59. Mahmood, T., Ricci, F.: Towards learning user-adaptive state models in a conversational rec-
ommender system. In: A. Hinneburg (ed.) LWA 2007: Lernen - Wissen - Adaption, Halle,
September 2007, Workshop Proceedings, pp. 373–378. Martin-Luther-University Halle-
Wittenberg (2007)
60. Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational
strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.) Hypertext, pp. 73–82. ACM (2009)
61. Mahmood, T., Ricci, F., Venturini, A., H¨
opken, W.: Adaptive recommender systems for travel
planning. In: W.H. Peter OConnor, U. Gretzel (eds.) Information and Communication Tech-
nologies in Tourism 2008, proceedings of ENTER 2008 International Conference, pp. 1–11.
Springer, Innsbruck (2008)
62. Mahmoud, Q.: Provisioning context-aware advertisements to wireless mobile users. Multi-
media and Expo, 2006 IEEE International Conference on pp. 669–672 (2006)
63. Manning, C.: Introduction to Information Retrieval. Cambridge University Press, Cambridge
(2008)
64. Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender systems. In:
Proceedings of the International Conference on Cooperative Information Systems, CoopIS,
pp. 492–508 (2004)
65. McCarthy, K., Salam´
o, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recom-
mender systems: a critiquing based approach. In: C. Paris, C.L. Sidner (eds.) IUI, pp. 267–
269. ACM (2006)
66. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In:
A. Aamodt, D. Bridge, K. Ashley (eds.) ICCBR 2003, the 5th International Conference on
Case-Based Reasoning, pp. 276–290. Trondheim, Norway (2003)
67. McGinty, L., Smyth, B.: Adaptive selection: An analysis of critiquing and preference-based
feedback in conversational recommender systems. International Journal of Electronic Com-
merce 11(2), 35–57 (2006)
68. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics
have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors
in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006)
69. McSherry, D.: Diversity-conscious retrieval. In: S. Craw, A. Preece (eds.) Advances in Case-
Based Reasoning, Proceedings of the 6th European Conference on Case Based Reasoning,
ECCBR 2002, pp. 219–233. Springer Verlag, Aberdeen, Scotland (2002)
70. McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into
the net. In: KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 627–636. ACM, New York, NY, USA (2009)
71. Mirzadeh, N., Ricci, F.: Cooperative query rewriting for decision making support and rec-
ommender systems. Applied Artificial Intelligence 21, 1–38 (2007)
72. Montaner, M., L´
opez, B., de la Rosa, J.L.: A taxonomy of recommender agents on the inter-
net. Artificial Intelligence Review 19(4), 285–330 (2003)
73. Nguyen, Q.N., Ricci, F.: Replaying live-user interactions in the off-line evaluation of critique-
based mobile recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference
on Recommender systems, pp. 81–88. ACM Press, New York, NY, USA (2007)
1 Introduction to Recommender Systems Handbook 33
74. Nguyen, Q.N., Ricci, F.: Conversational case-based recommendations exploiting a structured
case model. In: Advances in Case-Based Reasoning, 9th European Conference, ECCBR
2008, Trier, Germany, September 1-4, 2008. Proceedings, pp. 400–414 (2008)
75. Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental collaborative
filtering for highly-scalable recommendation algorithms. In: M.S. Hacid, N.V. Murray, Z.W.
Ras, S. Tsumoto (eds.) ISMIS, Lecture Notes in Computer Science, vol. 3488, pp. 553–561.
Springer (2005)
76. Park, M.H., Hong, J.H., Cho, S.B.: Location-based recommendation system using bayesian
user’s preference model in mobile devices. In: J. Indulska, J. Ma, L.T. Yang, T. Ungerer,
J. Cao (eds.) UIC, Lecture Notes in Computer Science, vol. 4611, pp. 1130–1139. Springer
(2007)
77. Park, S., Kang, S., Kim, Y.K.: A channel recommendation system in mobile environment.
Consumer Electronics, IEEE Transactions on 52(1), 33–39 (2006). DOI 10.1109/TCE.2006.
1605022
78. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Ar-
tificial Intelligence Review 13, 393–408 (1999)
79. Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation
techniques. In: Proceedings of the 3rd IEEE International Conference on Data Mining
(ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA, pp. 625–628 (2003)
80. Puerta Melguizo, M.C., Boves, L., Deshpande, A., Ramos, O.M.: A proactive recommen-
dation system for writing: helping without disrupting. In: ECCE ’07: Proceedings of the
14th European conference on Cognitive ergonomics, pp. 89–95. ACM, New York, NY, USA
(2007). DOI http://doi.acm.org/10.1145/1362550.1362569
81. Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: When being weak is
brave: Privacy in recommender systems. IEEE Internet Computing cs.CG/0105028 (2001)
82. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Advances in
Case-Based Reasoning, 7th European Conference, ECCBR 2004, Madrid, Spain, August
30 - September 2, 2004, Proceedings, pp. 763–777 (2004)
83. Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: Evaluating compound critiquing recom-
menders: a real-user study. In: EC ’07: Proceedings of the 8th ACM conference on Electronic
commerce, pp. 114–123. ACM, New York, NY, USA (2007)
84. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architec-
ture for collaborative filtering of netnews. In: Proceedings ACM Conference on Computer-
Supported Cooperative Work, pp. 175–186 (1994)
85. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–
58 (1997)
86. Ricci, F.: Travel recommender systems. IEEE Intelligent Systems 17(6), 55–57 (2002)
87. Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A.: Case-based travel recommendations. In:
D.R. Fesenmaier, K. Woeber, H. Werthner (eds.) Destination Recommendation Systems: Be-
havioural Foundations and Applications, pp. 67–93. CABI (2006)
88. Ricci, F., Missier, F.D.: Supporting travel decision making through personalized recommen-
dation. In: C.M. Karat, J.O. Blom, J. Karat (eds.) Designing Personalized User Experiences
in eCommerce, pp. 231–251. Kluwer Academic Publisher (2004)
89. Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile
recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007). DOI http://doi.
ieeecomputersociety.org/10.1109/MIS.2007.43
90. Sae-Ueng, S., Pinyapong, S., Ogino, A., Kato, T.: Personalized shopping assistance service
at ubiquitous shop space. Advanced Information Networking and Applications - Workshops,
2008. AINAW 2008. 22nd International Conference on pp. 838–843 (2008). DOI 10.1109/
WAINA.2008.287
91. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition
algorithms for highly scalable recommender systems. In: Proceedings of the 5th International
Conference in Computers and Information Technology (2002)
34 Francesco Ricci, Lior Rokach and Bracha Shapira
92. Sarwar, B.M., Konstan, J.A., Riedl, J.: Distributed recommender systems for internet com-
merce. In: M. Khosrow-Pour (ed.) Encyclopedia of Information Science and Technology
(II), pp. 907–911. Idea Group (2005)
93. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender
systems. In: The Adaptive Web, pp. 291–324. Springer Berlin / Heidelberg (2007)
94. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Min-
ing and Knowledge Discovery 5(1/2), 115–153 (2001)
95. Schifanella, R., Panisson, A., Gena, C., Ruffo, G.: Mobhinter: epidemic collaborative filter-
ing and self-organization in mobile ad-hoc networks. In: RecSys ’08: Proceedings of the
2008 ACM conference on Recommender systems, pp. 27–34. ACM, New York, NY, USA
(2008)
96. Schwartz, B.: The Paradox of Choice. ECCO, New York (2004)
97. van Setten, M., McNee, S.M., Konstan, J.A.: Beyond personalization: the next stage of rec-
ommender systems research. In: R.S. Amant, J. Riedl, A. Jameson (eds.) IUI, p. 8. ACM
(2005)
98. van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile
tourist application compass. In: W. Nejdl, P. De Bra (eds.) Adaptive Hypermedia 2004, pp.
235–244. Springer Verlag (2004)
99. Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. Journal of
Machine Learning Research 6, 1265–1295 (2005)
100. Sharda, N.: Tourism Informatics: Visual Travel Recommender Systems, Social Communi-
ties, and User Interface Design. Information Science Reference (2009)
101. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating ”word
of mouth”. In: Proceedings of the Conference on Human Factors in Computing Systems
(CHI’95), pp. 210–217 (1995)
102. Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving privacy in collab-
orative filtering through distributed aggregation of offline profiles. In: RecSys ’09: Proceed-
ings of the third ACM conference on Recommender systems, pp. 157–164. ACM, New York,
NY, USA (2009)
103. Sinha, R.R., Swearingen, K.: Comparing recommendations made by online systems and
friends. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Li-
braries (2001)
104. Smyth, B., McClave, P.: Similarity vs diversity. In: Proceedings of the 4th International
Conference on Case-Based Reasoning. Springer-Verlag (2001)
105. Swearingen, K., Sinha, R.: Beyond algorithms: An HCI perspective on recommender sys-
tems. In: J.L. Herlocker (ed.) Recommender Systems, papers from the 2001 ACM SIGIR
Workshop. New Orleans, LA - USA (2001)
106. Taghipour, N., Kardan, A.: A hybrid web recommender system based on q-learning. In:
Proceedings of the 2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara,
Brazil, March 16-20, 2008, pp. 1164–1168 (2008)
107. Taghipour, N., Kardan, A., Ghidary, S.S.: Usage-based web recommendations: a reinforce-
ment learning approach. In: Proceedings of the 2007 ACM Conference on Recommender
Systems, RecSys 2007, Minneapolis, MN, USA, October 19-20, 2007, pp. 113–120 (2007)
108. Tak´
acs, G., Pil´
aszy, I., N´
emeth, B., Tikk, D.: Scalable collaborative filtering approaches for
large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009)
109. Tan, P.N.: Introduction to Data Mining. Pearson Addison Wesley, San Francisco (2006)
110. Thompson, C.A., Goker, M.H., Langley, P.: A personalized system for conversational rec-
ommendations. Artificial Intelligence Research 21, 393–428 (2004)
111. Tung, H.W., Soo, V.W.: A personalized restaurant recommender agent for mobile e-service.
In: S.T. Yuan, J. Liu (eds.) Proceedings of the IEEE International Conference on e-
Technology, e-Commerce and e-Service, EEE’04, pp. 259–262. IEEE Computer Society
Press, Taipei, Taiwan (2004)
112. Van Roy, B., Yan, X.: Manipulation-resistant collaborative filtering systems. In: RecSys ’09:
Proceedings of the third ACM conference on Recommender systems, pp. 165–172. ACM,
New York, NY, USA (2009)
1 Introduction to Recommender Systems Handbook 35
113. Wang, J., Pouwelse, J.A., Lagendijk, R.L., Reinders, M.J.T.: Distributed collaborative filter-
ing for peer-to-peer file sharing systems. In: H. Haddad (ed.) SAC, pp. 1026–1030. ACM
(2006)
114. Wang, Y., Kobsa, A.: Performance evaluation of a privacy-enhancing framework for person-
alized websites. In: G.J. Houben, G.I. McCalla, F. Pianesi, M. Zancanaro (eds.) UMAP,
Lecture Notes in Computer Science, vol. 5535, pp. 78–89. Springer (2009)
115. Wietsma, R.T.A., Ricci, F.: Product reviews in mobile decision aid systems. In: Pervasive
Mobile Interaction Devices (PERMID 2005) - Mobile Devices as Pervasive User Interfaces
and Interaction Devices - Workshop in conjunction with: The 3rd International Conference
on Pervasive Computing (PERVASIVE 2005), May 11 2005, Munich, Germany, pp. 15–18.
LMU Munich (2005)
116. Xie, B., Han, P., Yang, F., Shen, R.: An efficient neighbor searching scheme of distributed
collaborative filtering on p2p overlay network. Database and Expert Systems Applications
pp. 141–150 (2004)
117. Yuan, S.T., Tsao, Y.W.: A recommendation mechanism for contextualized mobile advertis-
ing. Expert Systems with Applications 24(4), 399–414 (2003)
118. Zhang, F.: Research on recommendation list diversity of recommender systems. Management
of e-Commerce and e-Government, International Conference on pp. 72–76 (2008)
119. Zhang, M.: Enhancing diversity in top-n recommendation. In: RecSys ’09: Proceedings of
the third ACM conference on Recommender systems, pp. 397–400. ACM, New York, NY,
USA (2009)
120. Zhou, B., Hui, S., Chang, K.: An intelligent recommender system using sequential web ac-
cess patterns. In: Cybernetics and Intelligent Systems, 2004 IEEE Conference on, vol. 1, pp.
393–398 vol.1 (2004)
121. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists
through topic diversification. In: WWW ’05: Proceedings of the 14th international confer-
ence on World Wide Web, pp. 22–32. ACM Press, New York, NY, USA (2005)
... Хоча рекомендаційні системи почали активно досліджуватися і розроблятися лише в 90-х роках минулого століття [1], проте швидко стали невід'ємним атрибутом процесу інформатизації суспільства [2]. Якщо раніше рекомендаційні системи здебільшого використовувалися в електронній торгівлі [3], а також для надання рекомендацій щодо вибору фільмів, книг, ігор та розваг, то зараз вони активно використовуються у процесах дистанційного навчання [4][5] та системах підтримки прийняття рішень. ...
... Якщо раніше рекомендаційні системи здебільшого використовувалися в електронній торгівлі [3], а також для надання рекомендацій щодо вибору фільмів, книг, ігор та розваг, то зараз вони активно використовуються у процесах дистанційного навчання [4][5] та системах підтримки прийняття рішень. Останнє є надзвичайно актуальним [2], враховуючи, що інформація в таких системах сприймається споживачем як дані, що просіяні для конкретних людей, проблем, цілей і ситуацій. Тобто, тут інформація виступає основним ресурсом, необхідним для раціонального вирішення проблем. ...
Article
The article examines the features of algorithmization of processes in recommendation systems for personnel training and decision support. Such systems are a subclass of information filtering systems that allow building a certain rating based on requests or preferences. The development of recommendation systems is aimed precisely at finding the best solution within a limited pe-riod of time. In-depth analysis of complex problems is necessary to develop several alternatives that do differ significantly, including the possibility of inactivity. This is why each alternative should be evaluated. The paper reveals the features of recommendation systems in various fields of application. The conducted research allows us to conclude that there are some signifi-cant differences in the nature of providing recommendations to the end user when using dis-tance learning or decision support systems. Recommendations in such systems are shifted from the user's preferences directly to the person and the problem. When structuring the processes of the recommendation system to support decision-making, there is made a focus on the scientific method of substantiating questions. Therefore, the construction of algorithms for such systems is complicated from the first stage – observation, where obstacles or opportunities are identi-fied. Such a problem can be solved through systems of equations that describe processes in an organization with appropriate constraints. Presented in the article algorithm for evaluating and selecting alternatives is one of the options for building a system of recommendations if it is necessary to justify a management decision to expand activities of the company. It is shown that although they lie in the same plane, the solution to remove the problem and the search for an optimal solution are not equivalent. In addition, finding the best solution requires a larger data-base of information to create a recommendation system.
... Thus far we have focused on the implications of predictive algorithms based on one's own previous behavior. However, algorithms also serve content based on the prior behavior of similar others or people in general (Aggarwal, 2016;DiResta, 2020;Ricci et al., 2011;Tkalcic et al., 2009). For example, an in-depth analysis of Google search results suggests that they are both tailored to one's own prior search history as well as the search history of other users with a similar profile (Feuz et al., 2011). ...
Article
Full-text available
We evaluate how features of the digital environment free or constrain the self. Based on the current empirical literature, we argue that modern technological features, such as predictive algorithms and tracking tools, pose four potential obstacles to the freedom of the self: lack of privacy and anonymity, (dis)embodiment and entrenchment of social hierarchy, changes to memory and cognition, and behavioral reinforcement coupled with reduced randomness. Comparing these constraints on the self to the freedom promised by earlier digital environments suggests that digital reality can be designed in more freeing ways. We describe how people reassert personal agency in the face of the digital environment’s constraints and provide avenues for future research regarding technology’s influence on the self.
Article
An efficient Cluster Based Cab Recommender System (CBCRS) assists the cab drivers with the recommendations about passenger pickup location available at the shortest distance from him. To recommend drivers about the passenger pickup location, one need to group the Global Positioning System (GPS) coordinates of several pickup points of the same geographic region. The GPS coordinates of cab pick-up points are unsupervised data. Clustering of unsupervised cab dataset is troublesome since cab dataset is a large database and clustering techniques when applied on such large datasets do not generate good clusters for GPS datapoints. Therefore, this research paper proposes an improved hybrid clustering algorithm which combines the features of Partition-based clustering and Hierarchical Based Clustering techniques. Thus, the objectives of the research paper are four folds: firstly, the research paper identifies various clustering techniques to cluster GPS Coordinates. Secondly, to design and develop an improved hybrid clustering algorithm for CBCRS. Thirdly, the research paper compares the clusters formed by the proposed algorithm with standard K-Means and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) using three datasets over Silhouette Coefficient and Calinski-Harabasz Score. Finally, the paper concludes and analyses the results of the proposed algorithm.
Chapter
Recommendation systems (RS) are decision support tools created to deal with information overload, which is the main challenge of the modern digital world. The aim of RS is to provide users with interesting items based on their preferences. Collaborative filtering (CF) is the most implemented recommendation technique, it is based on the idea that similar users have similar preferences. Evidential CF is a subclass of classical CF handling uncertainty using the framework of Dempster–Shafer Theory (DST). Evidential CF recommenders (ECFRS) are suitable for critical domains such as healthcare and threat assessment, where uncertainty management remains a major challenge. In this paper, we developed a user-based evidential CF system, where the number of the co-rated items is considered in predictions generation. The proposed approach is based on Evidential KNN where the Jaccard factor is used in the neighborhood selection. Our approach is tested using Movielens dataset. Experimental results show the importance of introducing a co-rating factor in improving the recommendation quality of traditional ECFRS.KeywordsRecommender systemUser-based CFCo-ratingDempster–Shafer theoryEvidential KNN
Article
Full-text available
Deep Neural Networks (DNN) has attained impressive results in various natural language processing tasks. It attracts the researchers to apply DNN in the Recommender Systems (RS). Typically, majority of the recommendation algorithms apply Collaborative Filtering (CF) to recommend the items of user interest. Recently, so many researchers have applied CF with deep learning for RS. But most of the recommendations exploit only on the implicit data like user clicks, page visit, item description and employs matrix factorization with an inner product to obtain the correlations. To improve the performance of the recommendation system, we propose a novel architecture named Outer Product Based Residual CNN. The proposed model utilizes an explicit user-item sparse rating matrix and outer product function to learns high-order correlations that exist between the users and items latent features. The experimental result shows that the proposed methods outperform the state of art methods.
Article
Full-text available
Deep neural networks have been well-known for their superb handling of various machine learning and artificial intelligence tasks. However, due to their over-parameterized black-box nature, it is often difficult to understand the prediction results of deep models. In recent years, many interpretation tools have been proposed to explain or reveal how deep models make decisions. In this paper, we review this line of research and try to make a comprehensive survey. Specifically, we first introduce and clarify two basic concepts—interpretations and interpretability—that people usually get confused about. To address the research efforts in interpretations, we elaborate the designs of a number of interpretation algorithms, from different perspectives, by proposing a new taxonomy. Then, to understand the interpretation results, we also survey the performance metrics for evaluating interpretation algorithms. Further, we summarize the current works in evaluating models’ interpretability using “trustworthy” interpretation algorithms. Finally, we review and discuss the connections between deep models’ interpretations and other factors, such as adversarial robustness and learning from interpretations, and we introduce several open-source libraries for interpretation algorithms and evaluation approaches.
Article
Full-text available
Popularity bias is defined as the intrinsic tendency of recommendation algorithms to feature popular items more than unpopular ones in the ranked lists lists they produced. When investigating the adverse effects of popularity bias, the literature has usually focused on the most frequently rated items only. However, an item’s popularity does not always indicate that it is highly-liked by individuals; in fact, the degree of liking may even introduce biases that are more extreme than the famous popularity bias in terms of beyond-accuracy evaluations. Therefore, in the present study, we attempt to consider items that are both popular and highly-liked, which we refer to as blockbuster items, and to investigate whether the recommendation algorithms impose a considerable bias in favor of the blockbuster items in their ranking-based recommendations. To this end, we first present a practical formulation that measures the degree of the blockbuster level of the items by combining their liking-degree and popularity effectively. Then, based on this formulation, we perform a comprehensive set of experiments with ten different algorithms on five datasets with different characteristics to explore the potential biases towards blockbuster items in recommendations. The experimental outcomes demonstrate that most recommenders propagate an undesirable bias in their recommendations towards the blockbuster items, and such a bias is, in fact, not caused by the item popularity. Moreover, the observed biases to blockbuster items are more harmful and persistent than those to popular ones in terms of beyond-accuracy aspects such as diversity, catalog coverage, and novelty. The obtained results also suggest that conventional popularity-debiasing strategies are not so talented in treating the adverse effects of the observed blockbuster bias in recommendations.
Article
Recommender systems are currently software tools that are focused on providing users with the best choices in an overloaded search space of possible options. Hence, group recommender systems have recently become an important trend in recommendation, because they aim at recommending a special type of items so-called social items, that tend to be consumed in groups such as TV programs, travel packages, etc. Among the different types of algorithms applied for group recommender systems, this paper is focused on content-based group recommender systems, as a novel group recommendation paradigm that exploits item features in the recommendation generation process. Specifically, our goal is to introduce a new content-based group recommendation approach, based on the recommendation aggregation paradigm whose main novelty is the development of a dynamic selection process of the aggregation scheme. Such an approach is centered on the identification of group's characteristics that are matching with the most appropriate function to use in the individual recommendation aggregation step. To perform such a matching, it is proposed a fuzzy decision tree induction process. The experimental evaluation shows that this scheme improves the recommendation performance of previous content-based group recommendation approaches, as well as it serves a starting point for further research based on this dynamic selection paradigm.
Article
Purpose The existing collaborative filtering algorithm may select an insufficiently representative customer as the neighbor of a target customer, which means that the performance in providing recommendations is not sufficiently accurate. This study aims to investigate the impact on recommendation performance of selecting influential and representative customers. Design/methodology/approach Some studies have shown that review helpfulness and consistency significantly affect purchase decision-making. Thus, this study focuses on customers who have written helpful and consistent reviews to select influential and representative neighbors. To achieve the purpose of this study, the authors apply a text-mining approach to analyze review helpfulness and consistency. In addition, they evaluate the performance of the proposed methodology using several real-world Amazon review data sets for experimental utility and reliability. Findings This study is the first to propose a methodology to investigate the effect of review consistency and helpfulness on recommendation performance. The experimental results confirmed that the recommendation performance was excellent when a neighbor was selected who wrote consistent or helpful reviews more than when neighbors were selected for all customers. Originality/value This study investigates the effect of review consistency and helpfulness on recommendation performance. Online review can enhance recommendation performance because it reflects the purchasing behavior of customers who consider reviews when purchasing items. The experimental results indicate that review helpfulness and consistency can enhance the performance of personalized recommendation services, increase customer satisfaction and increase confidence in a company.
Chapter
Personalized interaction with computer systems can be at odds with privacy since it necessitates the collection of considerable amounts of personal data. Numerous consumer surveys revealed that computer users are very concerned about their privacy online. The collection of personal data is also subject to legal regulations in many countries and states. This talk presents work in the area of Privacy-Enhanced Personalization that aims at reconciling personalization with privacy through suitable human-computer interaction strategies and privacy-enhancing technologies.
Article
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes various limitations of current recommendation methods and discusses possible extensions that can improve recommendation capabilities and make recommender systems applicable to an even broader range of applications. These extensions include, among others, an improvement of understanding of users and items, incorporation of the contextual information into the recommendation process, support for multicriteria ratings, and a provision of more flexible and less intrusive types of recommendations.
Book
Tourism is a multi-billion dollar international industry and also one of the biggest users of Web technologies, constantly adopting innovative ideas to enhance its market penetration. Tourism Informatics: Visual Travel Recommender Systems, Social Communities and User Interface Design provides cohesive coverage of cutting-edge e-tourism systems and directions for future research and development. A defining body of research, this innovative collection provides academicians, researchers, and practitioners with a better understanding of this expanding industry.
Chapter
An emerging area of study within technology and tourism focuses on the development of technologies that enable Internet users to quickly and effectively find relevant information about selected topics including travel destination and transportation. This area of tourism research and development is generally referred to as destination marketing/recommendation systems. This book provides a comprehensive synthesis of the current status of research on destination recommendation systems. Part I (chapters 1-5) considers the importance of understanding consumer behaviour, especially information search and decision-making-related behaviour, in designing effective travel recommendation systems. Part II (chapters 6-12) discusses critical methodologies and considerations for destination recommendation design. Part III (chapters 13-17) introduces four distinctly different systems that have been developed based upon the notions outlined in the previous chapters. Part IV (chapter 18) focuses on the future of recommendation systems for travellers. The book has a subject index.