The purpose of this note is to consider certain connections between injectivity,p-injectivity and a generalisation of quasi-injectivity notedGQ-injectivity (cf. definition below). It is proved that ifA is a leftGQ-injective ring andZ the left singular ideal ofA, thenA/Z is von Neumann regular andZ is the Jacobson radical ofA (this extends the well-known result ofY. Utumi for left continuous rings [9]). If the sum of any twoGQ-injective leftA-modules isGQ-injective, thenA is a left Noetherian, left hereditary, leftV-ring. Semi-prime rings whose faithful left modules areGQ-injective must be semi-simple Artinian. IfA is commutative, the following are equivalent: (1)A is a finite direct sum of field; (2) EveryGQ-injectiveA-module is injective; (3) AnyA-module isGQ-injective if, and only if, it isp-injective; (4) AnyA-module is quasi-injective if, and only if, it isp-injective. Also, a commutative ringA is hereditary Noetherian if, and only if, the sum of any twop-injectiveA-modules is injective.