ChapterPDF Available

Crassulaceae

Authors:

Abstract

Perennial or rarely annual or hapaxanthic herbs to (sub) shrubs, rarely aquatics, treelike, epiphytic or scandent, with ± succulent leaves, sometimes with succulent stems, rhizomes, underground caudices or succulent roots; indumentum of uni- or multicellular, often glandular hairs, or plants glabrous. Leaves (sub) sessile or rarely petiolate, usually alternate and spiral, or opposite-decussate or rarely whorled, frequently aggregated into rosettes, simple, rarely compound, usually entire or crenate to lobed, rarely dissected, estipulate. Inflorescences usually terminal, bracteate, usually many-flowered, basically thyrsoids, also pleio-, di-or monochasia (cincinni) or rarely true panicles, racemes or spikes. Flowers hermaphrodite, rarely unisexual, actinomorphic or very rarely zygomorphic, usually proterandrous, (3-)5(-32)- merous; sepals free or connate at base, sometimes distinctly unequal in size; petals free or connate to a short to long corolla tube; stamens as many as or usually twice as many as petals; filaments free or ± connate with a tubular corolla; anthers basifixed in basal pit, 4-sporangiate, 2-locular at anthesis, dehiscence latrorse or slightly introrse by longitudinal slits; ovary usually ± superior to semi-inferior; carpels as many as petals, usually free or almost so, sessile or sometimes stipitate, tapering gradually to abruptly into short to long, erect to divergent stylodia, basally with a small to conspicuous dorsal nectary scale; stigma small, (sub) apical, often poorly differentiated; ovulesusually many, rarely few to one, anatropous, crassi-or tenuinucellate, bitegmic, on parietal to marginal placentae. Fruits usually follicles, and usually ± completely dehiscent along the ventral suture, rarely few-seeded, indehiscent and nutlike; seeds smallish, usually 0.5–1 mm long,elongate-fusiform, longitudinally ridged (costate) or papillate (uni-or rarely multipapillate), rarely (nearly) smooth, usually brownish; embryo small, straight; endosperm cellular, scanty.
Crassulaceae 93
tribe
EI
to I
lsl
to I
t!_i
F]
E_l
EI
tEI
lo I
lll
t--l
tsl
E]
l-t
l'l
tl
l"l
tl
l.l
ll
tl
l"l
tl
l,l
I
l"l
t_l
North
Africa -{
r-
5
t-
n-
rl,
ES
t\
.))
r-
1e
rP
ic
ae
rd
li-
u-
ES
n-
le
ra
d
't_
re
n,
clade
Rhodiola
rytvum
- Aeonium
'Leuco-
sedum
S. ser. Pubescens
[G]
S. ser. Caerulea lGl
S. ser. Monanthoidea
[G]
Aichryson
Monanthes
Aeonium
S. magel/ense
[G]
S. dasyphyllum [G]
S. tydium lGl
Rosularia
S. sedoides
[G]
S. hispanicum
[G]
S. commixtum lGl
Prometheum
S. gracle [G]
Sedella
Dudleya
S. div. spp.
[S]
(Asia)
S. div. spp.
[S]
(Europe)
S. sexangu/are
[S]
S. fannosum
[S]
S. ser. Macaronesica [S]
Villadia
S. oaxacanum
lSl
S. obcordafum
[S]
Lenophyllum
S. fernafum
[S]
S. hemsleyanum
[S]
S. fuffuraceum lSl
S. sect. Pachysedum
[S]
Graptopetalum
Thompsonella
Echeveria
Pachyphytum
Adromischus
Kalanchoe
Tylecodon
Cotyledon
Crassu/a
Macaronesia
Europe/
Mediterranean/
Near EasV
(CentralAsia)l
North America
taxon distribution ::"
spp.
Slnocrassu/a l
Kungia l, , .r
Meterostachys f f;mnerate ä
Orostachys
subs. Append. I
Hytotetephium )
Umbilicus I
Pseudosedum I temoerate t
Rhodiota f atiu 1e
Medit')
i
Phedimus )
Sempervivum Europe/N.East
S. assyrlacum
[G] Near East N
S.
mooneyifG] NE Africa ;
Petrosedum Eurooe/Medit.
family
F
I
I,l
!
l'l
l=l
I
I
l,l
!
l"l
L_l
subfa-
mily
f
l'l
l"l
l=l
l"l
tl
l'l
l.l
tl
ll
l'l
l"l
l"l
tl
l"l
l'l
tl
lo I
L]
FI
lAl I
E]
t-öt
td I
I
!',_J
II
)
]
-'t
F
)Asia
Europe
Europe a
-|Macaronesia
I
tn
9S
3S
)r
e- North
America
\r"n",,,,"
-,|
n,o,o
Kalanchoe
***
Crassula
ll5
t\
| (South)
Africa ü
)'
(South)Africa \
(n
Crassulaceae 109
reli'
t r-t
)or
rtt).
{t0
ons
,
gar
and
)g)',
sed
ned
rted
-lus,
:hin
allv
also
)s.
rbg.
the
rdes
;sile
1t0
in
rica
Ium
ade
rlar
rdly
:eds
320
r20
to-
rbg.
t al.
uhl
: al.,
tml
ned
:ent
ous
Ling
;eo-
:ent
roots); Ieaves usually terete-subulate,
* conspic-
uously spurred at base; inflorescences t elongate
thyrsoids, often spike- or raceme-like,
with
6-70(-150) cincinnoid partial inflorescences
with
1-5(-8) flowers;
sepals
(almost)
free, (always?)
spurred at base;
petals connate
at base,
lobes
spreading
to reflexed
or erect, whitish to pink or
reddish; stylodia t recurved; fruits
erect. n = 9-17,
20-22,33 and
higher.
About 21 species in southern
USA (south-western
Texas), Mexico,
Guatemala
(Baja
Yerapaz),
Peru, at
(600-)1,500-4,000
m.
Divided into seven informal species groups
(Thiede
in Eggli
2003). Appears
to be closest
to
Sedum sect.
Fruticisedum
(IJhl and Moran,
l.c.).
Täxa
formerly classified
in sect.
Altamiranoa are
now placed in Sedum
(Moran 1996; Thiede
and
't Hart 1999).
24. Lenophyllum
Rose
Lenophyllum Rose, Smithsonian Misc. Collect. 47:159
(190a);
Moran, Haseltonia 2:l-19 (1994),
rev.
Herbs,
roots
fibrous
or thickened; leaves
decussate
in few
basal
pairs,
elliptic, roundish
or rhombic;
inflorescences
thyrsoids with several
cincinni,
narrow
thyrsoids of compact
cincinni or reduced
to racemes
or spikes
above or throughout;
sepals
erect or ascending, nearly
equal, * as long
as open
corolla; petals
in upper half
spreading to recurved,
(ob)lanceolate,
yellow(ish); stamens slightly
exserted;
nectary scales subquadrate;
carpels
erect,
narrog tapering
into slender
stylodia;
fruits
erect. n --
22,32,33,44.
Seven species, from USA
(southern
Texas)
and
north-eastern
Mexico.
Genera
25-28
Stems at least
basally
woody,
but many
taxa with
sessile rosettes; leaves
usually
thick and strongly
succulent, in t distinct rosettes;
inflorescences lat-
eral;
petals
at
least
basally connate.
x - 30-34 with
secondary
reductions.
Centred
in Mexico.
According to molecular data (Mort et al.
2001),
these
genera
form a distinct American
clade
(--'Echeveria
group'), together with Sedum
sect.
Pachysedum. The latter shares
the above
characters, except
for its
choripetalous
flowers.
25, GraptopetalumRose
Graptopetalum
Rose, Contr.
U.S.
Natl Herb. 13'296
(1911);
Acevedo et al.,
Brittonia
56:185- 194
(2004),
morph. phylog.;
Acevedo
et al., Amer. |. Bot. 91:1099-1104
(2004),
mol.
phylog.
Byrnesia
Rose
( 1922).
Tacitus Moran (1974).
Herbs
(sect.
Graptopetalum)
to subshrubs
(sect.
Byrnesia); Ieaves
obovate to (broadly)
spathulate,
usually mucronate in sect. Graptopetalum; usually
+ glaucous-pruinose;
inflorescences
thyrsoids
with few to many cincinnoid partial inflores-
cences, or pleiochasia
with few
cincinnoid partial
inflorescences;
flowers
(4)5(-
10)-merous,
stamens
diplostemonous,
rarely haplostemonous;
sepals
appressed, free to base and + equal in size;
petals
slightly connate
at base, spreading stellately,
basicallywhitish
or
yellowish
(to
greenish), usually
with reddish
to brown cross-band markings or
blotches becoming denser towards tips, rarely
uniformly coloured; stamens
first erect, after
anther dehiscence spreading
and the antesepa-
lous stamens recurved
between the petals,
after
anthesis becoming
erect again; carpels
shortly
connate at base;
stylodia normally abruptly
offset;
fruits ascending
to erect; seeds
usually
reticulate.
n = 30-32,
34, 35,
62, 64, 66, 68, +93, +170,
+175, 192,
+204, +208, +244, +270. Eighteen
species,
USA (central and southern Arizona),
Mexico
(widespread
from Sonora and Chihuahua
to Oaxaca);
rocky
places,
to 2,400 m.
Divided into sect.
Byrnesia
and sect.
Grap-
topetalum
(incl. Tacitus). According
to molecular
data,
Graptopetalum
and
its sections are not mono-
phyletic, and Tacitus,
Cremnophila
(= Sedum)
and selected species
of Sedum and
Echeveria
are
interspersed
among
its
species
(Acevedo
et
al. l.c.).
26. Thompsonella Britton
& Rose
Thompsonel/a
Britton & Rose, Contr. U.S. Natl Herb.
12.391(1909);
Moran, Cact.
Succ.
I. (U.S.)
64:37-44
(1992),
synopsis.
Glabrous herbs
or subshrubs; leaves in rosettes,
flattish, semi-amplexicaul,
often glaucous, mar-
gins straight or undulate; inflorescences erect
narrow
thyrsoids or spicate above or as a whole,
with 10-70, 1-12-flowered
cincinni; flowers
(almost)
sessile;
sepals free, (sub)equal,
clavate;
petals
shortly connate at base, imbricate in bud,
spreading
from middle, outer face
pale, inner
face
* dark purplish-red; nectary
scales minute;
carpels shortly
stipitate, shortly
connate at base;
stylodia slender; fruits erect; seeds
reticulate
with irregular
longitudinal rows. n = 26,52.
Six
species, central and southern Mexico; usually on
limestone.
110 |. Thiede and U.
Eggli
Genera
27 + 28
Petals upright and connate
for most of their length;
sepals
often strongly unequal in size;
petals thick-
fleshy;
anthers
(light) yellow; fruits divergent.
27, EcheveriaDC.
Echeveria DC., Prodr. Syst.
Regni Veg. 3:401
(1828);
Walther,
Echeveria
(1972),
rev.
Oliverella
Rose
(
1 903).
Urbinia
Britton
& Rose
(1903).
Oliveranthus
Rose
(
1905).
Glabrous to hirsute herbs to subshrubs; stem
none or tall, branching or not; leaves rarely
scattered along the stems, usually (ob)lanceolate
and mucronate, often glaucous
or highly coloured;
inflorescences, racemose, paniculate, or rarely
spicate
thyrsoids, or cymose with one to several
cincinni; pedicels usually with one to several
minute bracteoles; sepals
reflexed
to appressed but
usually somewhat expanding, almost completely
free, equal to strongly unequal; corolla cylindri-
cal to pentagonal to urceolate; petals imbricate
(valvate in Ser. Valvatae), white through yellow
and orange to red, rarely green(ish), inner surface
usually with nectar-cavity at base; stamens 10,
5 attached at top of nectar-cavities, 5 at top of
corolla tube between petals; carpels connate at
base, erect at anthesis; stylodia slender; fruits
widely divergent follicles; seeds reticulate or
smooth. n = L2-34,
polyploid from 28-25A. About
139 species, centred in (southern) Mexico, also
southern USA (Texas) and Central and South
America (Venezuela, Colombia, Ecuador, Peru,
Bolivia, northern Argentina).
Divided into 17 series
(Kimnach
in Eggli 2003).
28. PachyphytumLink, Klotzsch & Otto
Pachyphytum Link, Klotzsch & Otto, Allg. Gartenzeitung
9:9-10
(1841).
Subshrubs;
stems first erect,
with age usually de-
cumbent to pendent, not or few-branched; leaves
obovate, spathulate, elliptic-oblong or lanceo-
late, usually very thick, usually conspicuously
glaucous-farinose; inflorescences almost always
simple cincinni, first drooping,later * erect;
floral
bracts 5-9 mm in sect. Diotostemon
or usually
13-30
mm in sect. Pachypltytum; sepals erect,
appressed,
almost equal
(sect.
Diotostemon) or (of-
ten strongly) unequal (sect.
Pachyphytum); petals
erect
(sect.
Diotostemon)
or spreading
to divaricate
(sect.
Pachyphytum),
* oblong to oblanceolate,
white to pink, rarely orange
to red(dish), inner
face in upper
part often
with red blotch in sect.
P a
chy
phy
t um, Iaterally ne
ar b
as
e
with app
endages
which form two free,
1-2
mm large
scales
beneath
filaments; antetepalous
filaments connate
with
corolla, antesepalous ones
(almost)
free;
nectary
scales oblong, * yellowish(-white); carpels
erect
at anthesis, f free;
stylodia
inconspicuously
offset
to abruptly narrowing; fruits usually divergent
follicles; seeds fairly smooth. n - 3l-33,62,64,66,
96,99, +I24, +128, +160, +186.
Fifteen species,
in eastern central
Mexico,
(600-)
I,200-2,500
m.
Divided into sections
Diotostemon and
Pachy-
phytum
(Thiede
in Eggli 2003). The morphology
of
the petal scales was studied by Leinfellner
(195a);
similar scales also occur
in som
e Echeveria spe-
cies. Pachyphytum maybe
nested within Echeveria
and closest
to its sect. Urceolatae
(Thiede
in Eggli
2003).
II. SuspA,r,r.
KaTRNcnoIDEAE A. Berger
(1930).
Shoots * woody*;
tissues
(always?)
with crystal
sand*;
petals
connate
to
strongiy
developed
corolla
tubex; anthers with terminal,
f spherical
connec-
tive appendage*; seeds with few (4-6) costae*
in
side view, coronate* . x - 9*.
Genera 29-32.
Note that Kalanchoideae are morphologically
highly derived,
although cladistically
they are
the
second
clade
branching off from the
remainder
of
the family.
29. AdromischusLem.
Adromischus Lem., lard. Fleur. misc. 2:58-59 (1852);
Pilbeam et al., Adromischus
(I998),
synopsis.
Shrublets to * 20 cm; stems
fleshy-woody;
leaves
flat to almost terete,
glabrous
or glandular-hairy,
often with thick wax bloom;
inflorescences erect
spike-like thyrsoids
or spikes
without terminal
flower, to 55
cm, with few to numerous,
1-5-
flowered dichasia; flowers usually erect, rarely
pendulous (A. phillippsiae (Marloth) Poelln.);
corolla usually long and narrow;
petals
white to
pink to red, rarely bright orange,
Iobes
at sinuses
joined by thin membrane; filaments slightly
exserted
or included, papillate where connate
with corolla tube; carpels elongate;
fruits follicles,
(always?)
dehiscing completely along ventral
Crassulaceae
lte,
ner
3ct.
8es
ath
'ith
ary
'ect
[set
ent
66,
ies,
lry
Yof
;a);
pe-
tria
Sgli
!0).
stal
olla
rec-
'in
ally
the
rof
t52);
tves
iry,
rect
inal
-5-
rely
n.);
:to
rSES
htly
rate
:les,
tral
suture. n = 9. About 28 species,
Namibia, South
Africa (especially
Succulent
and Little Karoo).
30. Kalanchoe
Adans. Fig.
28
Kalanchoe
Adans., Fam. Pl. 2:248 (1763);
Hamet, Bull.
Herb.
Boiss.
II,7:870-900
(1907)
& 8:17-48
(1908);
Hamet
& Lapostolle,
Genre
Kalanchoe au |ardin Botanique
"Les
Cödres"
(I96a);
Raadts,
Willdenowia 8:
101-
157
(1977
), rev.
E. Afr.; Fernandes,
Bol. Soc.
Brot. II, 53:325-442
(1980)'
African taxa; Boiteau & Allorge-Boiteau,
Kalanchoe
de
Madagascar
(1995); Gehrig et al., Pl. Sci. 160:827-835
(2001),
mol.
phylog.
Bry ophyllun Salisbury
(
I 805).
Kitchingia
Baker
(
I 881
).
Shrublets
to shrubs,
rarely
rosulate
or small
trees,
or biennial to annual;
leaves usually
decussate,
rarely
alternate,
verticillate
or subrosulate,
* flat,
rarelyterete,
sometimes
t incised
or 3- to
5-foliate,
margins
usually
crenate,
serrate
or dentate,
partly
with bulbils
(usually
in sect.
Bryophyllum),
rarely
entire;
inflorescences
rarely axillary,
corymbose
or paniculate thyrsoids, partial inflorescences
dichasial,
rarely
inflorescences
few-
to 1-flowered;
flowers
4-merous,
* erect
(usually
in sect.
Kalan-
choe)
or pendent
(usually
in sects.
Kitchingia and
Bryophyllum);
sepals
free, connate
or forming
long,
sometimes
t inflated tube (usually
in sect.
Bryophyllum);
petals usually brightly coloured,
lobes
shorter
than
corolla
tube, erect,
spreading
or
reflexed;
filaments
exserted
or included,
connate
to corolla
tube
at
base
(sect.
Bryopltyllum)
or at or
above
middle (sects.
Kalanchoe
and
Kitchingia);
carpels
free to somewhat
connate
at base,
erect or
somewhat
spreading
(sect.
Kitchingia);
fruits
erect
follicles.
n = usually
17, also
18,20,34,35,36,51,
85. About
144 species,
mainly
Madagascar,
eastern
and southern
Africa,
to tropical
Africa,
Arabia
and
tropical
and
Southeast
Asia; some
taxa
(especially
K. pinnata (Lam.)
Pers.) are neophytic
invaders
throughout
the tropics.
Divided into three sections:
the widespread
sect.
Kalanchoe,
and the Malagasy
sects.
Kitchin-
gia and
Bryophyllum.
31. Tylecodon
Toelken
Tylecodon
Toelken,
Bothalia
12'378
(197S);
van
Jaarsveld
&
Koutnik, Tylecodon
& Cotyledon
(2004),
rev.
Shrublets
or dwarf geophytes to pachycaul
dwarf
trees to 2.5 m; stems succulent,
rarely woody,
usually
with flaking
bark;
leaves
usually
crowded
at stem tips, soft-herbaceous,
with elongate
epidermal cells with sinuate anticlinal walls,
often
(always?)
with bladder-cells
idioblasts'
usu-
ally completely
drought-deciduous;
inflorescences
thyrsoids
with one
to several
dichasia;
petals
white,
greenish,
yellowish
or mauve,
rarely
reddish;
fila-
ments usually
exserted,
hairy
where
connate
with
corolla tube; fruits follicles,
dehiscing
apically
only;
seeds
with irregular costae.
Forty-six
species,
winter-rainfall regions of Namibia and South
Africa,
mainly Succulent
Karoo.
Growing
season
autumn
to early
summer;
flowering
t in summer.
Sister
to Cotyledon,
according
to molecular
data
(Mort et al.
2001).
The
two genera
have
in
common
basally
hairy
fi.laments.
32. CotyledonL.
Cotyledon
L.,
Sp.
Pl.:429
(1753);
van
Jaarsveld
& Koutnik,
Tylecodon & Cotyledon
(2004),
rev.;
Mort et al.,
Amer.
|.
Bot.
92:1170-1176
(2005),
mol. phylog.
Procumbent to erect shrublets to shrubs, rarely
climbers; stems usually becoming woody; leaves
decussate,
flat or terete,
rarely lobed or orbicular,
glabrous
or (glandular) hairy; inflorescences
thyr-
soids with several
dichasia,
ending in monochasia
with one to many pendent flowers; corolla tube
hairy or glabrous; dried calyxlcorolla complex cir-
cumscissile
along
basal
groove;
filaments
exserted,
hairy where connate
with corolla tube; carpels
ta-
pering
into erect
stylodia;nectary
scales
* cuplike.
n = g.Eleven
species,
southern
and eastern
tropical
Africa, south-western
Arabian Peninsula.
According
to
molecular
data
(Levsen
et
al.,l.c.),
the variable
Cotyledon
orbiculataL. is polyphyletic.
The circumscissile
calyx/corolla complex present
in all Cotyledon
is found also
in at least some TyIe-
codon and
Kalanchoe
spp.
(Moran 2000), and may
represent a synapomorphy for these
three genera.
III. SusrA,M.
CnRssur.oIDEAE
Burnett
(1835).
Leaves decussate*,
rarely ternate or whorled; flow-
ers haplostemonous*; anthers slightly introrsex,
nucellus tenuinucellate*; fruits opening * com-
pletely along whole suture, but releasing seeds
through apical
pore*; seeds
sinuate-unipapillate*.
Genera
33
+ 34.
Note that Crassuloideae are morphologically
highly derived, although cladistically
they are the
first clade
branching off from the remainder of the
family.
t12 J.
Thiede
and U. Eggli
Fig.31. Crassulaceae. Crassula
columnaris. A Flowering
plant. B Flowet opened out. C Young plant seen
from above.
(Berger
1930)
33. CrqssulaL. Fig.31
Crassula L., Sp. Pl;282 (I753);
Toelken,
Contr.
Bolus
Herb.
8 (1977),
rev.
southern African taxa; Tölken,
f. Adelaide
Bot. Gard. 3:57-90 (1981),
rev. Austral. taxa; Blwater &
Wickens, Kew Bull. 39:699-728
(1984),
rev. New World
taxa;
Mort et. al., IOS Bull. 12:35-36
(2004),
mol. phylog.
(abstract).
TillaeaL.
(17s3).
Rochea DC.
(1802).
Perennial or rarely
annual herbs
to (sub)shrubs,
rarely tuberous geophytes;
glabrous, papillate
or hairy; leaves
decussate
or rarely in whorls
of 4, partly with bladder-cell
idioblasts
and leaf
bases connate within a pair (usually in subg.
Crassula);
inflorescences
thyrsoids with 1 to
many dichasia, sometimes partial inflorescences
glomerate, monochasia
or reduced to solitary
flowers;
corolla urn-shaped
to tubular
or stellate;
flowers
(2-)5(-12)-merous,
usually
small; sepals
shortly connate at base; petals
shortly connate
at base,
partly with apex papillate
on outer
face
and with distinct appendage
(usually
in subg.
Crassula) often * whitish; filaments shortly adnate
to petals
at base and
alternate
with these; carpels
usually
free;
fruits rarely nutlike
and
indehiscent.
n = 8,7 and polyploids.
About 195
species;
mainly
southern Africa, a few species in sub-Saharan
Africa and
south-western
Arabia, some ephemeral
herbs ('TiIIaea')
distributed worldwide,
and the
oniy
genus of the family in Australia.
Divided into the paraphyletic
subg.
Disporo-
carpa with nine sections
(hydathodes
of type I,
rarely
type II; n = 8,
rarely
7) and
subg.
Crassula
with eleven sections
(hydathodes
of type IIl' n - 7
with two satellites; Friedrich 1.973; Toelken
1977
l.c.;
Martin and von
Willert 2000). The ephemeral
herbs
of sects. Helophytum
and Glomeratae,
often
segregated
as genu s Tillaea,
are
nested within Cras-
sula,
according to molecular data
('t Hart unpubl.
data).
34. Hypagophytum
A. Berger
Hypagophytum
A. Berger in Engler & Prantl, Nat. Pflanzen-
fam., ed. 2, l8a:467-468 (1930); Gilbert, Opera Bot.
12r:47-50
(1993).
Tuberous
geophytes;
stems one to few,
drought-
deciduous;
leaves
ternate, sessile
or with petiole-
like base, somewhat spurred at base, flat;
inflorescences
usually with 3 monochasia
below
terminal flower; flowers 10-l2-merous,
stellate;
sepals free; petals
white or with faint pink tinge;
carpels free,
laterally compressed,
constricted into
two segments, upper part spiny-papillate,
with
long filiform stylodia; fruits 2-seeded,
breaking
transversely
at the constriction, upper seed
dispersed
within the upper part of the carpel,
lower seed released
separately.
Only 1 species,
H. abyssinicum
(Hochst.
ex A. Rich.)
A. Berger in
north-western
Ethiopian
highlands.
Characterised by a unique combination of spe-
cialised features,
which all occur
in Crassula
(tu-
bers
with annual
shoots, whorled leaves, hydath-
odes
along leaf
margins,
haplostemonous
and
poly-
merous flowers,
and
the
peculiar
fruits). The seed
surface structure
was
given
as
costate by Gilbert
(1989
and
l.c.) and
Knapp
(1994),
which
prompted
't Hart (1995:
169)
to place
the genus in his 'Se-
doideae'. However,
according to Knapp
(1997),
the
seed
surface structure in fact corresponds to the
sinuate-papillate
(Crassula-)
type,
clearly favour-
ing the placement
in Crassuloideae.
Hypagophy-
tum may
be nested within Crassula
and
closest to
.
'\
-:.-
...
:,,:
::l
Se
Crassulaceae 113
ro-
]I,
uIa
)77
:ral
ten
'as-
rbl.
ace
bg.
ate
rels
)nt.
nly
:an
:ral
the
:en-
3ot.
;hr-
rle-
lat;
ow
lte;
8e;
nto
.ith
ing
:ed
rel,
ies,
'in
Pe-
tu-
th-
rly-
:ed
,€f
t
ted
Se-
the
the
ur-
hy-
Ito
its sect.
Petrogeton,whichshares the tuberous habit
and exhibits
in some species
leaves
with short peti-
ole and in whorls of 4, monochasial inflorescences
with stellate and polymerous flowers,
and long fili-
form stylodia.
The
same
peculiar fruit type is found
in sect.
Glomeratae
p.p.(cf. Stopp 1957).
Selected
Bibliography
Akiyama, S.,
Ohba, H., Wu, S.-K. 2001. A new variety of
Sinocrassula
paoshingensis
(S.H. Fu) H. Ohba et al.
(Crassulaceae).
I. |ap.
Bot.
76:222-226.
Alm, T. 2004. Ethnobotany of R
hodiola rosea
(Crassulaceae)
in Norway.
Sida
21, l:321-344.
Bahadur,
8., Ramaswamy, N., Srikanth, R. 1986.
Studies on
the floral biology and nectar secretion in some Kalan-
choe species
(Crassulaceae).
In: Kapil, R.P.
(ed.)
Pol-
lination biology -an analysis.
New Delhi: Inter-India
Publication s,
pp.
251-259.
Baskin,
J.M.,
Baskin,
C.C.
I97 2. Germination
characteristics
of
Diamorpha
cymosa seeds
and
an ecological interpre-
tation. Oecologia
(Berlin) 10:17
-28.
Baskin,
|.M., Baskin, C.C. 1977. Germination ecology
of
Sedum
pulchellum
Michx.
(Crassulaceae).
Amer.
|. Bot.
64:1242-1247.
Behnke,
H.-D. 1991. Distribution and evolution of forms
and types of sieve-element
plastids in the dicotyledons.
Aliso 13:167-182.
Berger,
A. 1930.
Crassulaceae.
In: Engler, A., Prantl, K.,
Die natürlichen Pflanzenfamilien, ed. 2, 18a. Leipzig:
W. Engelmann,
pp. 352-483.
Bland, K.P. 1995. Phytomyza rhodiolae Griffiths, 1976
(Diptera: Agromyzidae), a leaf-miner in roseroot,
Sedum rosea
(Crassulaceae),
new
to Britain.
Entomol.
Gaz.46:267-269.
Boiteau,
P., Allorge-Boiteau, L. 1995.
Kalanchoe
(Crassu-
lacdes) de Madagascar.
Systdmatique, dcophysiologie
et phytochimie.
Paris:
Karthala,
Böttcher, W., läger, E.J. 1984. Zur Interpretation der
Verbreitung der Gattung Sedum L. s.l.
(Crassulaceae)
und ihrer Wuchsformtypen.
Wissensch.
Z. Univ. Halle
33:127-14I.
Bowman, R.N. 1983. Intraspecific variability of leaf cuti-
cle alkanes
in Sedum lanceolatum
along
an elevational
gradient. Biochem.
Syst.
Ecol. 11:195-198.
Braun, U.1987.
A monograph of the Erysiphales
(powdery
mildews). Nova Hedwigia, Beih.
89:l-700.
Braun-Blanquet,
|., Sutter, R. 1982.
Zur Kenntnis der
Crassulaceen-Pioniergesellschaften
in den Bünd-
ner Alpen. |ahresber.
Naturf. Gesell. Graubünden
99:75-83.
Burchard,
O.1929. Beiträge zur Ökologie und Biologie
der
Kanarenpflanzen. Bibl. Bot. 98:l-262, pls. 1-78.
Byalt,
V.V. 1997. Meterostachys sikokianas
(Crassulaceae),
a new species and genus
for the flora of China (in
Russian with English summary).
Bot.
Zhurn. (Moscow
& Leningrad)
82:128-1 30.
Byalt, V.V.
1998.
Orostachys
paradoxa,
a rare
species from
the Russian far East.
Cact.
Succ.
I. (U.S.)
70:262-263.
Bywater,
M. 1980. Observations on seeds of Crassula sect.
Rosulares.
Kew Bull. 35:401-402.
Bywater, M., Wickens,
G.E. 1983. New
world species
of the
genus
Crassula. Kew Bull. 39:699-728.
Caballero, A., |imdnez,
M.S. 1977.
Contribuciön
al estudio
anatömico foliar de
las
crassuläceas canarias.
Vieraea
7:Il5-132.
Calie,
P.l.
1981. Systematic studies inSedum
section
Ternata
(Crassulaceae).
Britton
ia 33:498-507 .
Candolle, A.P. de 1828.
Mdmoire
sur la famille
des
Crassu-
lacdes.
Paris: Treuttel & Würtz.
Clausen, R.T. 1959.
Sedum
of the Trans-Mexican Volcanic
Belt: an exposition of taxonomic methods. Ithaca:
Comstock.
Clausen, R.T. 1975.
Sedum
of North America north of the
Mexican Plateau. Ithaca:
Cornell University Press.
Clausen, R.T. 1977. Biennial species of Sedum of the Sierra
Madre
Occidental
and the Mexican
Plateau. Bull.
Tor-
rey Bot.
Club 104:209-217.
Cronquist, A. 1968.
The evolution and classification of
flow-
ering
plants. Boston: Houghton Mifflin.
Cullen, I. i995. Crassulaceae.
In: Cullen, 1., Alexan-
der, ).C.M., Brady, A., Brickell, C.D., Green, P.S.,
Heywood, V.H., Jorgensen, P.-M., Iury, S.L.,
Knees, S.G., Leslie, A.C., Matthews, V.A., Rob-
son, N.K.B., Walters, S.M., The European Garden
Flora, IV. Dicotyledons, part II. Dilleniaceae to
Krameriaceae. Cambridge: Cambridge University
Press, pp.170-244.
Davis,
G.L. 1966.
See
general references.
Deil,
U.
1991.
Rock
communities
in tropical Arabia.
In: En-
gel,
T., Frey,
W, Kürschner,
H. (eds)
Contributiones se-
lectae
ad floram et
vegetationem
orientis. Berlin:
Flora
et
Vegetatio
Mundi, pp. 175-187.
D enton, M.F. I97
9 . Cytolo
gical and repro
ductive differenti-
ation
in Sedum section Gormania
(Crassulaceae).
Brit-
tonia 3l:197-21I.
Denton, M.F. 1982.
Revision of Sedum section
Gormania
(Crassulaceae).
Brittonia 34:48-77 .
Denton, M.F., Kerwin, J.L. 1980. Survey of vegetative
flavonoids of Sedum section Gormania (Crassu-
laceae).
Canad.
I.
Bot.
58:902-905.
Ebel,
F., Hagen, A., Kümmel, F. 1991a. Beobachtungen
zur
Wuchsrhythmik von Orostachys
spinosus
(L.) Sweet
(Crassulaceae).
Wissen
sch. Z. Univ.
Halle 40:47
-68.
Ebel, F., Hagen, A., Kümmel, F. 1991b. Beobachtungen
zur Wuchsrhythmik und "Knospenbildung" einiger
Greenovia-
und Aeonium- Arten
(Crassulaceae).
Flora
85:187-200.
Eckert, G. 1966. Entwicklungsgeschichtliche
und blüten-
anatomische Untersuchungen
zum Problem
der Ob-
diplostemonie. Bot.
|ahrb.
Syst. 85:523-604.
Eggli, U. 1988. A monographic study
of the
genus Rosularia
(Crassulaceae-Sedoideae).
Bradleya
suppl. 6:1
- I 1 9.
Eggli, U. (ed.) 2003.
Illustrated Handbook of Succulent
Plants, VI. Crassulaceae.
Berlin Heidelberg New
York:
Springer.
Eglinton,
G., Gonzalez, A.G.,
Hamilton, R.|.,
Raphael,
R.A.
1962.
Hydrocarbon constituents of the wax coatings
of plant leaves:
a taxonomic survey. Phytochemistry
1:89-102.
Ellenberg, H. 1996. Vegetation Mitteleuropas mit den
Alpen.
5.
Auflage.
Stuttgart: Ulmer.
Endress,
P.K.,
Stumpf, S.
I
qg
t. The diversity
of stamen
struc-
tures in 'lower' Rosidae
(Rosales,
Fabales, Proteales,
Sapindales). Bot.
|. Linn.
Soc.
107:217-293.
J.
Thiede and U. Eggli
Engelmann W. 1960. Endogene Rhythmik und photoperi-
odische
Blühinduktion
bei Kalanchoe.
Planta 55:496-
51
1.
Erdtman, G.1952. See general references.
Fehrenbach,
S., Barthlott, W. 1988. Mikromorpholo-
gie der Epicuticular-Wachse
der Rosales
s.l. und
deren systematische Bedeutung. Bot. |ahrb. Syst.
109:407-428.
Fernandes, F.M. 1997. Restoration programme
for Madeira's
endangered
plants. Plant Talk no. 10:19
Fdtrd,
f.,
Lebögue, A.1964.
Embryogdnie des
Crassulacdes.
C. R. Acad. Sci. Paris 258:5035-5038.
Fishbein, M. et
al. 2001.
See
general references.
Friedrich,
H.-C. 197 3 .
Zur Cytotaxonomie
der Gattun
g Cras-
sula. Garcia de Orta, Sdr. Bot. l:49-66.
Fröderström,
H. 1930-1935. The
genus
Sedum.A
systematic
essay.
I-IV. Acta Horti Gothoburgensis
5:1-75, 6:
I
- I I 1,
7:l-126,
10:l-262.
Gess, S., Gess,
F.,
Gess, R.
1998.
Birds, wasps
andTylecodon.
Pollination strategies of two members
of the genus
Tylecodon in Namaqualand. Veld Flora 84:56-57.
Gilbert, M.G. 1985. The genus
Sedum
in Ethiopia. Bradleya
3:48-52.
Gilbert, M.G. 1989.
Crassulaceae. In: Hedberg, I., Ed-
wards, S. (eds)
Flora of Ethiopia, III. Pittosporaceae
to Araliaceae. Addis Ababa: Ethiopian National
Herbarium, pp.
5-26.
Golding,
I. (ed.)
2002.
Southern
African
Plant Red Data List.
Pretoria:
SABONET.
Gontcharova, S.B.
1999.
Ornamentation of the testa
of some
Eastern Asian
Sedoideae
(Crassulaceae).
Bull. Natl
Sci.
Mus., Tokyo,
ser.
B 25:131-141.
Gregory,
M. 1998.
Crassulaceae. In: Cutler,
D.F.,
Gregory,M.
(eds)
Anatomy
of the
Dicotyledons,
2nd edn. IV.
Saxi-
fragales
(sensu
Armen Takhajan 1983).
Oxford: Claren-
don Press, pp.20l-220.
Günthart, A. 1902. Beiträge zur Blütenbiologie
der Cru-
ciferen,
Crassulaceen und der Gattun g Saxifraga. Bibl.
Bot. 58:1-97.
Ham, R.C.H.J. van 1994. Phylogenetic
implications of
chloroplast
DNA variation in the
Crassulaceae.
Thesis,
University of Utrecht.
Ham, R.C.H.}. van,
Hart, H.'t 1998. Phylogenetic relation-
ships in the Crassulaceae inferred from chloroplast
DNA restriction-site
variation. Amer. |. Bot. 85:123-
t34.
Hart, H.'tl975.The pollen
morphology
of
24European
spe-
cies ofthe genus
Sedum
L. Pollen
Spores 16:373-387.
Hart, H. 't 1982.
The systematic position
of Sedum tubero-
suz Coss. & Let.
(Crassulaceae).
Proc. Koninkl. Nederl.
Akad.
Wetensch., ser. C 85:497-508.
Hart, H. 't 1985a.
Chromosome
numbers
in Sedum
(Cras-
sulaceae)
from Greece. Willdenowia 15:115-135.
Hart, H. 't 1985b.
Sexual
reproduction
and hybridisation
in Sedum telephium
(Crassulaceae).
Acta Bot. Neerl.
34:l-4.
Hart, H. 't 1985c.
The vascular pattern of the flowers of
Sedum anacampseros
(Crassulaceae).
Acta Bot. Neerl.
34:lI9-121.
Hart, H. 't 1994a. The evolution of life-forms, growth-
forms secondary growth in Eurasian Sedoideae
(Crassulaceae).
Bradleya 12:37
-56.
Hart. H. 'tI994b. The
unilacunar two-trace
nodal
structure
of the
caudex of Rhodiola roseaL.
(Crassulaceae).
Bot.
|. Linn. Soc. 116:235-241.
Hart, H. 't 1995. Infrafamilial
and generic classification of
the Crassulaceae.
In: Hart, H.'t, Eggli, U. (eds)
Evolu-
tion and systematics of the
Crassulaceae.
Leiden: Back-
huys, pp. 159-172.
Hart,
H. 't1997a.
Crassulaceae.
In: Oldfield, S., tom. cit.,
pp.
20-23.
Hart, H. 't I997b. Diversity
within Mediterranean Crassu-
laceae. Lagascalia 19:93-100.
Hart, H. 't, Alpinar, K. 1999.
Sedum ince (Crassulaceae),
a new species from southern Anatolia.
Edinburgh I.
Bot.56:1Bl-194.
Hart, H. 't, Arkel, J. van 1985.
Quantitative
aspects of
the influence of day-length and temperature on
Sedum telephium (Crassulaceae).
Acta Bot. Neerl.
34:115-118.
Hart, H. 't, Berendsen, W. 1980.
Ornamentation of the testa
inSedum
(Crassulaceae).
Pl.
Syst.
Evol. I35:I07-117.
Hart, H. 't, Bleij, B. 1999. Nieuwe
namen
in Sempervivum
Sect.
Jovibarba
(Crassulaceae).
Succulenta
(NL) 78:35-
42.
Hart, H.'t, Bleij,8.2003.
Phedimus.In: Eggli,
U.
(ed.)
Illus-
trated Handbook
of Succulent
Plants,
VI. Crassulaceae.
Berlin Heidelberg
New York:
Springer,
pp.196-203.
Hart, H.'t, Eggli,
U. 1995. Introduction:
evolution of Cras-
sulaceae systematics. In: Hart, H. 't, Eggli, U. (eds)
Evolution
and systematics
of the Crassulaceae.
Leiden:
Backhuys, pp.7-15.
Hart, H.'t, Eggli,
U. 1998.
Cytotaxonomic studies
in Rosu-
I ari a (Cr
assulaceae
). Bot.
Helvet ica 9 8:223
-23
4.
Hart, H. 't,
Koek-Noorman,
J.
1989. The origin of the woody
Sedoideae
(Crassulaceae).
Taxon
38:535-544.
Hart, H. 't, Sandbrink, |.M., Csikos,
I., Ooyen, A. van,
Brederode,
|. van 1993. The allopolyploid origin
of Sedum rupestre subsp. rupestre (Crassulaceae).
Natural hybrids in Sedum
(Crassulaceae)
4. Pl. Syst.
Evol.
184:195-206.
Hart, H. 't, van Ham, R.C.H.J., Stevens,
J.F.,
Elema,
E.T.,
Klis, H. van, Gadella, T.W.f. 1999. Biosystematic,
molecular and phytochemical evidence for the
multiple origin of sympetaly
in Eurasian
Sedoideae
(Crassulaceae).
Biochem.
Syst. Ecol. 27 :407
-426.
Hegnauer,
R. 1964. Chemotaxonomie
der Pflanzen. Band
3. Dicotyledoneae:
Acanthaceae-Cyrillaceae. Basel:
Birkhäuser,
pp. 57 2-584.
Hegnauer, R. 1989.
Chemotaxonomie der Pflanzen, Band
8. Nachträge zu Band 3 und Band 4 (Acanthaceae
bis Lythraceae).
Crassulaceae:
pp.3a2450, 710.
Basel:
Birkhäuser.
Hideux, M.l. 1981. Le pollen.
Donndes nouvelles de la mi-
croscopie dlectronique et de
l'informatique:
structure
du sporoderme de Rosidae-Saxifragales, dtude com-
parative
et dynamique. Paris: Agence
de Coopdration
Culturelle et Technique.
Hart, H.'t 1990. Variation
in the structure
of the
flowers
of Huber, H. 1961.
Crassulaceae. In: Hegi,
G. (ed.)
Illustrierte
Sedum. Sedum Soc. Newslett. 13:11-17. Flora von Mittel-Europa.2.
Auflage. Band IV/2. Teil.
Hart, H. 't 1991. Evolution
and classification
of the Eu- TeilbandA.München:CarlHanser,
pp.62-125.
ropean
Sedum species
(Crassulaceae).
Flora Mediter- Hutchinson,I.1973.
The families
of flowering
plants,
ed.
3.
ranea 1:31-61. Madrid:
OPTIMA. Oxford: Clarendon Press.
Crassulaceae
th-
eae
ure
, ^.
)ut.
rof
rlu-
1
pp.
su-
re),
ht.
of
on
erl.
tsta
7.
'um
35-
1..^
tu5-
eae.
ras-
:ds)
len:
)su-
ody
IAn)
igin
ae).
,ysI.
1.T.,
rtic,
the
leae
and
rsel:
and
:eae
rsel:
Huxley,
A.,
Griffiths,
M., Levy, M. (eds)
1997.The New RHS
Dictionary of Gardening. 4 vols. London: MacMillan.
Jaarsveld,
E.]. van 1994. The distribution of Tylecodon and
Cotyledon
(Crassulaceae)
in South Africa and Namibia.
In: Seyani,
J.H.,
Chikuni, A.C.
(eds)
Proc. XIII Plenary
Meeting AETFAT,
Malawi,
pp. 1157-1163.
facob,
F.H. 1964. A new species
of Thuleaphis
from Wales,
Scotland,
and Iceland
(Thuleapäis
sedi n. sp. on Se-
dum rosea.
Proc. Roy.
Entomol.
Soc., London, ser. B,
Taxonomy 33:111-116.
läger-Zirn, I. 1989. Zur Kenntnis von Crassula pageae
Tölken
(syn.
Pagella
archeri).
Trop.-subtrop.
Pflanzen-
welt70:l-71. Mainz: F.
Steiner.
falas, |., Suominen,
|., Lampinen,
R., Kurtto,
A. 1999. Atlas
Florae Europaeae. Distribution of vascular plants in
Europe, 12.
Helsinki:
Committee for Mapping the Flora
of Europe & Societas Biologica Fennica
Vanamo.
Iay,
M. 1971.
Quelques
problömes
taxonomiques
et phy-
logdndtiques
des Saxifragacdes
vus ä la lumiöre de
la biochimie flavonique. Bull. Mus. Natl Hist. Nat. II,
42:754-775.
fensen,
L.C.W. 1966.
Comparative anatomical
studies in
three subfamilies of the Crassulaceae. Ph.D. Thesis,
University of Minnesota.
Jimdnez
C.,
G.,
Soberdn M., I. 1989. Laboratory rearing
of
Sandia
xami xami (Lycaenidae,
Eumaeini).
|. Res.
Lep-
idoptera 27:268-271.
Johnson,
S.D.,
Ellis, A.,
Carrick, P., Swift, P., Horner,
N.,
|anse
van Rensburg,
S.,
Bond, W.J.
1993.
Moth pollination
and
rhythms
of advertisement
and reward in Crassula
fascicularis
(Crassulaceae).
S. African
|. Bot.
59:511-
513.
|ohri, B.M.
et al.1992. See general references.
Jorgensen,
T.H.,
Olesen,
I.M. 2000.
Growth rules based on
the modularity of the Canarian Aeonium (Crassu-
laceae) and their phylogenetic value. Bot.
J.
Linn. Soc.
132:223-240.
forgensen,
T.H., Olesen,
I.M. 2001. Adaptive radiation of
island
plants: Evidence from Aeonium
(Crassulaceae)
of the Canary Islands. Perspec.
Pl. Ecol. Evol. Syst.
4:29-42.
fürgens,
N. 1995. Contributions
to the phytogeography
of
Crassula.In:
Hart, H. 't, Eggli,
U. (eds)
Evolution
and
systematics
of the
Crassulaceae.
Leiden:
Backhuys,
pp.
136-150.
Keeley,
J.E.
1998. CAM photosynthesis
in submerged
aquatic
plants. Bot. Rev. 64:12l-175.
Kim, |.-H. i994. Pollen
morphology of genus
Sedum in Ko-
rea.
I. Pl.
Biol.
37,
2:245-252.
Kluge, M., Brulfert,
J.
1996.
Crassulacean acid metabolism
in the genus Kalanchoe: ecological, physiological
and
biological approaches.
In: Winter, K., Smith, A.P.,
Smith, I.A.C. (eds) Crassulacean acid metabolism.
Biochemistry, ecophysiology and evolution. Berlin
Heidelberg
New York:
Springer, pp.32a435.
Knapp, R. 1973. Die Vegetation von Afrika. Stuttgart:
G.
Fischer.
Knapp, U.1994. Skulptur
der
Samenschale
und Gliederung
der Crassulaceae. Bot.
|ahrb.
Syst.
1 16:157-187.
Knapp,
V. 1997. Samenoberflache
und Systematik
der Sax-
ifragaceae und Crassulaceae. Ph.D. Thesis,
University
of Kaiserslautern,
pp.
l-ßa.
Krach, I.E. 1976. Samenanatomie der Rosifloren. 1. Die
Samen der Saxifragaceae. Bot.
|ahrb.
Syst.
97:l-60.
Kurkin, V.A.,
Zapesochnaya,
G.G. 1986.
The
chemical
com-
position and pharmacological
properties
of Rhodiola
plants
(in Russian). Khim.-farm. Zhurn.
20:1231-1244.
Leinfellner, W. 1954. Beiträge zur Kronblattmorphologie.
I I I. D
ie Kronblätte
r der
Gattu ng
P
achy
phy
t um. O ester
r.
Bot.
Z.
101:586-591.
Levin, G.A., Mulroy, T.W. 1985.
Floral morphology, nec-
tar production,
and breeding
systems
in Dudleya
sub-
genus
Dudleya
(Crassulaceae).
Trans.
San Diego
Soc.
Nat. Hist.
2l:57-70.
Lippert,
W. 1995. Familie
Crassulaceae. Dickblattgewächse.
In: Weber, H.E. (ed.) Gustav Hegi, Illustrierte Flora
von Mitteleuropa, Band IV Teil 24: Spermatophyta:
Angiospermae,
Dicotyledones 2(2),
3.
Auflage. Berlin:
Blackwell,
pp.69-129.
Lösch,
R. 1990. Funktionelle
Voraussetzung der adaptiven
Nischenbesetzung
in der Evolution
der makaronesis-
chen Semperviven. Diss. Bot. 146:I-482.
Manheim, B.S.lr,
Mulroy, T.W., Hogness,
D.K., Kerwin,
|.L.
7979. Interspecific variation in leaf wax of Dudleya.
Biochem.
Syst.
Ecol. 7:I7-19.
Marchant, T.A.,
Alarcon, R.,
Simonsen,
).A.,
Koopowitz, H.
1
99 8.
Pop
ulation ecolo
gy
of
D
u dley a mult i c
auli
s
(
Cras
-
sulaceae):
a rare narrow endemic.
Madrono 45:215-
220.
Martin, C.E.,
Willert, D.l. von 2000. Leaf
epidermal
hydath-
odes and the ecophysiological
consequences
of foliar
water uptake in species of Crassula from the Namib
desert in Southern
Africa.
Pl. Biol. 2:229-242.
Mauritzon, I. 1930. Beitrag zur Embryologie
der Crassu-
laceen. Bot. Notiser 1930:233-250.
Mauritzon,
1.1933.
Studien
über die Embryologie der Fam-
ilien Crassulaceae und Saxifragaceae.
Lund: Hakan
Ohlssons.
Mayuzumi,
S., Ohba, H. 2004.
The phylogenetic position
of Eastern Asian Sedoideae
(Crassulaceae)
inferred
from chloroplast
and nuclear DNA sequences. Syst.
Bot.29:587-598.
Merxmüller, H., Friedrich,
H.-C., Grau,
I. 197I. Cytotax-
onomische Untersuchungen
zur Gattungsstruktur von
Crassula.
Ann. Naturhist. Mus. Wien
75:111-119.
Mes, T.H.M. I995.Phylogenetic
and systematic
implications
of chloroplast
and nuclear
spacer sequence variation
in the Macaronesian
Sempervivoideae
and related Se-
doideae.
In: Hart, H. 't, Eggli,
U. (eds)
Evolution
and
systematics of the
Crassulaceae. Leiden:
Backhuys, pp.
30-44.
Mes, T.H.M.1996.
Origin and
evolution
of
the
Macaronesian
Sempervivoideae
(Crassulaceae).
Ph.D. Thesis,
Univer-
sity of Utrecht.
Mes, T.H.M.,
Hart,
H.'t 1994.
Sedum surculosum and S.
jac-
cardianum
(Crassulaceae)
share a unique 70 bp dele-
tion in the chloroplast DNA trnL (UAA)-trnF (GAA)
intergenic
spacer. Pl. Syst. Evol. 193:213-221.
Mes, T.H.M., Hart, H. 't 1996. The evolution
of
growth-forms
in the Macaronesian
genus
Aeonium (Crassulaceae)
inferred from chloroplast RFLPs
and morphology. Mol.
Ecol.
5:351-363,
Mes, T.H.M., Brederode,
f. van, Hart, H. 't 1996.
Origin
of the
woody Macaronesian
Sempervivoideae and the
phylogenetic position of the East African species of
Aeonium.
Bot. Acta 109:477-49I.
Mes, T.H.M., Wijers,
G.|.,
Hart,
H.'t1997. Phylogenetic rela-
tionships in Monanthes
(Crassulaceae)
based on mor-
1. 3.
ll6 J.
Thiede
and U. Eggli
phological,
chloroplast and nuclear DNA variation.
I.
Evol.
Biol. 10:193-216.
Meusel, H., |äger, E., Weinert, E. 1965. Vergleichende
Chorologie der zentraleuropäischen
Flora. Band 1.
Crassulaceae.
Jena:
G. Fischer.
Moran, R. 1949.
Graptopetalum bartramii in Chihuahua.
Desert Pl.
Life 2l'53-56.
Moran, R. 1996.
Altamiranoa into Sedum
(Crassulaceae).
Haseltonia 4:46.
Moran,
R.
2000.
Circumscission
in Cotyledon:with
thoughts
on what is Cotyledon,
and
on how A.P. de
Candolle was
right all along and they should have listened.
Cact.
Succ.
J.
(U.S.)
72:306-308.
Moran,
R.,
Meyrän,1.1974.
Tacitus
bellus, un nuevo gdnero
y especie
de
Crassulaceae de Chihuahua,
Mdxico. Cact.
Suc.
Mex. l9:75-84.
Morgan, D.R.,
Soltis,
D.E.
1993. Phylogenetic
relationships
among
members
of Saxifragaceae
sensu
lato
based on
rbcl sequence
data. Ann. Missouri
Bot.
Gard. 80:631-
660.
Mort, M.8., Soltis,
D.E.,
Soltis, P.S., Francisco-Ortega,
|.,
Santos-Guerra, A. 2001. Phylogenetic
relationships
and evolution of Crassulaceae
inferred from matK
sequence data.
Amer.
J.
Bot. 88:76-91.
Mort, M.E., Soltis,
D.E.,
Soltis,
P.S.,
Francisco-Ortega,
).,
Santos-Guerra, A. 2002.
Phylogenetics and evolution
of the Macaronesian
clade of Crassulaceae
inferred
from nuclear
and chloroplast
sequence data.
Syst.
Bot.
27:271-288.
Moteetee, A., Nagendran,
C.R. 1997.
Comparative
anatomi-
cal studies in five southern African
species of Crassula.
I. Structure
of the stem and the root. S. African |. Bot.
63:90-94.
Nakanishi, H.2002.
Splash seed dispersal
by
raindrops.
Ecol.
Res.
(Tokyo)
17 :663-67
l.
Newton,
D.J.,
Chan,
J.
1998.
South
Africa's
trade in south-
ern African
succulent
plants.
fohannesburg:
TRAFFIC
East/Southern
Africa.
Nyffeler, R. 1992.
A taxonomic revision of the genus Mo-
nanthes
Haworth (Crassulaceae).
Bradleya 10:49
-82.
Ohba,
H. 1978. Generic and infrageneric
classification of the
Old World Sedoideae
(Crassulaceae).
J.
Fac.
Sci., Univ.
Tokyo III, Bot. 12139-198.
Ohba, H. 1989. Biogeography
of the genus
Rhodiola
(Cras-
sulaceae), with special
reference
to the floristic inter-
action between
the Himalalya
and the Arctic Region.
In: Ohba,
H., Hayami, I., Mochizuki, K. (eds)
Current
aspects of
biogeography in West Pacific
and East Asian
regions.
Universityof Tokyo,
pp. 115-133.
Oldfield,
S.
(ed.) 1997. Cactus and Succulent Plants
- Sta-
tus Survey and Conservation
Action Plan.
Gland and
Cambridge: IUCN/SSC
Cactus and Succulent
Specialist
Group.
Olfelt,
|.P.,
Furnier,
G.P.,
Luby,
].L. 1998.
Reproduction and
development
of the endangered
Sedum integrifolium
ssp.leedyi
(Crassulaceae).
Amer.
J.
Bot. 85:346-351.
Olfelt,
|.P.,
Furnier,
G.P., Luby,
|.L. 2001.
What data deter-
mine whether
a
plant's
taxon is
distinct enough
to
merit
legal protection? A case
study of Sedum integrifulium
(Crassulaceae).
Amer.
f.
Bot.
88:401-410.
Parnell,
I. 199I.
Pollen morphology
of Jovibarba
Opiz and
Sempervivun
L. (Crassulaceae).
Kew Bull. 46:733-738.
Parra,
V.,
Vargas,
C.F.,
Eguiarte,
L.E.
1993. Reproductive
bi-
ology,
pollen and seed dispersal,
and neighborhood
size in the hummingbird-pollinated
Echeveria gibbi-
flora (Crassulaceae).
Amer.
|. Bot.
80:153-159.
Parra, V., Vargas,
C.F.,
Eguiarte,
L.E. 1998.
Is
Echeveria gibb-
iflora (Crassulaceae)
fecundity limited by pollen avail-
ability? An experimental
study.
Funct. Ecol. t2:59t-
595.
Pörez
de Paz, P.L. 1980.
Contribuciön
al atlas
palinolögico
de
dndemismos Canario-Macarondsicos. Part
III. Bot.
Macar. 7:77-112.
Gran
Canaria:
|ardin Botänico.
Pilon-Smits, E.A.H.
1992.Yariation
and
evolution of Crassu-
lacean Acid
Metabolism inSedum
and
Aeonium
(Cras-
sulaceae). Ph.D. Thesis,
University of Utrecht.
Quimby,
M.W. 1971. The floral morphology
of the Crassu-
laceae. Ph.D.
Thesis,
Cornell University, Ithaca.
Raadts, E. 1979. Rasterelektronenmikroskopische
und ana-
tomische Untersuchungen an Konnektivdrüsen von
Kalanchoe
(Crassulaceae).
Willdenowia
9:169-17 5.
Riefnet R.E.
)r,
Bowler, P.A.,
Mulroy, T.W.,
Wishner, C.2003.
Lichens
on rock and biological
crusts enhance recruit-
ment
success
of rare
Dudleya
species
(Crossulaceae)
in
Southern California.
Crossosoma 29:l-36.
Rivas-Martinez,
S., Wildpret de la Torre,
W., del Arco, M.,
Rodriguez,
O., Pörez
de Paz,
P.L.,
Garcia-Gallo,
A.,
Acebes,
f.R.,
Fernändez-Gonälez,
F. 1993.
Las comu-
nidades
vegetales de la
Isla
de
Tenerife
(Islas
Canarias).
Itinera
Geobot.
7
:169-37
4.
Rocdn, T. 1928. Beitrag zur Embryologie
der Crassulaceen.
Svensk
Bot.
Tidsskr. 22:368-37
6.
Rocher, E.J.
de, Harkins, K.R., Galbraith, D.W., Bohn-
ert, H.J. 1990.
Developmentally
regulated
systemic
endopolyploidy in succulents
with small genomes.
Science 250:99-101.
Rünger,
W, Wehr, B.
1969. Über
den
Einfluss
der
Tageslänge
und der Temperatur auf die Blütenbildung einiger
E
cheveri a-Arten.
Gartenbauwissenscha ft 3q:t1 I
- I 43.
Said, C. 1982. Les nectaires
floreauxdes
Crassulacdes. Etude
morphologique,
histologique
et anatomique. Bull. Soc.
Bot. France
Lett. Bot. 129:231-240.
Savolainen, V., Chase, M.W. et al. 2000.
See
general
refer-
ences.
Savolainen,
V., Fay,
M.F. et al. 2000. See general references.
Schönland,
S. 1894.
Crassulaceae.
In: Engler, A., Prantl, K.,
Die natürlichen
Pflanzenfamilien,
ed. 1, 3,2a.Leipzig:
W. Engelmann,
pp. 23-38.
Sharma, A.K., Gosh,
S.
i967.
Cytotaxonomy of Crassulaceae.
Biol.
Zentralbl.
suppl. 86:313-336.
Sin,
|.-H.,
Yoo, Y.-G., Park,
K.-R.
2002.
A palynotaxonomic
study of the Korean
Crassulaceae. Korean
). Electron
Micro
scopy 32:3 45
-360.
Soltis,
D.E., Soltis,
P.E. 1997.
Phylogenetic
relationships
in
Saxifragaceae
sensu
lato: a comparison of topologies
based
on 18S
rDNA and
rbcL sequences. Amer.
f. Bot.
84:504-522.
Soltis, D.E.
et
al. 2000.
See general references.
Soltis, D.E., Fishbein,
M., Kuzoff,
R.K. 2003. Re-evaluating
the evolution of epigyny: data from phylogenetics and
floral
ontogeny. Intl |. Pl.
Sci.
164:5251-5264.
Souöges, R. 1936.
Les relations
embryogdniques des
Cras-
sulacdes,
Saxifragacdes
et Hypdricacdes. Bull.
Soc.
Bot.
France 83:317-329.
Stevens,
|.F. 1995a.
Chemotaxonomy
of the Eurasian Se-
doideae and
Sempervivoideae. In: Hart, H. 't, Eggli, U.
(eds)
Evolution
and systematics
of the Crassulaceae.
Leiden:
Backhuys, pp.
30-44.
Crassulaceae I17
ibb-
'ail-
9l-
;ico
Bot.
;su-
ras-
bbi-
nge
Lger
43.
ude
loc.
fer-
Stevens,
J.F.
1995b. The systematic and evolutionary signif-
icance of phytochemical variation in the Eurasian Se-
doideae
and Sempervivoideae
(Crassulaceae).
Gronin-
gen:
Rijks University.
Stevens,
|.F.,
Hart,
H.'t, Hendriks, H., Malingrd, T.M.1992.
Alkaloids of some European and Macaronesian
Se-
doideae
and Sempervivoideae
(Crassulaceae).
Phyto-
chemistry
3 I:39 17
-3924.
Stevens,
J.F.,
Hart, H.'t, Hendricks,
H., Malingrd, T.M. 1993.
Alkaloids of the Sedum acre-grovp
(Crassulaceae).
Pl.
Syst. Evol. 185:207
-217
.
Stevens,
J.F.,
Hart, H. 't, Bolck, A., Zwaving,
I.H., Ma-
lingrd, T.M. 1994. Epicuticular wax composition
of some European Sedum species. Phytochemistry
35:389-399.
Stevens,
|.F.,
Hart, H. 't,
van Ham, R.C.H.J., Elema, E.T., van
den
Ent,
M.M.V.X., Wildeboer,M.,Zwaving,
J.H.
1995.
Distribution of alkaloids and tannins in the Crassu-
laceae. Biochem. Syst. Ecol. 23:157-165.
Stevens,
I.F., Hart, H. 't, Elema, E.T., Bolck, A. 1996.
Flavonoid variation in Eurasian Sedum and Semper-
v ivum.
Phytochemistry 41 :503-5 I 2.
Stevens,
P.F. 2005.
See
general
references.
Stopp,
K. 1957. Aberrante Dehiszenzformen bei Früchten
einiger Crassula-Arten.
Beitr. Biol. Pflanzen
34165-
175.
Supratman, U., Fujita,
T.,
Akiyama, K., Hayashi, H. 2001.
Insecticidal compounds
from Kalanchoe daigremon-
tiana x tubiflora.
Phytochemistry
58:31
I-314.
Takhtajan, A.L.1969.
Flowering plants, origin and dispersal.
Washington,
DC:
Smithsonian
Institution Press, pp. 1-
3 10.
Teeri,
f.A., Overton,
|. 1981. Chloroplast ultrastructure
in
two Crassulacean
species and an F1 hybrid with differ-
ing biomass delta
13C
values. Pl.
Cell
Environ. 4:427-
43r.
Teeri,
|.A., Stowe,
L.G., Murawski, D.A. 1978. The clima-
tology of two succulent
plant families: Cactaceae and
Crassulaceae.
Canad.
J.
Bot. 56:L750-1758.
Thiede, I. 1995. Quantitative phytogeography, species
richness,
and evolution of American Crassulaceae.
In: Hart, H. 't, Eggli, U. (eds) Evolution and sys-
tematics of the Crassulaceae. Leiden: Backhuys,
pp.
89-r23.
Thiede,
1.2004.
The genus Dudleya
Britton & Rose
(Crassu-
laceae): its systematics and biology. Cact. Succ.
I. (U.S.)
76:4-ll.
Thiede,
f.,
Hart,
H. 't 1999. Transfer
of
four Peruvian Altami-
ranoa species to Sedum
(Crassulaceae).
Novon 9:124-
r25.
Thorne, R.F.
1968. Synopsis of a putatively
phylogenetic
classification
of the flowering plants. Aliso 6:57-66.
Thorne, R.F. 1983.
Proposed new realignments in the an-
giosperms. Nordic
|. Bot.
3:75-II7.
Thorne, R.F.
1992. An updated
phylogenetic classification
of the
flowering
plants.
Aliso 13:365-389.
Tillson, A.H. 1940.
The floral
anatomyof the
Kalanchoideae.
Amer.
|. Bot. 27:595-600.
Toelken,
H.R. 1977. A revision of the genus
Crassula
in
southern
Africa. Parts
1
& 2.
Contr.
Bolus Herb. 1-331,
332-595.
Toelken, H.R. 1986. Crassulaceae.
In: )essop, J.P.,
Toelken,
H.R. (eds)
Flora of South Australia.
Part I.
Adelaide: Government
Printing Office,
pp. aß-a28.
Torrey,
1.,
Gray,
A. 1838. A flora of North America,
I. New
York: Wiley & Putnan.
Troll, W. 1964. Die Infloreszenzen.
Erster Band. Stuttgart:
G. Fischer.
Troll, W. 1969. Die Infloreszenzen. Zweiter
Band, 1. Teil.
Stuttgart: G.
Fischer.
Troll, W., Weberling,
F. 1989. Infloreszenzuntersuchungen
an monotelen
Familien.
Stuttgart: G.
Fischer.
Uhl, C.H. 1948. Cytotaxonomic studies
in the subfamilies
Crassuloideae,
Kalanchoideae, and Cotyledonoideae
of the Crassulaceae.
Amer.
J.
Bot.35:695-706.
Uhl, C.H. 1961. The
chromosomes
of the Sempervivoideae
(Crassulaceae).
Amer.
]. Bot. 48:lI4-I23.
Uhl, C.H. 1970.
Chromosomes
of Graptopetalum and
Tho-
mpsonella
(Crassulaceae).
Amer. I. Bot. 57:1115-
rt2l.
Uhl, C.H. 1976-1992.
Chromosomes
of Mexican Sedum.
I-VI. Rhodora 79:629-640, 80:49I-512, 82:377
-402,
85
:243
-252,
87 :38I
-
423, 9 4:362-37 0.
Uhl, C.H. 1992. Polyploidy, dysploidy, and chromosome
pairing in Echeverla
(Crassulaceae)
and its hybrids.
Amer.
f. Bot. 79:556-566.
Uhl, C.H. 1993-1995. Intergeneric hybrids in the Mexi-
can Crassulaceae.
I-V. Cact. Succ.
f. (U.S.)
65:27I-273,
66:7 4-80, 17 5-179,
214-217
, 67:144-147
.
Uhl, C.H. 1994-2005.
Chromosomes
and hybrids of Echev-
er
i a (Cr
assulaceae
).
I
- IX. Hasel
tonia
2:7 9
-80,
3 :25
-33,
3 z3
4- 48, 4:
66
-
88, 5 :2I
-
3 6, 6:63
-9
0,
8:7 I
-82,
9 :l2l - | 45,
11:138-149.
Uhl, C.H.
1996.
Chromosomes
and polyploidy
in Lenophyl-
lum (Crassulaceae).
Amer.
J.
Bot. 83:216-220.
Uhl, C.H.,
Moran, R. 1972.
Chromosomes
of Crassulaceae
from |apan
and South Korea. Cytologia 37:59-81.
Uhl, C.H.,
Moran, R. 1973. The chromosomes of Pachyphy-
tum (Crassulaceae).
Amer.
f. Bot.
60:648-656.
Uhl, C.H., Moran, R. 1999. Chromosomes of Villadia
and Altamiranoa (Crassulaceae).
Amer. l. Bot.
86:387-397.
U.S. Fish and
Wildlife
Service
2004. Threatened and
Endan-
gered Species System
(TESS).
http:/endangered.fws.
gov/wildlife.html
Visser,
J. 1981. South African parasitic flowering plants.
Cape
Town:
|uta.
Vogel,
S.
1954. Blütenbiologische Studien als
Elemente der
Sippengliederung,
dargestellt an der Flora Südafrikas.
Bot. Stud.
1:1-338.
Wakabayashi, M., Ohba, H. 1999. Chromosome
numbers of
seven species of Sedum and Sinucrassula
indica
(Cras-
sulaceae)
in East Himalaya.
l. Iap.
Bot 7
4:228-235.
Wassmer, A. 1955. Vergleichend-morphologische
Un-
tersuchungen an den Blüten der Crassulaceen.
Winterthur: P.G. Keller.
Wickens, G.E.,
Bywater, M. 1980.
Seed studies
in Crassula
subgen.
Disp
oro carpa.
Kew Br:Jl. 34:629
-637
.
Wikström, N., Savolainen,
V.,
Chase,
M.W. 2001. Evolution
of the angiosperms: calibrating the family tree.
Proc.
Roy. Soc.
London, ser. B 268:2211-2219.
Wyatt, R.,
Stoneburger,
A. 1981. Patterns of ant-mediated
pollen
dispersal
in Diamorpha smallii (Crassulaceae).
Syst.
Bot. 6:l-7.
Xu,
f.F.,
Liu,
C.8.,
Han, A.M., Feng, P.S., Su, Z.G.1998. Strate-
gies for the improvement of salidroside
production in
cell suspension cultures
of Rhodiola sachalinensis.
Pl.
Cell Rep. 17:288-293.
118 ).
Thiede and U.
Eggli
Yamagishi,
T.,
Haruna,
M., Yan, X.-Z.,Chang,
|.-f.,
Lee,
K.-H.
1989.
Antitumor agents,
i 10. 1,2 bryophyllin
B, a
novel
potent cytotoxic bufadienolide
from Bryophyllum
pin-
natum.l.
Nat.
Prod. 52:107I-1079.
Yoshikawa,
M., Shimadä,
H., Shimoda,
H., Murakami,
N.,
Yamahara,
J.,
Matsuda,
H. 1996.
Bioactive constituents
of Chinese
natural
medicines.
II. Rhodiolae
Radix
(1):
chemical
structures
and antiallergic
activity of rho-
diocyanosides
A and B from the underground part
of Rhodiola sachalinerzsis
(Pall.)
Fisch.
et Mey.
(Cras-
sulaceae).
Chem. Pharmaceut.
Bull. (Tokyo) 44:2086-
209t.
c
d
The Families
and
Genera
of Vascular Plants
Edited
bv K. Kubitzki
T \f Flowering
Plants
.
Eudicots
I /\ Berberidopsidales,
Buxales,
Crossosomatales,
Fabales
p.p., Geraniales,
Gunnerales,
Myrtales
p.p.,
P
r o t e al e s,
S
axifr
agal e s, Vit
aI e s,
Zy
go
phyll
aI e s,
Clu
s i a c e a e Alli
an c e,
P
a s s ifl o r
a c e a e
Alli an c e,
Dilleniaceae, Huaceae, Picramniaceae,
Sabiaceae
Volume Editor:
K. Kubitzki
in Collaboration with C.
Bayer
and P. F.
Stevens
With 174 Figures
üspringer
Prt.rtessor
Dr. Kraus
Kusrrzrr
L'niversität
Hamburg
Biozentrum
Klein-Flottbek
und Botanischer
Garten
Ohnhorststraße
18
22609
Hamburg
Germany
Library
of Congress
Control
Number: 2006928744
ISBN-10
3-540-32214-0
Springer
Berlin
Heidelberg
New
york
ISBN-13
978-3-540-32214-6
Springer
Berlin
Heidelberg
New
york
This work is
subject
to copvright. All rights are reserved,
whether the whole or part of the material is concerned,
specifically
the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilmor in any
other waF and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Larv
of September
9, 1965,
in its current version,
and permissions
for use must always
be obtained
from Springer-Verlag. \riolations are liable for prosecution under the German Copyright Law.
Springer
is a part of Springer Science+Business
Media
springer.com
@
Springer-Verlag
Berlin Heidelberg 2007
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the
absence
of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore
free for general use.
Cover
design: WMXDesign, Heidelberg,
Germany
Typesetting and production: LE-TEX
lelonek, Schmidr & vöckler GbR, Leipzig, Germany
Printedonacid-freepaper 3tl3t50lYL- 5 432t0
... is a genus of the Crassulaceae family comprising 21 species from semi-arid environments in Arizona, southern US to Oaxaca, Mexico, including the one here described (Moran & Uhl 1968, Thiede 2003, Thiede & Eggli 2007, Vega-Aviña et al. 2020, Vázquez-García et al. 2021a. Eight species of Graptopetalum (38%) are endemic to the western Mexico (Acevedo-Rosas et al. 2018, Vázquez-García et al. 2021a, one from the state of Colima: G. glassii Acevedo-Rosas & Cházaro-Basáñez (2003: 378) from the municipalities of Colima, Ixtlahuacán and Tecomán (Cházaro-Basáñez & Acevedo-Rosas 2008, Naturalista 2021); one from Michoacán: G. pentandrum Moran (1971: 56) from the waterfalls of El Salto, 4 km north of Aguililla (Kimnach 1987), and Los Chorros del Varal, 20 km southwest of Los Reyes (Cházaro-Basáñez & Flores 1992, Cházaro-Basáñez et. ...
Article
Graptopetalum trujilloi (subg. Glassia, Crassulaceae), a new haplostemonous species from San Gabriel municipality, Jalisco, Mexico is described and illustrated. Its morphologically closest species is G. rosanevadoense. It differs from the latter in having a smaller habit, more numerous primary branches per inflorescence, larger mean flower density per 10 cm of the scape, fewer flowers per basal branch, smaller flower diameter, petals greenish with transversal inconspicuous red stripes, narrower petals, filaments greenish to distally reddish and carpels abaxially obtuse. A key to the haplostemonous species of Graptopetalum is provided and, according to IUCN criteria, the species was assessed as critically endangered (CR). Resumen Se describe e ilustra Graptopetalum trujilloi (Crassulaceae), una especie haplostémona nueva del municipio de San Gabriel, Jalisco, México. Su especie morfológicamente más cercana es G. rosanevadoense. Se diferencia de esta última en tener un hábito más pequeño, más ramas primarias por inflorescencia, un promedio más alto de densidad de flores por cada 10 cm del escapo, menos flores por rama basal, diámetro de la flor más pequeño, pétalos verdosos con franjas transversales rojas inconspicuas, pétalos más estrechos, filamentos verdosos a distalmente rojizos y carpelos obtusos abaxialmente. Se proporciona una clave para las especies haplostémonas de Graptopetalum y, de acuerdo con los criterios de la UICN, la especie se evaluó como en peligro crítico (CR).
... There are difficulties in the taxonomy of the genus, due to the lack of specimens in herbaria and the absence of molecular studies, which could provide valuable information, both for taxonomy and for cytogenetic studies and others of interest in plant breeding for commercial use. In this review we compile information on what is known for the genus in terms of karyotyping, genetic diversity, phylogenetic relationships and taxonomy, floral morphology, reproductive biology, pollination, plant breeding, and biotechnological and molecular applications, the foregoing focused on Introducción Las crasuláceas comprenden una diversa familia de plantas suculentas compuesta por 34 géneros y 1 410 especies descritas (Eggli, 2003), distribuidas por todo el mundo, con sus centros de diversidad en Sudáfrica y México (Thiede y Eggli, 2007). Poseen una amplia variabilidad morfológica en cuanto a porte de la planta, tamaño, forma, espesor y color de las hojas, así como tamaño y forma de la inflorescencia, lo que favorece que tengan gran potencial para la mejora genética (Borys et al., 2005). ...
Article
Full-text available
The genus Echeveria groups several species of succulent plants present in diverse environments, they are found in nature in habitats with shallow rocky soils, steep slopes, canyons and rocks with little depth and humidity. Practically all species of the genus are of economic interest as ornamental plants, being very common in collections of Crassulaceae. Specimens found in collections are species and hybrids of the interspecific and intergeneric type, however, many are still unidentified. There are difficulties in the taxonomy of the genus, due to the lack of specimens in herbaria and the absence of molecular studies, which could provide valuable information, both for taxonomy and for cytogenetic studies and others of interest in plant breeding for commercial use. In this review we compile information on what is known for the genus in terms of karyotyping, genetic diversity, phylogenetic relationships and taxonomy, floral morphology, reproductive biology, pollination, plant breeding, and biotechnological and molecular applications, the foregoing focused on providing future perspectives for plant breeding in Crassulaceae. In Echeveria, it would be of great importance to carry out molecular studies in order to expand the current information on the taxonomy of the genus and the application of biotechnological techniques that support genetic improvement programs.
... There are difficulties in the taxonomy of the genus, due to the lack of specimens in herbaria and the absence of molecular studies, which could provide valuable information, both for taxonomy and for cytogenetic studies and others of interest in plant breeding for commercial use. In this review we compile information on what is known for the genus in terms of karyotyping, genetic diversity, phylogenetic relationships and taxonomy, floral morphology, reproductive biology, pollination, plant breeding, and biotechnological and molecular applications, the foregoing focused on Introducción Las crasuláceas comprenden una diversa familia de plantas suculentas compuesta por 34 géneros y 1 410 especies descritas (Eggli, 2003), distribuidas por todo el mundo, con sus centros de diversidad en Sudáfrica y México (Thiede y Eggli, 2007). Poseen una amplia variabilidad morfológica en cuanto a porte de la planta, tamaño, forma, espesor y color de las hojas, así como tamaño y forma de la inflorescencia, lo que favorece que tengan gran potencial para la mejora genética (Borys et al., 2005). ...
Article
Full-text available
El género Echeveria agrupa varias especies de plantas suculentas presentes en ambientes diversos, se encuentran en hábitats con suelos rocosos de poca profundidad, pendientes pronunciadas, cañones y rocas. Prácticamente todas las especies del género presentan interés económico, como plantas ornamentales, siendo comunes en colecciones de Crassulaceae. Los ejemplares que se encuentran en las colecciones son especies e híbridos del tipo interespecíficos e intergenéricos; sin embargo, aún se encuentran muchos sin identificar. Existen dificultades en la taxonomía del género por la falta de ejemplares en herbarios y por la ausencia de estudios moleculares, los cuales podrían brindar información valiosa tanto para la taxonomía como para estudios citogenéticos y otros de interés en el mejoramiento genético para su aprovechamiento comercial. En esta revisión hacemos una recopilación de información de lo que se conoce para el género en cuanto a cariotipado, diversidad genética, relaciones filogénicas y taxonomía, morfología floral, biología reproductiva, polinización, fitomejoramiento y aplicaciones biotecnológicas y moleculares; lo anterior enfocado en brindar perspectivas futuras para la mejora genética de Crassulaceae. En Echeveria sería de gran importancia la realización de estudios moleculares con el fin de ampliar la información actual sobre taxonomía del género y la aplicación de técnicas biotecnológicas que apoyen programas de mejora genética.
Article
Full-text available
The Qinghai–Tibet Plateau includes the Himalayas and Hengduan Mountains and is well known for its rich biodiversity. Evolutionary radiation is one of the main ways by which plants diversify in mountains, particularly the Qinghai–Tibet Plateau. It presents a large challenge to the classification of taxa that radiate quickly. One way to overcome these challenges is to continue conducting detailed field studies while integrating morphological and molecular evidence to classify these taxa. The aim of this research was to provide a case for the systematic study of the complex taxa Rhodiola, which rapidly radiate. During the field study, we found two unique variants of Rhodiola in an alpine dry meadow and beds of pebbles on beaches, respectively. We utilized a morphological principal component analysis, scanning electron microscopy and molecular phylogenetic analysis to propose two new species: Rhodiola wangii S.Y. Meng and Rhodiola namlingensis S.Y. Meng. R. wangii is similar to R. stapfii (Hamet) S.H. Fu, but it differs in having an intensely broad rhombus and alternate leaves, a distinct petiole, stamens gathered together and reflexed purple scales. R. namlingensis is similar to R. prainii (Hamet) H. Ohba, but it differs in its exerted alternate leaves, the presence of more than four leaves on the stem, thick leaf blades, an obovate to inverted triangle, and short petioles. The conservation status of these two species was also assessed.
Article
Full-text available
Infections by Fusarium and Fusarium-like species on cacti and other succulent plants cause the syndrome known as Fusarium dry rot and soft rot. There are only few records of Fusarium species as pathogens of cacti and other succulent plants from Iran. The objective of this study was the identification and characterization of fusarioid species recovered from ornamental succulents in Shiraz County, Iran. Three fusarioid species, including F. oxysporum, F. proliferatum, and Neocosmospora falciformis (formerly F. falciforme), were recovered from 29 diverse species of cacti and other succulents with symptoms of Fusarium dry rot and soft rot. The three fungal species were identified on the basis of morphological characters and the phylogenetic analysis of the translation elongation factor1-α (tef1) nuclear gene. The F. oxysporum isolates were identified as F. oxysporum f. sp. opuntiarum. The pathogenicity of the three fusarioid species was tested on a range of economically important ornamental succulents, mostly in the Cactaceae family. The three species showed a broad host spectrum and induced different types of symptoms on inoculated plants, including soft and dry rot, chlorosis, necrotic spots, wilt, drying, root and crown rot. This is the first report of N. falciformis as a pathogen of succulent plants worldwide.
Article
Aerial vegetative diaspores — often simply called “bulbils” in the botanical and horticultural literature — are diverse in morphology, origin, position, and modes of dispersal. This review examines their occurrence in the Angiosperms, their morphology and site of origin, and possible ecological and evolutionary advantages. Moreover, a standard terminology is proposed based on three criteria: dormancy, polarity, and whether the storage tissue is leaf or stem. We review the taxonomic and geographic distribution of bulbils, cormlets, tubercles, and gemmae, their modes of dispersal, and whether dispersal mode differs from that of the seeds. We detect geographic biases in the distribution of plantlets and tubercles (mostly tropical in distribution) versus bulbils, cormlets, and gemmae (mostly temperate). We note the physiological differences between seeds and aerial vegetative diaspores, which may account for differences in modes of dispersal, which for aerial vegetative diaspores includes anemochory, epizoochory, endozoochory, barochory, and hydrochory. Additional research is suggested so that gaps in our understanding of this common form of asexual reproduction can be filled.
Article
Full-text available
Crassulaceae are the largest family in the angiosperm order Saxifragales. Species of this family are characterized by succulent leaves and a unique photosynthetic pathway known as Crassulacean acid metabolism (CAM). Although the inter- and intrageneric relationships have been extensively studied over the last few decades, the infrafamilial relationships of Crassulaceae remain partially obscured. Here, we report nine newly sequenced chloroplast genomes, which comprise several key lineages of Crassulaceae. Our comparative analyses and positive selection analyses of Crassulaceae species indicate that the overall gene organization and function of the chloroplast genome are highly conserved across the family. No positively selected gene was statistically supported in Crassulaceae lineage using likelihood ratio test (LRT) based on branch-site models. Among the three subfamilies of Crassulaceae, our phylogenetic analyses of chloroplast protein-coding genes support Crassuloideae as sister to Kalanchoideae plus Sempervivoideae. Furthermore, within Sempervivoideae, our analyses unambiguously resolved five clades that are successively sister lineages, i.e., Telephium clade, Sempervivum clade, Aeonium clade, Leucosedum clade, and Acre clade. Overall, this study enhances our understanding of the infrafamilial relationships and the conservation of chloroplast genomes within Crassulaceae.
Article
Full-text available
The photosynthetic pathway of plants is a fundamental trait that influences terrestrial environments from the local to global level. The distribution of different photosynthetic pathways in Australia is expected to undergo a substantial shift due to climate change and rising atmospheric CO 2 ; however, tracking change is hindered by a lack of data on the pathways of species, as well as their distribution and relative cover within plant communities. Here we present the photosynthetic pathways for 2428 species recorded across 541 plots surveyed by Australia’s Terrestrial Ecosystem Research Network (TERN) between 2011 and 2017. This dataset was created to facilitate research exploring trends in vegetation change across Australia. Species were assigned a photosynthetic pathway using published literature and stable carbon isotope analysis of bulk tissue. The photosynthetic pathway of species can be extracted from the dataset individually, or used in conjunction with vegetation surveys to study the occurrence and abundance of pathways across the continent. This dataset will be updated as TERN’s plot network expands and new information becomes available.
Article
Full-text available
Little is known about the reproductive biology of the Crassulaceae. We studied a population of Echeveria gibbiflora in the Pedregal de San Angel ecological preserve in Mexico City, Mexico. Each flower is open and producing nectar 7 to 8 days. On the days of maximum nectar production (flowers 4–6 days old) an average of 14.5 μl accumulates in a flower per day. The maximum rate of nectar production is between 0700 and 0900 hours. The average sugar concentration in the nectar is 43.7%. In a given flower, pollen is exposed and the stigmas are receptive at the same time. The average natural fruit-set and seed-set are 56.6% and 35.5%, respectively. The pollen-ovule ratio is 124, and the plants are fully self-compatible. The flowers are pollinated by only one species of hummingbird (Cynanthus latirostris) and are never visited by insects. Pollen movement is very limited (mean of pollinator flight distances = 0.72 m, mean distance fluorescent dyes = 0.92 m). Seed dispersion is by gravity and wind, and also is very limited (an average of 1.07 m). The total genetic neighborhood area is 15 m² to 17 m², producing a neighborhood effective population size (Nb) of 5.01 to 39.7 individuals. This is a very small Nb, indicating that genetic drift may be a dominant force in the evolution of this species.
Article
Gametic chromosome numbers of 22, 32, 33, and 44 in five species of Lenophyllum suggest that they may be polyploids on a basic 11, but this number has not been found. Three species have 8-12 distinctively large chromosomes that do not pair with each other in their hybrids and probably belong to the same genome. In hybrids of many polyploid Mexican Crassulaceae preferential pairing occurs between corresponding chromosomes of their multiple genomes, which indicates that they are autopolyploids. However, little or no preferential pairing occurs between chromosomes of Lenophyllum in its hybrids, and its species appear to be allopolyploids. The putative parents are unknown.
Article
The 140+ species of Echeveria have more than 50 gametic chromosome numbers, including every number from 12 through 34 and polyploids to n = ca. 260. With related genera, they comprise an immense comparium of 200+ species that have been interconnected in cultivation by hybrids. Some species with as many as 34 gametic chromosomes include none that can pair with each other, indicating that they are effectively diploid, but other species with fewer chromosomes test as tetraploids. Most diploid hybrids form multivalents, indicating that many translocations have rearranged segments of the chromosomes. Small, nonessential chromosomal remnants can be lost, lowering the number and suggesting that higher diploid numbers (n = 30–34) in the long dysploid series are older. These same numbers are basic to most other genera in the comparium (Pachyphytum, Graptopetalum, Sedum section Pachysedum), and many diploid intergeneric hybrids show very substantial chromosome pairing. Most polyploid hybrids here are fertile, even where the parents belong to different genera and have very different chromosome numbers. This seems possible only if corresponding chromosomes from a polyploid parent pair with each other preferentially, strong evidence for autopolyploidy. High diploid numbers here may represent old polyploids that have become diploidized by loss, mutation, or suppression of duplicate genes, but other evidence for this is lacking. Most species occur as small populations in unstable habitats in an area with a history of many rapid climatic and geological changes, presenting a model for rapid evolution.
Article
Eleven of the 12 species of Pachyphytum, all that are available, have n = 31–33 standard chromosomes, or a multiple. Accessory chromosomes were found in some or all collections of four species; some cells of one plant have more than 50 of them. Accessory chromosomes often occur in groups at metaphase I, corresponding to their origin from one to several chromocenters of prophase I. Intraspecific polyploidy occurs within five species, with diploids to 12-ploids (n = ca. 186) in P. compactum and diploids to decaploids (n = ca. 160) in P. hookeri. Although the basic chromosome number is high, evidence from meiosis in certain hybrids shows that the basic 31–33 chromosomes are probably all different: they do not pair with each other and they do not duplicate each other. Polyploids, with 62 or more chromosomes, are probably autopolyploids: they form multivalents, and the chromosomes they contribute to hybrids pair with each other. Three different probable hybrids have been found in the wild, and more than 300 hybrids have been produced in cultivation.
Article
Factors controlling the timing of seed germination were investigated in the small succulent winter annual Sedum pulchellum Michx. (Crassulaceae) in its natural habitat on unshaded limestone outcrops in northcentral Kentucky. At maturity in early July the dormant seeds are not dispersed but are retained in the fruits on the standing dead plants until September and October. Many, but not all, of the seeds afterripen in the fruits during summer, and at the time of dispersal some of them are dormant and some are nondormant. Germination and annual population establishment occur in September and October from seed reserves that have been in the soil for one or more years and from seeds produced in the current year. Germination of nondormant seeds may be prevented in autumn by lack of the appropriate combination of environmental factors including light, temperature and soil moisture in the seed's microsite. The effect of low winter temperatures on ungerminated seeds in the population is to induce nondormant seeds into secondary dormancy and to prevent afterripening of dormant seeds. Thus, in spring all the seeds in the population's seed reserve are dormant. During spring and summer some of these seeds afterripen, and they germinate in autumn when, and if, germination requirements are fulfilled.
Article
Chromosome numbers are reported for probably all 11 species of Graptopetalum (x = 30–35) and for both species of Thompsonella (x = 26). Plants of two species of Graptopetalum have gametic numbers from about 240–275, more than have been reported in any other seed plants. In hybrids the 30–35 chromosomes in the basic genome of Graptopetalum and likewise the 26 in Thompsonella apparently do not pair among themselves, and the genomes seem to be no more potent genetically than those of other species in their subfamily having as few as 12 chromosomes. Species with these gametic numbers are therefore considered to be diploid. On the other hand, in hybrids between a diploid and a plant with a very high chromosome number the phenotype of the latter predominates, and most of its chromosomes pair with each other. Many such hybrids are fertile. These facts suggest that the high polyploids arose by autoploidy rather than by alloploidy. Nevertheless, they may store heterozygosity at some gene loci and release it in various dosages and proportions each generation.
Article
Uhl, Charles H. (Cornell U., Ithaca, New York.) Chromosomes of the Sempervivoideae (Crassulaceae). Amer. Jour. Bot. 48(2): 114–123. Illus. 1961.—Chromosome numbers are reported for 207 collections representing 68 of the ca. 95 species in this subfamily. Basic numbers are 16, 17, 18, and 19 in Sempervivum, Section Sempervivum (10 species, with many tetraploids and one hexaploid); 19 in Sempervivum, Section Jovisbarba (5 species, all diploid); 15 in Aichryson (9 species, including 1 aneuploid, 1 tetraploid, and 1 aneutetraploid); and strictly 18 in Aeonium (31 species, including 4 wholly and 1 partly tetraploid), Greenovia (3 species, 1 partly tetraploid), and Monanthes (10 species, including 2 wholly and 1 partly tetraploid). The cytological evidence appears decisive in ranking several species of disputed generic position definitely with Aichryson rather than with Aeonium. Possible relationships between various Canarian genera and certain North African species often classed in Sedum are discussed briefly in the light of the scanty morphological and cytological evidence. It is suggested that both these groups may be descended from the same ancestors that were widespread in North Africa before the deserts developed.
Article
Dudleya (Crassulaceae) includes a number of species with narrowly restricted geographic distributions, specific microhabitat requirements, and low population numbers that make them vulnerable to extinction. Rock-inhabiting lichens serve to trap seeds and to enhance seedling survival of the rare and/or threatened Dudleya species that are restricted to steep cliff and rock habitats. Fruticose lichens, especially Niebla ceruchoides Rundel & Bowler (the pincushion lichen), are richly branched, and thereby, effectively trap minute Dudleya seeds as they are dispersed by wind and rain across rock outcrops. These bush-like lichens collect airborne soil particles and absorb moisture from fog, thereby creating a microhabitat that facilitates the establishment of Dudleya seedlings in the otherwise inhospitable conditions found on sheer rock faces.