ArticlePDF Available

Abstract and Figures

The genetic diversity and possible geographic structure of the Madeiran endemic Armeria maderensis have been assessed with AFLP. Its scarce distribution (less than 3km between the two most distant localities) and restricted habitat (vertical pastures on the highest elevations of Madeira), at least in part due to grazing by goats, suggest an assessment of its conservation status. Diversity estimates obtained for A. maderensis were evaluated through comparison with reference values of AFLP diversity for outcrossing plants and, in order to correct for phylogenetic constraints, with a widespread congener analyzed with the same AFLP markers. Our results reveal that low levels of genetic diversity and a weak intraspecific genetic structure underlie the restricted distribution of A. maderensis.
Content may be subject to copyright.
1
2
3
4
5
6
7
8
9
10
11
LowGeneticDiversityintheRareMadeiranEndemicArmeriamaderensis
(Plumbaginaceae)
RosalíaPiñeiro1,JavierFuertesAguilar1,MiguelMenezesdeSequeira2andGonzaloNietoFeliner1
1RealJardínBotánicodeMadrid,CSIC,PlazadeMurillo2,28014Madrid,Spain.
2DepartamentodeBiología,CentrodeEstudosdaMacaronésia,UniversidadedaMadeira,Campusda
Penteada,9000Funchal,Portugal
Correspondingauthor:
12
13
14
15
RosalíaPiñeiro*:Email:pineiro@rjb.csic.es;Phone:+34914203017;Fax:+34
914200157
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
LowgeneticdiversityintherareMadeiranendemicArmeriamaderensis
(Plumbaginaceae)
RosalíaPiñeiro1,JavierFuertesAguilar1,MiguelMenezesdeSequeira2andGonzaloNietoFeliner1
AbstractThegeneticdiversityandpossiblegeographicstructureoftheMadeiran
endemicArmeriamaderensishavebeenassessedwithAFLP.Itsscarcedistribution(less
than3kmbetweenthetwomostdistantlocalities)andrestrictedhabitat(vertical
pasturesonthehighestelevationsofMadeira),atleastinpartduetograzingbygoats,
recommendanevaluationofitsconservationstatus.Diversityestimatesobtainedfor
A.maderensiswereevaluatedthroughcomparisonwithreferencevaluesofAFLP
diversityforoutcrossingplantsand,inordertocorrectforphylogeneticconstraints,
withawidespreadcongeneranalyzedwiththesameAFLPmarkers.Ourresultsreveal
thatlowlevelsofgeneticdiversityandaweakintraspecificgeneticstructureunderlie
therestricteddistributionofA.maderensis.
KeywordsAFLP,Bayesianclusteringanalyses,Conservationbiology,Islandendemic
Runningtitle:LowgeneticdiversityinArmeriamaderensis
2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Introduction
Propensitytoextinctionofislandplantshasbeenwelldocumented.The
reviewsbyPrimack(1998)andWCMC(1992)indicatethatmostspeciesgoneextinct
between1600andthe1990soccurredonislands(Frankhametal.2002).This
susceptibilityseemstobeduetotheparticulardemographicconditionsenduredon
islands,ofteninvolvingsmalleffectivepopulationsizes,isolationandlowmigration
rates,colonizationthroughfoundingeventsand/orhabitatdestructionbyhumansor
introducedanimals(Coblentz1978;RiesebergandSwensen1996;Frankhametal.
2002;Holmgren2002;CowieandHolland2006;CuevasandLeQuesne2006).
Animportantmatterwhenassessingtheconservationstatusofvulnerable
islandplantsistotestwhethertheraredistributionofthespeciesisparalleledbylow
levelsofgeneticdiversity(Frankham1997).Inordertoproperlyassesstheamountof
geneticdiversity,thespeciesunderstudyneedstobecomparedwithvaluesof
reference.However,interspecificcomparisonsmightbebiasedbydifferencesini)the
biologyofthespeciescompared,specificallytheparticularphylogeneticpositionorlife
historytraits,aswellasinii)theanalyticalproceduresacrossstudies,i.e.,sampling
strategy,typeofgeneticmarker,labprotocolanddiversityparametersused(Loveless
andHamrick1984;Felsenstein1985;HamrickandGodt1989;Stoneburneretal.1991;
GitzendannerandSoltis2000;Culleyetal.2002;Nybom2004;Petitetal.2005).
Inplants,severalapproacheshavebeenproposedtoobtainreliable
comparisonsofgeneticdiversityacrossspecies.Intheclassicapproach,theestimate
foraparticularspeciesiscomparedtoaveragediversityvalues,accountingforthetype
ofmarker,thelifehistorytraitscategoryandthepopulationgeneticparameterused
(HamrickandGodt1989:proteinmarkers;Nybom2004:RAPD,AFLPorSSR).However,
thismethoddoesnotcontrolforphylogeneticconstraintsand,therefore,whena
phylogenyisavailable,otherapproacheshavebeenapplied.Thefirstoneisthe
comparisonwiththemostcloselyrelatedwidespreadcongener,assuggestedby
GitzendannerandSoltis(2000),whofoundempiricalsimilarityofpopulationgenetic
parameterswithinrelatedtaxa.Thisapproachhasbeenusedtostudyalargenumber
ofplantendemics,includingtaxarestrictedtoislands(YoungandBrown1996;
Frankham1997;Soltisetal.1997;DoddandHelenurm2002;Ellisetal.2006;Moreira
3
daSilvaetal2007).Anotherpossibilityistoperformphylogeneticallyindependent
contrasts(PIC;Felsenstein1985).Aguinagaldeetal.(2005)usedthelattermethodto
assesschloroplastDNAbasedG
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sttrendsinEuropeantemperatetreesandshrubsand
foundlittleassociationwithlifehistorytraitswhenphylogeneticpositionwas
accountedfor,thuschallengingtheconclusionsoftheclassicmetaanalysesbyHamrick
andGodt(1989)andNybom(2004),Petitetal.(2005).
OurstudyfocusesontheislandendemicplantArmeriamaderensisLowe,which
hasanextremelyrestricteddistributioninrockyareasexposedtohumidwindsinthe
mountainsofMadeira(Vieira1992;PressandShort1994;JardimandFrancisco2000).
Madeira,avolcanicislandoriginatedwithintheAfricanplateintheTertiary
(approximately5.3MYA;Geldmacheretal.2000),comprises1226describedvascular
plantspecies,ofwhich234areMacaronesianendemicsand157oftheseendemicsare
exclusivetotheisland(Vieira1992;PressandShort1994;JardimandFrancisco2000).
Armeriamaderensisoccursonlyabove1600m,i.e.,strictlyinthesupratemperatebelt,
spanningasmallareabetweenthehighestpeaks,Ruivo(1862m)andAreeiro(1818m)
(Mesquitaetal.2004).ThisareaispartoftheNaturalParkofMadeira,ageologicaland
highaltitudevegetationreserve,alsopartofaSpecialProtectedArea(SPA)includedin
theNatura2000NetworkasaCommunityImportantSite(CIS).Climaxvegetationin
thisbeltincludesseveralrupicolouscommunities,whichmaydevelopwheretreecover
andgrazingareabsent.OneofthemistheArmeriomaderensisParafestucetum
albidae,dominatedbyArmeriamaderensisLowe,Deschampsiamaderensis(Hack.&
Bornm.)Buschm.,Parafestucaalbida(Lowe)Alexeev,Anthoxanthummaderensis
Teppner,andAnthyllislemmanianaLowe.Moderategrazingofthiscommunityseems
toresultinthereplacementbytheassociationViolarivianaeagrostietumcastellanae,
dominatedbynonendemics(Costaetal.2004;M.Silva,D.Menezes,S.King,E.
MenezesdeSequeira,M.MenezesdeSequeira,unpubl.).Inlocationsexposedtoheavy
grazingandsoilerosion,evenpoorerannualcommunitiesareestablished(Leontodo
longirrostrisOrnithopetumperpusilli).
Grazingseemstobeanimportantfactordeterminingtherestricteddistribution
ofthespecies.In2003,theregionalgovernmentcompletedtheprogramofremovalof
goatsintheMadeiranMountainsinitiatedin1994intheframeoftheEUHabitats
Directive92/43/EEC.Fromthatmomenton,Armeriamaderensishasexperienceda
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
spectacularincreaseofitspopulations,colonizingmoreaccessiblealpinepastures
(ViolarivianaeagrostietumcastellanaeandLeontodolongirrostrisOrnithopetum
perpusilli)inadditiontotheinaccessiblerockcrevicesthatweretheexclusivehabitat
before.Moreover,ageneralincreaseoffloristicdiversityinMadeiranMountaiscould
beobserved(M.Silva,D.Menezes,S.King,E.MenezesdeSequeira,M.Menezesde
Sequeira,unpubl.).
LikeotherMacaronesianendemics(reviewedinJuanetal.2000;Emerson2002;
Carineetal.2004),A.maderensisappearstohaveitsclosestrelativesintheWestern
Mediterranean.NuclearribosomalITSphylogeniesareconsistentwiththisgeneral
trendandrevealasubstantialdivergence(NietoFelineretal.2001;FuertesAguilarand
NietoFeliner2003).Unluckily,accurateestimationofisolationtimeandaswellas
identificationofitssisterspeciesareprecludedbythelowlevelresolutionoftheITS
tree,duetothefrequentinterspecifichybridizationinnaturalpopulationsofArmeria
andthelikelyrecentdiversificationofthegenus(GutiérrezLarenaetal.2002;Fuertes
AguilarandNietoFeliner2003;TauleigneGomesandLefèbvre2005).
ThisstudyusesAFLPdatatoassessthegeneticstructureanddiversitylevelsof
Armeriamaderensis,tointerpretitsevolutionaryhistoryandtoevaluateits
conservationperspectives.Oursamplingwasperformedin2003.Therefore,itprovides
anaccuratedescriptionofthegeneticstructureofthespeciesjustbeforegoatswere
definitivelyremoved,afteralmost600yearsofgrazing(Sousa2003).
Inordertocorrectforphylogeneticbias,followingGitzendannerandSoltis(2000),
wehaveevaluatedthelevelsofgeneticdiversityinA.maderensisincomparisonwitha
previousAFLPstudyonthewesternMediterraneanwidespreadcongenerA.pungens
(Piñeiroetal.2007).ArmeriapungensisdisjunctlydistributedintheAtlanticandthe
Mediterranean.Ithasamainareaalonga500kmstripeinsouthernAtlanticIberia,
fromthemouthoftheTagusRivertotheGibraltarStrait.Italsooccursontwodisjunct
archipelagos:intheAtlantic,intheCíesislands(offshoreGaliciancoast,northern
Spain),andintheMediterraneaninsouthernCorsicaandnorthernSardinia.Previous
morphologicalandmoleculardatarevealthatA.pungenspresentsadiverseancestral
lineageoccurringintheAtlanticcoastsofSWPortugal(Piñeiroetal.2007;Piñeiroet
al.,unpubl.),whileintrogressionevents(Piñeiroetal.,unpubl.)mayexplainthe
relativelyhighdiversityintheCíesislands.TheremainingpopulationsintheSouthern
5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
partoftheAtlanticrange(GulfofCadiz)aswellasthedisjunctMediterranean
populationsinCorsicaandSardiniaaretheresultofrecentexpansionsfromthe
originalPortuguesearea.Colonizationeventsmeantthelossofgeneticdiversity,
especiallyintheGulfofCadiz,probablyduetothedifferentenvironmentalconditions
inthisarea.
Specifically,inthisstudythefollowingquestionsareinvestigated:i)Istherestricted
distributionofA.maderensisparalleledbyalowgeneticdiversity?ii)Isgenetic
variationgeographicallystructuredinA.maderensis?iii)Whichmightbethefactors
influencingcurrentgeneticstructureandlevelsofdiversity?iv)Whatarethe
implicationsofthecurrentgeneticstructureanddiversityfortheconservationofthe
species?
MaterialandMethods
StudySystem
Armeriamaderensisistheonlyendemicrepresentativeofthegenusin
Macaronesia.Morphologically,themostuniquefeatureofthisspecieswithinthe
genusisthelackofimbricationofinvolucrebracts,whicharefew,narrowand
seeminglyarrangedinasinglerowsothatitcanbehardlysaidthattheyconstitutean
involucre.Theinsertionoftheflowerpedicelonthecalyxisfrequentlymoretruncate
andthuslessspurredthaninothercongeners.Anotherapparentfeatureisthepatent
arrangementoftheinnerflowerineachspikeletwithintheglomerule.These
morphologicalcharactersareusefultoidentifyA.maderensisbuttotheextentthat
theyarenotsharedwithotherspecies,theydonothelpinfindingitsclosestrelatives.
SamplingStrategy,DNAisolation,AFLPprotocol
Thesamplingwasperformedin2003inthesmalldistributionareabetween
peaksRuivoandAreeirobeforegoatswereremovedfromtheisland(Table1,Fig.1).
Toourknowledge,nopreviousfieldstudieshadattemptedtolocalizeorquantifythe
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
populationsofA.maderensis.Ninesites(nr.19)werefound,themostdistantones
beinglessthan3kmapart.Wesucceededatcollectingfruitsfromeightofthesesites
(Table1).Anadditionalinaccessiblesite,harbouringafewindividualsonavertical
northfacingwall(closetositenr.8,onthepathtoTorrinhaspeak),wasalsodetected.
Sites2,4,5and6correspondedtoconsistentpopulations,whereassites1,3,7
and8consistedofveryfewscatteredindividuals(Table1,Fig.1).Theremoteand
inaccessiblestatusofpopulationslimitedthenumberofindividualscollectedateach
site(e.g.populationnr.4hadtobesampledbyequippedclimbers).Intotal,wewere
abletosampleripefruitsfrom44separatemotherplants.
Threereplicatespermotherplantweregerminatedafteracoldtreatmentof
onemonth.SeedlingswerecultivatedinthegreenhouseattheBotanicalGardenof
MadridbetweenOctober2003andJune2005inordertoprovidefreshleavesforDNA
isolation.Thisisalimitationofourstudy,becausewehaveactuallyassessedthe
geneticdiversityinapotentialfuturegeneration.
DNAwasextractedwithPlantDNeasyMinikit(Qiagen).TheAFLPprotocolwas
performedaccordingtoGaudeuletal.(2000)forEcoRI/MseIenzymecombinationand
Piñeiroetal.(2007)forKpnI/MseI.Thefollowingthreeprimercombinationswere
used:(6FAM)EcoRI+acc/MseI+cacc,(6FAM)EcoRI+acg/MseI+ctac,(6FAM)KpnI+
atc/MseI+cag.Protocolsandselectiveprimerswerethesameusedinthe
phylogeographicstudyofthecongenerA.pungens(Piñeiroetal.2007).Thefactthat
AFLPmarkershavebeenobtainedusingtwodifferentenzymecombinationsincreased
thegenomicregionsrepresentedinthefingerprints(Vosetal1995;Ulrichetal.1999).
Intotal,31individualsweresuccessfullygenotyped.Theremainingindividuals
collecteddidnotsurviveinthegreenhouseorfailedforamplificationwithatleastone
primercombinations.Samplingofmorethanoneindividualfromthesamemother
plantwasavoided.Thesampling,althoughsmall,mightappropriatelyrepresentthe
geneticvariationofA.maderensisgivenitsextremelyrestricteddistribution.Voucher
specimensarekeptatMA.
AreproducibilitytestwasperformedforeachprimerpairbyreextractingDNA
andrepeatingthewholeprocedure(7,6and5individualswerereamplifiedusingthe
threeprimercombinationsgivenabove,respectively).Theerrorratewascalculatedas
thetotalnumberoflocidifferencesrelativetothetotalnumberoflocicomparisons
7
1
2
3
4
5
6
7
andsubsequentlyaveragedoverthethreecombinations.Tofurtherassessand
eventuallyrefinethequalityoftheAFLPdata,potentiallynonhomologousbandswere
checkedfollowingfourdifferentcriteria:i)slightsizedifferencesamongputative
homologousbandsacrossindividuals;ii)lowintensitybands;iii)changingintensityof
onebandacrosssamples;andiv)bandsofhigh(upper10%and20%)orsmall(lower
10%and20%)molecularweight(Bagleyetal.2001;Boninetal.2004).Onceidentified
thebandsfallingintoanyofthosecategories,theerrorrateimprovementwas
calculatedafterremovingbandsfromeachcategory(Piñeiroetal.2007).8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
GeneticStructureofArmeriamaderensis
BayesianclusteringanalyseswereperformedwithSTRUCTURE2.1(Pritchardet
al.2000;Falushetal.2007)andBAPS3.2(Coranderetal.2006).WithSTRUCTUREwe
usedrunlengthsof106followingaburninof105.Longburninperiodswerenecessary
toreachconvergenceofthealphastatisticbeforetheendoftheburninphase.Each
phenotypewascodedbyasinglealleleandamissingdatumaccordingtothe
indicationsinthemanual(1missingfordominantmarkersand2missingforrecessive).
Weselectedthemodelofcorrelatedallelefrequencies,appropriateincaseswhere
weakgeneticstructureisexpected,andtestedboththenoadmixture(tenrepetitions
ateachK)andtheadmixture(fiverepetitions)ancestrymodels.SimulationsfromK=1
toK=8wererun,i.e.themaximumnumberofgeneticgroupstestedequalledthe
numberofgeographicalsites.Thenumberofgeneticgroups(K)inourdatasetwas
inferredtakingintoaccounttheestimatedposteriorlogprobabilityofthedata,LK),as
wellasthestabilityoftheassignmentpatternsofindividualsintoKgroupsacross
repetitions.BAPSsimulationswererunfromK=1toK=8asthemaximumnumberof
groups,withfourreplicatesateachK.
Dicesimilarityamongindividualswascalculatedandvisualizedwithaprincipal
coordinatesanalysis(PCoA;NTSYSpc2.1;Rohlf1998).Inaddition,Jaccardandsimple
matchingcoefficientswerecalculated.Aminimumspanningtree(MST)basedonDice
wasimposedonthePCoAtodetectlocaldistortions.NeiandLidistance(1979)was
alsocalculatedwithPAUP4.0b10(Swofford2002).CorrelationbetweenNeiandLi
8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
distancesandgeographicdistanceswascalculatedbyperformingaManteltestwith
NTSYSpc2.1.Significancewastestedbyrandomization(1000permutations).
GeneticDiversityofArmeriamaderensis
Threegeneticdiversityestimateswerecomputedatthetotalspeciesleveland
atthewithinpopulationslevel:i)allelicrichness,fromthepercentageofpolymorphic
loci,P(POPGENE3.2;YehandBoyle1997);ii)genediversityofNei(1973),H
(POPGENE3.2);andiii)allelesimilarityusingShannonindex(1948),Sh(POPGENE3.2).
TocalculatetheglobalgeneticdiversitywithinA.maderensis,allgenotyped
individualswerepooled.Incontrast,calculationsonaperpopulationbasiswere
challengedbythefactthatonlythreeoutofeightcollectedsitesarewellseparated
populations(pops.nr.2,5and6).Therefore,withinpopulationgeneticdiversitywas
reportedastheaverageoftheestimatesforthesethreesites.
Standarddeviationsofdiversityestimatesarereported.Monomorphicand
polymorphiclociwereincludedinthecalculations.Nei’s&Shannon’smeasureswere
calculatedforeachlocusandaveragedoverloci.Sincetheconceptofheterozygosity
cannotbeappliedtodominantmarkers,averageNei’sgenediversity(H)issimplya
measureofgeneticvariation.WealsocalculatedNei’sdiversityestimateusingLynch&
Milligan’smethod(1994)implementedwithTFPGA(Miller1997),whichattemptsto
correctthebiasgeneratedbydominantmarkersbypruningfrequentlociforthe
estimationofallelefrequencies.
ComparisonwiththeWidespreadCongenerArmeriapungens
ForthewesternMediterraneanwidespreadcongenerA.pungens,thesame
threegeneticdiversityestimateswerecalculatedasdescribedabove.Thecomparison
ofthegeneticdiversityvaluesofA.maderensiswithA.pungens,inadditiontothetype
ofmarker,lifehistorytraitscategoryandpopulationgeneticparameters,correctsfor
phylogeneticbiasandhomogenizestheAFLPprotocolinbothspecies,includingthe
selectiveprimersused.
9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Still,theAFLPstudyonA.pungensinvolved221individualsfrom23welldefined
populationsspanningarangeofhundredsofkilometres,whichimpliesanimportant
differencewiththesamplingstrategyandspatialscaleofthecurrentassessmentofA.
maderensis(Piñeiroetal.2007).Inordertoaccountforsuchdifferences,aper
populationcomparisonofA.pungensandA.maderensiswouldbedesirable.However,
thescattereddistributionofA.maderensisindividualschallengesthereliabilityof
withinpopulationestimates.Wehavethusmadeacomparisononthebasisofthe
geneticlineagesdetectedwithinA.maderensisusingBayesianandgeneticdistance
methodswiththosepreviouslyfoundinthewidespreadA.pungens(Piñeiroetal.
2007):Cíesislands,Portugal,VicenteBordeira,GulfofCadizandCorsicaSardinia(hear
calledI,II,III,IV,VI,respectively).Anadditionallineage(lineageV,Camarinal
population)wasnotincluded,givenitslowsamplesizeandhybridorigin(Piñeiroetal.
2007;Piñeiroetal.,unpubl.).
Forthecomparisonacrossintraspecificgeneticlineages,independent
presence/absencematriceswereeditedfromthecompleteAFLPmatricesforA.
maderensis(presentstudy)andforeachlineageofA.pungens(fromtheoriginaldata
inPiñeiroetal.2007).Foreachgeneticlineage,twomatriceswereedited,oneatthe
populationandanotheratthetotalgeneticlineagelevel,anddiversityparameters
wererecalculatedfromthem.Accordingtothelowestsamplesizes,thenumberof
individualswasstandardizedton=6atthepopulationlevelandton=15atthetotal
geneticlineagelevel.Thiswasachievedbyrandomexclusionofindividuals.Lociabsent
inallindividualsofonelineagewereremovedtoavoidunderestimationofthegenetic
variability.
ComparisonwithReferenceValuesofAFLPDiversityinPlants
Nei’sunbiasedgenediversity(1978)wasalsocalculatedforA.maderensiswith
TFPGA(Miller1997)atthespecieslevel(Ht)andwithinpopulations(Hs).Thisestimate
waschosensinceitwastheoneusedbyNybom(2004)forcomparisonofwithin
populationparametersacrossstudiesbasedondominantmarkers.Itcorrectsfor
differentsamplingsizesbymultiplyingtheindexper2n/2n1,wherenisthesample
size(Nei1987:equation8.4).Thebiasiseffectivelyreducedforsamplingsizes<50and
10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
largenumberoflociavailable,whichfitsoursamplingstrategy.FollowingNybom’s
approach,unbiasedNei’sdiversityisherereportedonlyforpolymorphicbands.
ThecomparisonofNei’sunbiasedgenediversityvaluesforA.maderensiswith
thereferencevaluesreportedinNybom(2004)basedondominantmarkersfor
perennialandoutcrossingplantsaccountsforthetypeofmarker,lifehistorytraitsand
populationgeneticsparameters.
Results
AFLPProfiles
Byrecalculatingtheerrorrateafterremovingeachofthecategoriesof
potentiallynotreproduciblebands,thosebandschangingintensityacrosssamples
wereobservedtobetheleastreliable(Table2).Discardingthemmeantadecreaseof
theerrorratebelow5%(3.1%).Accordingly,67unreliablebandswerediscarded.An
additionalunreliableband,nonreproducibleinmostcomparisons,waseliminated.
Subsequently,16individualsthatwerenotamplifiedforoneoftheprimer
combinationswereremoved,whichmeantthelossof32bands.Afinaldatasetof31
individualsand90markerswasretainedforanalysis.Markersspannedfrom56bpto
447bpandonly58(64.44%)werepolymorphic.Noidenticalphenotypesamong
individualsweredetected.
GeneticStructure
BAPSandSTRUCTUREinferredasingleBayesianclustercomprisingallsampled
individualsofA.maderensis,revealingtheweakgeneticstructureintheAFLPdata(Fig.
2a).BAPSfoundtheoptimalpartitionatK=1(resultsnotshown).IntheSTRUCTURE
analysis,individualswereevenlyassignedtotheKgroupsinsimulationsfromK=2to
K=8forbothadmixtureandnoadmixturemodels(Fig.2a).AsstatedintheSTRUCTURE
manual,thissituation,whentheproportionofthesampleassignedtoeachpopulation
isroughlysymmetric,isindicativeofnopopulationstructure.Consistently,L(K)didnot
showamaximumvalueatanyspecificK.Instead,runsatK=1,K=2,K=6,K=7andK=8
11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
yieldedverysimilarposteriorprobabilitiesbetweenL(K)=589.3andL(K)=586.7(Fig.
2b).
Incontrast,thePCoArepresentingDicesimilaritiesamongindividuals(Fig.3)
showedsomedegreeofgeneticstructureatlocalscales,sincegenotypesspecificto
differentpopulationscouldbedistinguished.Nonetheless,theabsenceof
discontinuitiesinthePCoAscatterplotconfirmedthelowlevelofgeneticdivergence
andweakstructuringoftheoverallgeneticvariationwithinA.maderensis,aspointed
byBayesianclusteringanalyses.Jaccardandsimplematchingcoefficientsgavealmost
identicalresultsasDice(r=0.99withJaccardandr=0.98withsimplematching).The
Manteltest(r=0.01608;PrandomZ<observedZ=0.6134)corroboratedthelackof
overalllinearcorrelationbetweengeneticandgeographicdistances.
GeneticDiversity
WhenthetotaldiversityestimatesofA.maderensisarecomparedwitheachof
thegeneticlineagesofthewidespreadcongenerA.pungens,diversityofA.maderensis
resultedtobelowerthanthatinthelineagewiththelowestdiversityofA.pungens
(lineageIV;Table3).Thispatternholdsforthepercentageofpolymorphisms,Nei´s
genediversity(Ht;Nei1973)andShannonindex(Sh).TheremaininglineagesofA.
pungensshowedsignificantlyhigherdiversitylevelsforallthreediversityparameters,
especiallylineagesI,IIandIII,followedbyintermediatelevelsofdiversityinlineageVI.
Ineverycase,correctionofNei’sindexfordominantmarkersusingestimationofallele
frequenciesbyLynchandMilligan’s(1994)(resultsnotshown)methodgavealmost
identicalresultsasthosebasedonthesquaredrootofthefrequencyoftherecessive
allele(Nei1973).
TheconclusionofalowerdiversityofA.maderensisascomparedtolineages
withinA.pungens,drawnfromthetotaldiversitymeasures,holdformeasuresona
perpopulationbasis,asshowninTable4.Forcomparison,weestimatedthediversity
levelsofthedifferentlineagesofA.pungensincludingalsothosebandsthatwere
absentinallindividualsofonelineage.Inthiscase,thediversitylevelsofthedifferent
lineagesofA.pungensslightlydecreasedbutwerestillhigherthaninA.maderensis
(resultsnotshown).
12
Finally,theunbiasedwithinpopulationgenediversityofNei(1978)forA.
maderensisaveragedoverpopulations2,5and6wasH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
s=0.19.Poolingallgenotyped
individuals,itwasHt=0.14.
Discussion
IsArmeriamaderensisGeneticallyDepauperate?
Inherreviewofpopulationgeneticsstudiesbasedondominantmarkers,
Nybom(2004)reportedanaveragewithinpopulationunbiasedgenediversityofNei
(1978)ofHs=0.27foroutcrossingplantsandofHs=0.25forperennials.Thelowerand
upperlimitsofAFLPdiversityinplantswereHs=0.15andHs=0.31,respectively(average
Hs=0.23).Inthiscontext,A.maderensis,withHs=0.19atthepopulationleveland
Ht=0.14atthetotalspecieslevel,exhibitssignificantlylowlevelsofgeneticdiversity.
Nonetheless,thiscomparisonshouldbetakenwithcautionforthreereasons.First,
althoughlifehistorytraitsareconsidered,phylogeneticconstraintsarenotcontrolled
for.Second,Nybom´sestimatesaregiveninaperpopulationbasis,whereasthisis
difficulttoobtainforA.maderensisgivenitsparticulargeographicaldistribution.Third,
Nybom´scalculationswerebasedonpolymorphicloci,butconsideringonly
polymorphicmarkersinaplantlikeA.maderensis,withahighpercentageof
monomorphicloci(52.23%,seeTable3),probablyleadstoanoverestimationofthe
geneticdiversity.
ThecomparisonwiththewidespreadcongenerA.pungensismorereliable
becauseitiscorrectedforbothbiological(lifehistorytraitsandphylogeny)and
methodologicalconstraintsandbecausethephylogeographichistoryofA.pungensis
wellknownbasedonmorphologicalandmoleculardata(Piñeiroetal.2007;Piñeiroet
al.,unpubl.).OurgeneticdiversityestimatesforA.maderensisareshowntobe,bothat
thetotalgeneticlineagelevel(Table3)andatthepopulationlevel(Table4),even
lowerthanfortheextremelyimpoverishedlineageIVofA.pungensthathasrecently
colonizedtheGulfofCadiz.Still,thesecomparisonswithA.pungensmustbealso
consideredcautiously.Ontheonehand,thecomparisononthebasisofgenetic
lineagesdoesnotfullyaccountforthedifferentspatialscalesofA.pungensandA.
13
maderensis,stilllargerinA.pungenslineages(maximaldistanceswithinlineagesfrom
21kmto413km)thatinA.maderensis(maximaldistanceabout3km).Ontheother
hand,theaveragewithinpopulationdiversityforA.maderensisisonlybasedon
calculationsforthreesites.Anotherpossibility,istoconsiderthefactthatdiversity
estimatesforthewholerangeofA.maderensis(H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
t=0.08,Sh=0.14,n=15;Table3)are
belowthelowestwithinpopulationestimatesofA.pungens(Hs=0.100.19,
Sh=0.150.27,n=6;Table4).Thisassessment,atcomparablespatialscales,definitively
confirmsthereducedlevelofgeneticdiversitywithinA.pungensbeyondany
reasonabledoubt.
Besidestheinformationprovidedbythepopulationgeneticestimates,the
infraspecificgeneticstructurewithinA.maderensisisweakandshowntoberestricted
tolocalscales.
ThreatsforArmeriamaderensisandFutureProspects
WeconsideredthepossibilitythatthereducedgeneticdiversityinA.
maderensisisactuallyreflectingashifttoautogamyduringestablishmentafterlong
distancedispersal.ThebreakdownofselfincompatibilityisobservedinArmeriain
circumpolarareas.Ithasbeenhypothesizedthatthismechanismfavours
establishmentafterlongdistancedispersalorinareaspoorinpollinators(Baker1966).
However,twodifferentpollenstigmamorphsthatareassociatedtotheincompatibility
systeminArmeriahavebeendetectedinA.maderensisplants(NietoFeliner,unpubl.),
suggestingthatincompatibilityhasbeenmaintainedaftercolonisation.Mechanisms
favouringoutcrossinghavebeenreportedforotherMacaronesianspecies(Francisco
Ortegaetal.2000).
Therefore,oncediscardedtheinfluenceofthebreedingsystem,thegenetic
impoverishmentofA.maderensisseemstoresultfromhistoricalevents.Thesignificant
increaseofthedistributionofA.maderensisintoaccessiblehorizontalpasturessince
theremovalofgoatsin2003,pointsatgrazingasoneofthefactorsresponsibleforthe
reducedgeneticdiversityofthespecies.IsolatedevolutioninMadeiraprecludinggene
flow,longtermsmallpopulationsizes(Frankhametal.2002),foundereffectsduring
thecolonizationofMadeirabymainlandancestors(Winkworthetal.1999;Charbonnel
14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
etal.2002;CowieandHolland2006)ordestructiveeffectofvolcaniceruptionsmight
alsobeconsidered.
Althoughnofragmentationoftherangehastakenplace,theobserved
levelofgeneticdiversitymayincreasetheriskofinbreedingdepression,
whichcouldreducesurvivalandfecundityintheshortterm.However,to
assessaccuratelytheamountofinbreeding,codominantmarkerswouldbe
required.Longtermadaptationtoenvironmentalchangesmightbealso
compromized(Frankhametal.2002;PetersonandMcCracken2005).To
preventtheserisks,werecommendmonitoringthepopulationsofA.
maderensisinthefollowingyears,tosurveyitsrecoveryintheabsenceof
goats.FuturegeneticassessmentsofA.maderensismaybeperformedand
thepresentgeneticstudyusedasareferenceofthediversitylevels
immediatelybeforeeradicationofgrazing.Iftheevolutionofthepopulations
wasobservedtobenonappropriate,takingintoaccounttheobservedlackof
geneticstructure,areinforcementofpopulationscouldbedesignedinorder
toreducethedangerofoutbreedingdepression.Germinationratesofseeds
areusuallyhighinArmeria(WoodellandDale1993),andaremaximizedwhen
seedsfollowacoldtreatment(personalobservation).
AsidefromthepracticalapplicationofourgeneticstudytotheconservationofA.
maderensis,itprovidestheopportunitytoaddressinthenearfuturethetheoretical
questionofhowthegeneticvariationparallelstherecoveryinnumberofindividuals
afterapopulationbottleneck.Thismightcomplementtheavailablereportsofincrease
ofthecoverofvegetationorspecificrichnessfollowingtheremovalofherbivores
(MuellerDomboisandSpatz1975;Coblentz1977;Schofield1989;LorvelecandPascal
2005).
AcknowledgementsWethankAndreaCostaforprovidingplantmaterialandfield
support,andtheNaturalParkofMadeiraforcollectingpermitsandofferofequipped
climberstoassistfieldwork.PilarCatalán,JuliCuajapéandJoséMaríaIriondomade
valuablecommentsonthemanuscript.ThisworkwassupportedbytheSpanish
DirecciónGeneraldeEnseñanzaSuperioreInvestigaciónCientífica(grantBOS2001–
1839).
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Thisresearchcomplieswiththecurrentlawsofthecountriesinwhichitwas
performed.
References
AguinagaldeI,HampeA,MohantyA,MartinJP,DuminilJ,PetitRJ(2005)Effectsoflife
historytraitsandspeciesdistributionongeneticstructureatmaternally
inheritedmarkersinEuropeantreesandshrubs.JBiogeogr32:329–339
BagleyMJ,AndersonSL,MayB(2001)Choiceofmethodologyforassessinggenetic
impactsofenvironmentalstressors:PolymorphismandreproducibilityofRAPD
andAFLPfingerprints.Ecotoxicology10:239–244
BakerHG(1966)Theevolution,functioningandbreakdownofheteromorphic
incompatibilitysystems,I.ThePlumbaginaceae.Evolution20:349–368
BoninA,BellemainE,BronkenEidesenP,PompanonF,BrochmannC,TaberletP(2004)
Howtotrackandassessgenotypingerrorsinpopulationgeneticsstudies.Molec
Ecol13:3261–3273
CarineMA,RussellSJ,SantosGuerraA,FranciscoOrtegaJ(2004)Relationshipsofthe
MacaronesianandMediterraneanfloras:molecularevidenceformultiple
colonizationsintoMacaronesiaandbackcolonizationofthecontinentin
Convolvulus(Convolvulaceae).AmerJBot91:1070–1085
CharbonnelN,AngersB,RasatavonjizayR,BrémondP,DebainC,JarneP(2002)The
influenceofmatingsystem,demography,parasitesandcolonizationonthe
populationstructureofBiomphalariapfeifferiinMadagascar.MolecEcol
11:2213–2228
CoblentzBE(1977)SomerangerelationshipsofferalgoatsonSantaCatalinaIsland,
California.JRangeManagem30:415–419
CoblentzBE(1978)Theeffectsofferalgoats(Caprahircus)onislandecosystems.Biol
Conservation13:279–286
CoranderJ,MarttinenP,MäntyniemS(2006)Bayesianidentificationofstockmixtures
frommolecularmarkerdata.FishBull104:550–558
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
CostaJC,CapeloJ,JardimR,SequeiraM(2004)Catálogosintaxonómicoeflorísticodas
comunidadesvegetaisdaMadeiraePortoSanto.InCapeloJ(ed)Apaisagem
vegetaldaIlhadaMadeira.Quercetea6:61–183
CowieRH,HollandBS(2006)Dispersalisfundamentaltobiogeographyandthe
evolutionofbiodiversityonoceanicislands.JBiogeogr33:193–198
CulleyTM,WallaceLE,GenglerNowakKM,CrawfordDJ(2002)Acomparisonoftwo
methodsofcalculatingGST,ageneticmeasureofpopulationdifferentiation.
AmerJBot89:460–465
CuevasJG,LeQuesneC(2006)Lowvegetationrecoveryaftershorttermcattle
exclusiononRobinsonCrusoeIsland.PlEcol183:105–124
DoddSC,HelenurmK(2002)GeneticdiversityinDelphiniumvariegatum
(Ranunculaceae)acomparisonoftwoinsularendemicsubspeciesandtheir
widespreadmainlandrelative.AmerJBot89:613–622
EllisJR,PashleyCH,BurkeJM,McCauleyDE(2006)Highgeneticdiversityinarareand
endangeredsunflowerascomparedtoacommoncongener.MolecEcol
15:2345–2355
EmersonBC(2002)Evolutiononoceanicislands:molecularphylogeneticapproachesto
understandingpatternandprocess.MolecEcol11:951–966
FalushD,StephensM,PritchardJK(2003)Inferenceofpopulationstructureusing
multilocusgenotypedata:Linkedlociandcorrelatedallelefrequencies.
Genetics164:1567–1587
22 FalushD,StephensM,PritchardJ.K(2007)Inferenceofpopulationstructureusing
23
24
25
26
27
28
29
30
31
32
multilocusgenotypedata:Dominantmarkersandnullalleles.MolecEcolNotes
7:574–578
FelsensteinJ(1985)Phylogenyandthecomparativemethod.AmerNaturalist125:1–15
FranciscoOrtegaJ,SantosGuerraA,KimSC,CrawfordDJ(2000)Plantgenetic
diversityintheCanaryIslands:aconservationperspective.AmerJBot87:909–
919
FrankhamR(1997)Doislandpopulationshavelessgeneticvariationthanmainland
populations?Heredity78:311–327
FrankhamJ,BallouJD,BriscoeDA(2002)Introductiontoconservationgenetics.
CambridgeUniversityPress,Cambridge
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
FuertesAguilarJ,NietoFelinerG(2003)Additivepolymorphismsandreticulationinan
ITSphylogenyofthrifts(Armeria,Plumbaginaceae).MolecPhylogenEvol
28:430–447
GaudeulM,TaberletP,TillBottraudI(2000)Geneticdiversityinanendangeredalpine
plant,EryngiumalpinumL.(Apiaceae),inferredfromamplifiedfragmentlength
polymorphismmarkers.MolecEcol9:1625–1637
GeldmacherJ,vandenBogaardP,HoernleK,SchminckeH(2000)The40Ar/39Arage
datingoftheMadeiraArchipelagoandhotspottrack(easternNorthAtlantic).
GeochemGeophysGeosyst1:1008,doi:10.1029/1999GC000018
GitzendannerMA,SoltisPS(2000)Patternsofgeneticvariationinrareandwidespread
plantcongeners.AmerJBot87:783–792
GutiérrezLarenaB,FuertesAguilarJ,NietoFelinerG(2002)Glacialinducedaltitudinal
migrationsinArmeria(Plumbaginaceae)inferredfrompatternsofchloroplast
DNAhaplotypesharing.MolecEcol11:1965–1974
HamrickJ,GodtM(1989)Allozymediversityinplantspecies.InBrownA,CleggM,
KahlerA,WeirB(eds)Plantpopulationgenetics,breedingandgenetic
resources.Sinauer,SunderlandMA,pp43–63
HolmgrenM(2002)Exoticherbivoresasdriversofplantinvasionandswitchto
ecosystemalternativestates.BiolInvasions4:25–33
HolsingerKE,LewisPO,DeyDK(2002)ABayesianapproachtoinferringpopulation
structurefromdominantmarkers.MolecEcol11:1157–1164
HolsingerKE,LewisPO(2005)Hickory:Apackageforanalysisofpopulationgenetic
datav1.0.4.Storrs,UniversityofConnecticut,CT
JardimR,FranciscoD(2000)FloraendémicadaMadeira.MúchiaPublicaçôes,Funchal
JuanC,EmersonBC,OromíP,HewittGM(2000)Colonizationanddiversification:
towardsaphylogeographicsynthesisfortheCanaryIslands.TrendsEcolEvol
15:104–108
LorvelecO,PascalM(2005)Frenchattemptstoeradicatenonindigenousmammals
andtheirconsequencesfornativebiota.BiolInvasions7:135–140
LynchM,MilliganB(1994)AnalysisofpopulationgeneticstructurewithRAPDmarkers.
MolecEcol3:91–99
18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MesquitaS,CapeloJ,SousaJ(2004)BioclimatologiadaIlhadaMadeira:abordagem
numérica.InCapeloJ(ed)ApaisagemvegetaldaIlhadaMadeira.Quercetea
6:61–183
MillerMP(1997)Toolsforpopulationgeneticanalyses(TFPGA).AWindowsprogram
fortheanalysisoftheallozymesandmoleculargeneticdata.Departmentof
BiologicalScience,NorthernArizonaUniversity,Flagstaff
MoreiradaSilvaR,WilsonFernandesG,BernadeteLovatoM(2007)Geneticvariation
intwoChamaecristaspecies(Leguminosae),oneendangeredandnarrowly
distributedandanotherwidespreadintheSerradoEspinhaço,Brazil.CanadJ
Bot85:629–636
MuellerDomboisD,SpatzG(1975)Theinfluenceofferalgoatsonlowlandvegetation
inHawaiiVolcanoesNationalPark.Phytocoenologica3:1–29
NeiM(1973)Analysisofgenediversityinsubdividedpopulations.ProcNatlAcadUSA
70:3321–3323
NeiM(1978)Estimationofaverageheterozygosityandgeneticdistancefromasmall
numberofindividuals.Genetics89:583–590
NeiM(1987)Molecularevolutionarygenetics.ColumbiaUniversityPress,NewYork
NeiM,LiWH(1979)Mathematicalmodelforstudyinggeneticvariationintermsof
restrictionendonucleases.ProcNatlAcadUSA76:5269–5273
NietoFelinerG,FuertesAguilarJ,RossellóJA(2001)Canextensivereticulationand
concertedevolutionresultinacladisticallystructuredmoleculardataset?
Cladistics17:301–312
NybomH(2004)ComparisonofdifferentnuclearDNAmarkersforestimating
intraspecificgeneticdiversityinplants.MolecEcol13:1143–1155
PetersonPM,McCrackenCL(2005)Geneticconsequencesofreduceddiversity:
heterozytosityloss,inbreedingdepressionandeffectivepopulationsize.In
KrupnickGA,KressWJ(eds)Plantconservation.Anaturalhistoryapproach.The
UniversityofChicagoPress,Chicago
PetitRJ,DuminilJ,FineschiS,HampeA,SalviniD,VendraminGG(2005)Comparative
organizationofchloroplast,mitochondrialandnucleardiversityinplant
populations.MolecEcol14:689–701
19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PiñeiroR,FuertesAguilarJ,DraperMuntD,NietoFelinerG(2007)Ecologymatters:
AtlanticMediterraneandisjunctionofthesandduneshrubArmeriapungens
(Plumbaginaceae).MolecEcol16:2155–2171
PressJR,ShortMJ(1994)FloraofMadeira.TheNaturalHistoryMuseum,London
PrimackRB(1998)Essentialsofconservationbiology.SinauerAssociates,Sunderland
PritchardJK,StephensM,DonnellyP(2000)Inferenceofpopulationstructureusing
multilocusgenotypedata.Genetics155:945–959
RiesebergLH,SwensenS(1996)Conservationgeneticsofendangeredislandplants.In
AviseJ,HamrickJL(eds)Conservationgenetics.Casehistoriesfromnature.
Chapman&Hall,NewYork,pp305–327
RohlfFJ(1998)NTSYSPCnumericaltaxonomyandmultivariateanalysissystem.Exeter
Publications,Setauket
SchofieldEK(1989)Effectsofintroducedplantsandanimalsonislandvegetation:
examplesfromGalápagosArchipelago.ConservationBiol3:227–239
ShannonCE(1948)Amathematicaltheoryofcommunication.BellSystTechJ27:379–
423,623–656(BellSystemTechnicalJournal)
SoltisPS,SoltisDE,NorvellTL(1997)Geneticdiversityinrareandwidespreadspecies
ofLomatium(Apiaceae).Madroño44:59–73
SousaP(2003)50anosaservirafloresta.GovernoRegionaldaMadeira.Secretaria
RegionaldoAmbienteeRecursosNaturais,DirecçãoRegionaldeFlorestas,
Funchal
SwoffordD(2002)Phylogeneticanalysisusingparsimony(andothermethods),Version
4.SinauerAssociates,Sunderland
TauleigneGomesC,LefèbvreC(2005)Naturalhybridizationbetweentwocoastal
endemicspeciesofArmeria(Plumbaginaceae)fromPortugal.1.Populationalin
situinvestigations.PlSystEvol250:215–230
UlrichG,MuellerL,WolfenbargerLR(1999)AFLPgenotypingandfingerprinting.Trends
EcolEvol14:389–394
VieiraR(1992)FloradaMadeira:ointeressedasplantasendémicasmacaronésicas.
ServiçoNacionaldeParques,ReservaseConservaçâodaNatureza,Lisboa
WCMCWorldConservationMonitoringCentre(1992)Globalbiodiversity:statusof
theearth'slivingresources,ChapmanandHall,London
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
VosP,HogersR,BleekerM,ReijansM,vandeLeeT,HornesM,FritersA,PotJ,
PalemanJ,KuiperM,ZabeauM(1995)AFLP:anewtechniqueforDNA
fingerprinting.NuclAcidsRes23:4407–4414
WinkworthRC,RobertsonAW,EhrendorferF,LockhartPJ(1999)Theimportanceof
dispersalandrecentspeciationinthefloraofNewZealand.JBiogeogr
26:1323–1325
WolfeAD,ListonA(1998)Contributionsofthepolymerasechainreactiontoplant
systematics.InSoltisD.E,SoltisP.S,DoyleJ.J(eds)Molecularsystematicsof
plantsII.DNAsequencing.KluwerAcademicPublishers,NewYork,pp43–86
WoodellSRJ,DaleA(1993)Armeriamaritima(Mill.)Willd.(StaticearmeriaL.;S.
maritimaMill.).JEcol81:573–588
YehFC,BoyleTJB(1997)Populationgeneticanalysisofcodominantanddominant
markersandquantitativetraits.BelgJBot129:157
YoungAB,BrownAHD(1996)Comparativepopulationgeneticstructureofthe
rarewoodlandshrubDaviesiasuaveolensanditscommoncongenerD.
mimosoides.ConservationBiol10:1220–1228
21
1
2 Table1DetailsofsamplesitesofArmeriamaderensisfortheAFLPstudy(allinMadeira;seealsoFig.1)
Site
nr.
Site,habitat(altitude)Latitude
Longituden
collected/
genotyped
1PicoAreeiro,stonypasturesinthesummit(1779m)
32º44’16.6’’N
16º55’42.5’’W2/2
2PicoAreeiro,rockcrevices(1668m)32º44’21.5’’N
16º55’55.3’’W
12/6
3FromPicoAreeirotoPicoRuivo,rockcrevices(1753m)32º44’23.7’’N
16º55’58.8’’W
1/1
4FromPicoAreeirotoPicoRuivo,MangaGrande,rockcrevices(ca.1650m)32º44’12.7’’N
16º56’03.3’’W
5/4
5FromPicoAreeirotoPicoRuivo,pr.PicodoGato,rockcrevices(1779m)32º44’35.5’’N
16º56’17.5’’W
12/8
6Pr.PicoAreeiro,westernslopeofPicodoGato,rockcrevices(1599m)32º44’39.3’’N
16º56’13.4’’W
10/8
7FromPicoRuivotoPicodasTorrinhas,stonyopenshrubsandpastures(1739m)32º45’42.2’’N
16º56’41.2’’W
1/1
8FromPicoRuivotoPicodasTorrinhas,rockycrevicesinwalls(1741m)32º45’42.2’N
16º57’02.9’’W
1/1
3
4 Collectors:A.Costa;G.NietoFeliner;J.FuertesAguilar,M.MenezesdeSequeira,andR.Lansac.Date:July2003
30
1
2
3
3
4
5
6
7
8
9
10
Table2ErrorrateintheAFLPdatasetofArmeriamaderensis,calculatedasthetotal
numberoflocidifferencesrelativetothetotalnumberoflocicomparisons,and
subsequentlyaveragedoverthethreeprimercombinations
Nr.bands
retained
%error
rate
Allbandsincluded1907.1
Typeofbandsremoved:
Differentsizeamongsamples 1476.4
Lowintensity1446.6
Changingintensityamongsamples1233.1
Upper10%molecularweight1726.9
Lower10%molecularweight 1726.7
Upper10%molecularweight
+Lower10%molecularweight
1546.4
Upper20%molecularweight1547.1
Lower20%molecularweight 1546.1
Errorrateswerecalculatedforthewholedatasetandafterremovingpotentiallynon
homologousbandsaccordingtofourdifferentcriteria:i)slightsizedifferencesamong
putativehomologousbandsacrossindividuals;ii)lowintensitybands;iii)changing
intensityofonebandacrosssamples;andiv)bandsofhighorsmallmolecularweight
(Bagleyetal.2001;Boninetal.2004;seethetext)
Upper20%molecularweight
+Lower20%molecularweight
1325.6
Nr.bands
retained
%error
rate
Allbandsincluded1907.1
Typeofbandsremoved:
Differentsizeamongsamples 1476.4
Lowintensity1446.6
Changingintensityamongsamples1233.1
Upper10%molecularweight1726.9
Lower10%molecularweight 1726.7
Upper10%molecularweight
+Lower10%molecularweight
1546.4
Upper20%molecularweight1547.1
Lower20%molecularweight 1546.1
Upper20%molecularweight
+Lower20%molecularweight
1325.6
22
1
2
3
Table3ComparisonofthetotalAFLPdiversityinArmeriamaderensiswithfivelineages
detectedwithinthewidespreadcongenerArmeriapungensaccordingtoBayesian
clusteringmethods(recalculatedfromPiñeiroetal.2007)
n=15
P
Ht
Sh
A.maderensis
47.77
0.08(0.14)
0.14(0.20)
A.pungens
lineageI
(mainland+island)
73.91
0.21(0.18)
0.33(0.26)
A.pungens
lineageII
(mainland)
81.81
0.21(0.17)
0.33(0.23)
A.pungens
lineageIII
(mainland)
83.9
0.24(0.18)
0.37(0.24)
A.pungens
lineageIV
(mainland)
51.85
0.14(0.18)
0.22(0.26)
A.pungens
lineageVI
(Island)
77.44
0.19(0.18)
0.30(0.25)
4
5
6
7
8
9
10
P
percentageofpolymorphicloci;Ht
Nei’sgenediversity(1973)atthe
species/lineagelevel;Sh
allelesimilarity,Shannonindex(1948).Samplesizewas
standardizedto15individualsaccordingtothesizeofthesmallestlineage.Standard
deviationisreportedinbrackets.ThelineageofA.pungenswiththelowestdiversity
levelishighlighted.
23
1
2
3
4
5
6
Table4WithinpopulationAFLPdiversityofA.maderensisandthefivelineages
detectedwithinthewidespreadcongenerArmeriapungensaccordingtoBayesian
clusteringmethods(recalculatedfromPiñeiroetal.2007)
n=6
P
Hs
Sh
A.maderensis 
Pop.2 17.780.06(0.14)0.09(0.20)
Pop.524.440.07(0.14)0.11(0.20)
Pop.627.780.06(0.11)0.12(0.19)
Mean22.330.060.11
A.pungenslineageI 
Pop.1 43.470.14(0.19)0.21(0.28)
Pop.250.430.18(0.26)0.20(0.29)
Mean46.950.160.20
A.pungenslineageII 
Pop.3 51.510.18(0.20)0.27(0.29)
Pop.4 35.610.11(0.17)0.17(0.25)
Pop.5 43.180.13(0.18)0.21(0.26)
Mean43.430.140.22
A.pungenslineageIII 
Pop.6 50.000.18(0.20)0.26(0.29)
Pop.7 54.240.19(0.20)0.28(0.29)
Mean52.120.190.27
A.pungenslineageIV 
Pop.8 26.670.09(0.17)0.14(0.25)
Pop.9 38.520.14(0.19)0.20(0.28)
Pop.10 23.700.09(0.17)0.13(0.24)
Pop.11 20.000.07(0.16)0.11(0.23)
Pop.12 34.070.11(0.18)0.17(0.25)
Pop.13 25.180.09(0.18)0.14(0.25)
Mean28.020.100.15
A.pungenslineageVI 
Pop.15 50.000.16(0.19)0.25(0.27)
24
Pop.16 29.270.11(0.18)0.16(0.26)
Pop.17 39.020.13(0.18)0.19(0.26)
Pop.18 28.660.10(0.18)0.15(0.26)
Pop.19 42.070.15(0.19)0.22(0.28)
Pop.20 42.680.15(0.19)0.22(0.28)
Pop.21 35.370.13(0.19)0.19(0.27)
Pop.22 35.980.13(0.19)0.20(0.28)
Pop.23 31.710.11(0.17)0.16(0.25)
Mean37.200.130.19
1
2
3
4
5
P
percentageofpolymorphicloci;Hs
Nei’sgenediversity(1973)atthepopulation
level;Sh
allelesimilarity,Shannonindex(1948).Populationsamplesizeswere
standardizedtosixindividuals.Standarddeviationisreportedinbrackets.Thelineage
ofA.pungenswiththelowestdiversitylevelishighlighted
25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
FIGURECAPTIONS
Fig.1LocationofsampledsitesofArmeriamaderensisfortheAFLPstudy,numbered
asinTable1
Fig.2AFLPstructureofArmeriamaderensisestimatedwithBayesianclusteringusing
STRUCTURE.aAssignmentof31individualsintoKgroups.Everyindividualis
representedbyaverticalbardividedinstripesofdifferentcolourcorrespondingtothe
estimatedassignmentprobabilitiestoeachgroup.Sampledsitesarenumberedasin
Table1.TenreplicatesateachKproducednearlyidenticalassignmentpatterns;the
highestprobabilityrunsateachKarerepresentedhere.bLogprobabilityofthedata
asafunctionofKaveragedover10STRUCTURErunsfromK=1toK=8.
Fig.3Principalcoordinatesanalysis(PCoA)representingDicesimilaritiesbetweenAFLP
phenotypesofArmeriamadarensis.Plotof31phenotypeseachcorrespondingtoa
singleindividualagainstthefirstandsecondprincipalaxesisshown,withaminimum
spanningtree(MST)superimposed.Thepercentageofvarianceaccountedforbyeach
axisisindicated.
26
1
2
3
4
5
6
7
27
1
2
3
4
28
... In addition, we identified high levels of genetic diversity (nuclear and plastid) among populations of Oenothera harringtonii, a narrow endemic. This is in contrast to the lower genetic diversity documented in many species with restricted geographic distributions (endemics) when compared to their more widespread congeners (Hamrick & Godt, 1996;Nybom, 2004;Piñeiro et al., 2009; though see Gitzendanner & Soltis, 2000;Cole, 2003). Furthermore, while many annual plant species have lower outcrossing rates than longer-lived species (Vogler & Kalisz, 2001;Charlesworth, 2006), we observed high outcrossing rates in this study. ...
Article
Full-text available
Land-use change is among the top drivers of global biodiversity loss, which impacts the arrangement and distribution of suitable habitat for species. Population-level effects include increased isolation, decreased population size, and changes to mutualistic and antagonistic interactions. However, the extent to which species are impacted is determined by life history characteristics including dispersal. In plants, mating dynamics can be changed in ways that can negatively impact population persistence if dispersal of pollen and/or seed is disrupted. Long-distance dispersal has the potential to buffer species from the negative impacts of land-use change. Biotic vectors of long-distance dispersal have been less frequently studied, though specific taxa are known to travel great distances. Here, we describe population genetic diversity and structure in a sphingophilous species that is experiencing habitat fragmentation through land-use change, Oenothera harringtonii W. L. Wagner, Stockh. & W. M. Klein (Onagraceae). We use 12 nuclear and four plastid microsatellite markers and show that pollen dispersal by hawkmoths drives high gene flow and low population differentiation despite a range-wide gradient of land-use change and habitat fragmentation. By separating the contributions of pollen and seed dispersal to gene flow, we show that most of the genetic parameters are driven by hawkmoth-facilitated long-distance pollen dispersal, but populations with small, effective population sizes experience higher levels of relatedness and inbreeding. We discuss considerations for conservation efforts for this and other species that are pollinated by long-distance dispersers.
... The study of genetic diversity levels in plants can oftentimes be regarded as a complicated issue, for it can be affected not only by intrinsic factors related to the biology of the species, but also by extrinsic ones (Falk & Holsinger, 1991). Numerous studies have noted that those species with a more restricted geographic distribution usually show lower genetic diversity than more widespread congeners (Hamrick & Godt, 1990;Nybom, 2004;Piñeiro, Fuertes, Menezes, & Nieto, 2009), although this is not always so (Cole, 2003;Gitzendanner & Soltis, 2000). Viola cazorlensis exemplifies a species with a higher genetic diversity than might be expected. ...
Article
Viola cazorlensis is a South Iberian endemic (Spain), which is protected at European level, nationally as well as regionally, and considered vulnerable (VU) in accordance with IUCN criteria. This study has researched the genetic variability of seven representatives of V. cazorlensis populations, both inter- and intra-populationally, through the use of ISSR molecular markers and the sequencing of plastidial intergenic spacers. Results obtained from the ISSR markers indicate that these V. cazorlensis populations are not genetically impoverished, and that no clear genetic structure pattern exists. From the sequencing of plastidial intergenic spacers, the presence of different haplotypes has been observed, which becomes more evident as geographic distance among populations increases. Furthermore, there is a certain gene flow among them, more effective at a nuclear level, which could be mediated by Macroglossum stellatarum pollinator. The results obtained lead to the discussion of a series of conservation measures.
... Loci present in only one individual were removed from the data set. Loci with highly variable peak heights across samples were also removed from the data set, since these bands are often unreliable and may increase error (Piñ eiro et al. 2009). A standard Euclidean error rate was calculated following Holland et al. (2008). ...
Article
Full-text available
Abstract— Anticlea vaginata (Melanthiaceae) is a rare and endemic plant species restricted to hanging gardens in low-elevation desert regions of the Colorado Plateau. Its more widespread congener, A. elegans, is morphologically similar, but occurs in montane forests that encompass and extend beyond the natural range of A. vaginata. Here, we use morphometric and genetic analyses to investigate the biogeographic origin, population structure, and taxonomic classification of A. vaginata relative to A. elegans. Our results demonstrate that A. vaginata is closely related to and morphologically indistinguishable from A. elegans and likely represents remnant populations of A. elegans derived from a Pleistocene vicariance event. We conclude that A. vaginata warrants treatment as Anticlea elegans subsp. vaginata , since it exhibits a similar level of differentiation from A. elegans subsp. elegans as subsp. glaucus. Since A. vaginata occupies an ecologically unique niche, exhibits a distinct flowering period and harbors unique alleles, we suggest separate conservation management in order to protect this subspecies and its fragile habitat, which is currently threatened by climate change and the potential for groundwater development.
... Adler et al. 1995; Coyne and Price 2000; Clegg et al. 2002; Warren et al. 2003; Russell et al. 2006; Stracey and Pimm 2009), but few have analysed the endemic species of the Madeira (e.g. flora; Piñeiro et al. 2009) and Azores archipelagos (e.g. land snails; Van Riel et al. 2005; Jordaens et al. 2009), particularly the genus Columba (e.g. ...
Article
Full-text available
This study addresses for the first time the issue of pigeon (genus Columba) phylogeny within the archipelagos of Madeira (Columba trocaz) and Azores (C. palumbus azorica), located in the singular biogeographic area of Macaronesia. The phylogeny of these endemic pigeons was inferred based on mitochondrial (cytochrome b and cytochrome c oxidase I) and nuclear (β-fibrinogen intron 7) genetic markers through multiple approaches. Despite the non-monophyletic pattern for the insular endemic species recovered in the phylogenies, topology tests presented somewhat different results. C. trocaz, the Madeiran endemic species, clustered strongly with the Canarian endemic C. bollii, and these two are thus more closely related to each other than C. bollii to C. junoniae, the other endemic species of Canary Islands, which seems to have diverged independently. Moreover, C. trocaz was found to be phylogenetically closer to C. bollii than to C. palumbus from mainland Europe and Azores Islands. No genetic differentiation was found between the continental C. p. palumbus and the endemic C. p. azorica, which suggests a relatively recent colonisation event of the Azores Islands.
... AFLP protocol -To cover the widest genomic region and ensure high-quality reproducible bands, an initial screening was developed using a subsample of 30 individuals randomly obtained from 10 populations. AFLP analyses have been developed in several species of the genus Armeria ( Baumbach and Hellwig, 2007 ;Piñeiro et al., 2007Piñeiro et al., , 2009 ), and substantial information on possible primer combinations is available. Forty primer combinations were used in the initial screening and checked for band polymorphism and pattern reproducibility. ...
Article
Full-text available
Premise of the study: Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Methods: Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Key results: Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. Conclusions: A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.
... Therefore, the alleles that are common to both species may be the same due to coincidence (identity-in-state) rather than because of a common origin (identity-by-descent). This study is among those that have shown that rare species have less genetic variation than widespread species [28,29]. However, by virtue of selecting the most polymorphic microsatellites, number of alleles tends to be higher in the species from which they were originally developed303132 and it is impossible to estimate to which extent cross-amplification procedure itself also contributed to the reduced genetic variation observed in the population of short-tooth sage. ...
Article
Full-text available
Nine new microsatellite markers (SSR) were isolated from Salvia officinalis L. A total of 125 alleles, with 8 to 21 alleles per locus, were detected in a natural population from the east Adriatic coast. The observed heterozygosity, expected heterozygosity, and polymorphic information content ranged from 0.46 to 0.83, 0.73 to 0.93 and 0.70 to 0.92, respectively. New microsatellite markers, as well as previously published markers, were tested for cross-amplification in Salvia brachyodon Vandas, a narrow endemic species known to be present in only two localities on the Balkan Peninsula. Out of 30 microsatellite markers tested on the natural S. brachyodon population, 15 were successfully amplified. To obtain evidence of recent bottleneck events in the populations of both species, observed genetic diversity (HE) was compared to the expected genetic diversity at mutation-drift equilibrium (HEQ) and calculated from the observed number of alleles using a two-phased mutation model (TPM). Recent bottleneck events were detected only in the S. brachyodon population. This result suggests the need to reconsider the current threat category of this endemic species.
Article
Reintroduction is a frequently used method to restore populations of endangered species. However, it has hardly been tested whether there is a pronounced genetic impact resulting from different propagule types used for restoration. To address this knowledge gap, we carried out a pilot study based on a 20-years practical experiment, in which new populations of the rare and endangered herb Armeria maritima ssp. elongata were founded using seeds and/or young plants. The experiment took place in a nature reserve protecting a declining nutrient-poor sand-dune habitat. To evaluate if there was an effect of propagule type on genetic variation of restored populations, we compared populations of A. maritima ssp. elongata started by direct seeding, planting of seedlings and both seeding & planting. Using molecular markers (AFLPs), we observed slightly higher levels of genetic diversity within restored compared to the source population. Genetic diversity was comparable in populations restored by different propagules, and genetic differentiation between the source and restored populations was absent. Our study provides a first piece of evidence that both seeds and young plants can be applied successfully in population restoration projects. We suggest to further test the impact of the reintroduction methods on restoration outcomes under different experimental settings, e.g. using species with different life history traits.
Article
Full-text available
Brassica rupestris Raf. is a chasmophyte species that includes two subspecies, both endemic to Central-Western Sicily (Italy). Inter-Simple Sequence Repeat (ISSR) markers were used to detect genetic diversity within and among eight populations representative of the species' distribution range. High levels of genetic diversity were revealed both at the population (PPB = 53.88%, HS = 0.212, Sh = 0.309) and at the species level (PPB = 96.55%, HT = 0.307, Sh = 0.464). The correlation between genetic and geographical distances was negative (Mantel test, r = −0.06, P
Article
The Maritime Alps are one of the ‘hot spots’ in the Mediterranean basin. This study investigated two endemic plants, Moehringia lebrunii and Moehringia sedoides (Caryophyllaceae) in order to increase knowledge of the vegetation of this region, and to investigate possible conservation strategies. Ecogeographic surveys and molecular analyses were undertaken. Gene diversity, the Shannon index and GST were calculated within and among populations of the two species based on ISSR data. The populations of M. lebrunii had a density ranging between 0.04 and 0.86 individual/m and a rather low inner genetic variability value. According to IUCN Red List Criteria, the current status of M. lebrunii is Endangered [EN B2ab(ii, iv)]. M. sedoides is an endemic of the SW Alps (not exclusive of the Maritime Alps), and is very abundant within the core of the range. Its range of occurrence is smaller than previously reported; nevertheless, the species is not under threat. This taxon showed a population density ranging between 0.03 and 0.58 individual/m. Genetic variability values revealed a high variation among the species. Only peripheral populations seemed to suffer from their segregated position. Thus, M. sedoides is to be considered Critically Endangered [CR B1ab(i, ii, iii, iv) + 2ab(i, ii, iii, iv)] for Italy according to Regional Guidelines.
Article
Full-text available
Genetic (allozyme) variation and population genetic structure of the rare shrub Daviesia suaveolens, found in only a few large populations on the eastern escarpment of the southern tablelands of New South Wales, were compared to those of its abundant and widespread relative D. mimosoides at both spatially equivalent and rangewide scales. We hypothesized that the rare species is genetically depauperate relative to the common one. We also generated baseline data on D. suaveolens to provide management recommendations for its conservation. Both species had high variation relative to other widespread woody angiosperms. Rangewide, the rare species exhibited lower species-level genetic variation than its common relative but a similar level of variation to that found in D. mimosoides over an equivalent spatial scale. Population-level genetic variation was similar for the two species. Over its small geographic range, D. suaveolens populations were three times as genetically differentiated as D. mimosoides over the same scale, showing a clear north-south genetic disjunction and as much interpopulation divergence as the common species exhibited rangewide. These results confirm that not all types of rarity have the same genetic implications. Conservation strategies for D. suaveolens need not be concerned about low population-level variation unless populations become significantly smaller than is currently typical. Of more importance is to maintain the high interpopulation differentiation by conserving populations from both the north and south of the species' range.
Book
The biological diversity of our planet is being depleted due to the direct and indirect consequences of human activity. As the size of animal and plant populations decrease, loss of genetic diversity reduces their ability to adapt to changes in the environment, with inbreeding depression an inevitable consequence for many species. This textbook provides a clear and comprehensive introduction to the importance of genetic studies in conservation. The text is presented in an easy-to-follow format with main points and terms clearly highlighted. Each chapter concludes with a concise summary, which, together with worked examples and problems and answers, emphasise the key principles covered. Text boxes containing interesting case studies and other additional information enrich the content throughout, and over 100 beautiful pen and ink portraits of endangered species help bring the material to life.
Article
We describe a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations. We assume a model in which there are K populations (where K may be unknown), each of which is characterized by a set of allele frequencies at each locus. Individuals in the sample are assigned (probabilistically) to populations, or jointly to two or more populations if their genotypes indicate that they are admixed. Our model does not assume a particular mutation process, and it can be applied to most of the commonly used genetic markers, provided that they are not closely linked. Applications of our method include demonstrating the presence of population structure, assigning individuals to populations, studying hybrid zones, and identifying migrants and admixed individuals. We show that the method can produce highly accurate assignments using modest numbers of loci—e.g., seven microsatellite loci in an example using genotype data from an endangered bird species. The software used for this article is available from http://www.stats.ox.ac.uk/~pritch/home.html.
Article
Molecular markers have been demonstrated to be useful for the estimation of stock mixture proportions where the origin of individuals is determined from baseline samples. Bayesian statistical methods are widely recognized as providing a preferable strategy for such analyses. In general, Bayesian estimation is based on standard latent class models using data augmentation through Markov chain Monte Carlo techniques. In this study, we introduce a novel approach based on recent developments in the estimation of genetic population structure. Our strategy combines analytical integration with stochastic optimization to identify stock mixtures. An important enhancement over previous methods is the possibility of appropriately handling data where only partial baseline sample information is available. We address the potential use of nonmolecular, auxiliary biological information in our Bayesian model.
Article
No. 178 in the series is the perennial herb thrift, usually being divided into the two distinct subspecies of A. maritima ssp. maritima and A. maritima spp. elongata. The former is widespread around the coast and in suitable inland localities, while the latter is confined to a few calcareous pastures. After describing the plants's morphological characteristics and distinguishing features of the subspecies, information is summarized for: geographical and altitudinal distribution, with a 10-km map; habitat; communities from saltmarshes, maritime cliffs, uplands, old lead and zinc mine spoil heaps, and serpentine outcrops; response to biotic factors; response to environment; structure and physiology; phenology; floral and seed characters; herbivory and disease; and history of occurrence. -J.W.Cooper
Article
1. Gradual build-up of the heteromorphic incompatibility system in the tribe Staticeae of the Plumbaginaceae probably took place in a series of stages. Beginning with the physiological incompatibility system, without morphological differentiation between the cross-compatible groups, pollen dimorphism was the first to be added. This was followed by stigma dimorphism and, finally, heterostyly. Various sections and subsections of Limonium, as the genus is currently recognized, occupy each stage of the presumed phylogenetic ladder, suggesting that it should be split into several genera. 2. Heterostyly occurs in the tribe Plumbaginaceae without morphological differentiation of the pollen and stigmas. 3. The dimorphic incompatibility system in Limonium (A/cob, B/papillate) has broken down several times in two kinds of way: through production of a self-compatible monomorphic recombinant (usually A/papillate); and by the onset of apomixis (agamospermy). 4. In Armeria, arctic and New World taxa show derived monomorphism (A/papillate) with consequent self-compatibility. However, while the pollen of the monomorphics will only produce successful pollen tubes in papillate stigmas of dimorphic taxa, the stigmas and styles of the monomorphics allow pollen tubes from both type A and type B grains to grow and effect fertilization. 5. Crosses within and between dimorphic and monomorphic taxa have revealed the supergene basis of the heteromorphic incompatibility system. In dimorphic taxa A/cob plants are heterozygous (AC/ac); B/papillate plants are homozygous recessive (ac/ac). A/papillate monomorphics are also homozygous (Ac'/Ac'). 6. At least in one population in the Shetland Islands (Hillswick Ness) self-incompatibility has been produced by loss of powers of inhibition of pollen tube growth in stigmas and styles without any morphological rearrangement. Such self-compatible plants are B/papillate (homozygous recessive, ac'/ac'). Usually, however, such loss of stylar inhibition follows a rearrangement within the supergene which has produced a "legitimately" self-compatible combination of pollen and stigmas. 7. Summaries of the evolutionary sequences apparently involved in the breakdown of the heteromorphic incompatibility systems in Armeria and Limonium are given. The sequence in the production of self-incompatible Armeria is markedly different from the sequence postulated as a general rule by Lewis and Crowe (where the first step is a mutation giving pollen the power to overcome any stylar inhibition). Such a step is not involved at all in Armeria. It is suggested, however, that the Armeria sequence may be general in the breakdown of heteromorphic incompatibility systems.