Content uploaded by Javier Fuertes Aguilar
Author content
All content in this area was uploaded by Javier Fuertes Aguilar on Apr 09, 2014
Content may be subject to copyright.
1
2
3
4
5
6
7
8
9
10
11
LowGeneticDiversityintheRareMadeiranEndemicArmeriamaderensis
(Plumbaginaceae)
RosalíaPiñeiro1,JavierFuertesAguilar1,MiguelMenezesdeSequeira2andGonzaloNietoFeliner1
1RealJardínBotánicodeMadrid,CSIC,PlazadeMurillo2,28014Madrid,Spain.
2DepartamentodeBiología,CentrodeEstudosdaMacaronésia,UniversidadedaMadeira,Campusda
Penteada,9000Funchal,Portugal
Correspondingauthor:
12
13
14
15
RosalíaPiñeiro*:E‐mail:pineiro@rjb.csic.es;Phone:+34914203017;Fax:+34
914200157
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
LowgeneticdiversityintherareMadeiranendemicArmeriamaderensis
(Plumbaginaceae)
RosalíaPiñeiro1,JavierFuertesAguilar1,MiguelMenezesdeSequeira2andGonzaloNietoFeliner1
AbstractThegeneticdiversityandpossiblegeographicstructureoftheMadeiran
endemicArmeriamaderensishavebeenassessedwithAFLP.Itsscarcedistribution(less
than3kmbetweenthetwomostdistantlocalities)andrestrictedhabitat(vertical
pasturesonthehighestelevationsofMadeira),atleastinpartduetograzingbygoats,
recommendanevaluationofitsconservationstatus.Diversityestimatesobtainedfor
A.maderensiswereevaluatedthroughcomparisonwithreferencevaluesofAFLP
diversityforoutcrossingplantsand,inordertocorrectforphylogeneticconstraints,
withawidespreadcongeneranalyzedwiththesameAFLPmarkers.Ourresultsreveal
thatlowlevelsofgeneticdiversityandaweakintraspecificgeneticstructureunderlie
therestricteddistributionofA.maderensis.
KeywordsAFLP,Bayesianclusteringanalyses,Conservationbiology,Islandendemic
Runningtitle:LowgeneticdiversityinArmeriamaderensis
2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Introduction
Propensitytoextinctionofislandplantshasbeenwelldocumented.The
reviewsbyPrimack(1998)andWCMC(1992)indicatethatmostspeciesgoneextinct
between1600andthe1990soccurredonislands(Frankhametal.2002).This
susceptibilityseemstobeduetotheparticulardemographicconditionsenduredon
islands,ofteninvolvingsmalleffectivepopulationsizes,isolationandlowmigration
rates,colonizationthroughfoundingeventsand/orhabitatdestructionbyhumansor
introducedanimals(Coblentz1978;RiesebergandSwensen1996;Frankhametal.
2002;Holmgren2002;CowieandHolland2006;CuevasandLeQuesne2006).
Animportantmatterwhenassessingtheconservationstatusofvulnerable
islandplantsistotestwhethertheraredistributionofthespeciesisparalleledbylow
levelsofgeneticdiversity(Frankham1997).Inordertoproperlyassesstheamountof
geneticdiversity,thespeciesunderstudyneedstobecomparedwithvaluesof
reference.However,interspecificcomparisonsmightbebiasedbydifferencesini)the
biologyofthespeciescompared,specificallytheparticularphylogeneticpositionorlife
historytraits,aswellasinii)theanalyticalproceduresacrossstudies,i.e.,sampling
strategy,typeofgeneticmarker,labprotocolanddiversityparametersused(Loveless
andHamrick1984;Felsenstein1985;HamrickandGodt1989;Stoneburneretal.1991;
GitzendannerandSoltis2000;Culleyetal.2002;Nybom2004;Petitetal.2005).
Inplants,severalapproacheshavebeenproposedtoobtainreliable
comparisonsofgeneticdiversityacrossspecies.Intheclassicapproach,theestimate
foraparticularspeciesiscomparedtoaveragediversityvalues,accountingforthetype
ofmarker,thelifehistorytraitscategoryandthepopulationgeneticparameterused
(HamrickandGodt1989:proteinmarkers;Nybom2004:RAPD,AFLPorSSR).However,
thismethoddoesnotcontrolforphylogeneticconstraintsand,therefore,whena
phylogenyisavailable,otherapproacheshavebeenapplied.Thefirstoneisthe
comparisonwiththemostcloselyrelatedwidespreadcongener,assuggestedby
GitzendannerandSoltis(2000),whofoundempiricalsimilarityofpopulationgenetic
parameterswithinrelatedtaxa.Thisapproachhasbeenusedtostudyalargenumber
ofplantendemics,includingtaxarestrictedtoislands(YoungandBrown1996;
Frankham1997;Soltisetal.1997;DoddandHelenurm2002;Ellisetal.2006;Moreira
3
daSilvaetal2007).Anotherpossibilityistoperformphylogeneticallyindependent
contrasts(PIC;Felsenstein1985).Aguinagaldeetal.(2005)usedthelattermethodto
assesschloroplast‐DNA‐basedG
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
sttrendsinEuropeantemperatetreesandshrubsand
foundlittleassociationwithlifehistorytraitswhenphylogeneticpositionwas
accountedfor,thuschallengingtheconclusionsoftheclassicmeta‐analysesbyHamrick
andGodt(1989)andNybom(2004),Petitetal.(2005).
OurstudyfocusesontheislandendemicplantArmeriamaderensisLowe,which
hasanextremelyrestricteddistributioninrockyareasexposedtohumidwindsinthe
mountainsofMadeira(Vieira1992;PressandShort1994;JardimandFrancisco2000).
Madeira,avolcanicislandoriginatedwithintheAfricanplateintheTertiary
(approximately5.3MYA;Geldmacheretal.2000),comprises1226describedvascular
plantspecies,ofwhich234areMacaronesianendemicsand157oftheseendemicsare
exclusivetotheisland(Vieira1992;PressandShort1994;JardimandFrancisco2000).
Armeriamaderensisoccursonlyabove1600m,i.e.,strictlyinthesupratemperatebelt,
spanningasmallareabetweenthehighestpeaks,Ruivo(1862m)andAreeiro(1818m)
(Mesquitaetal.2004).ThisareaispartoftheNaturalParkofMadeira,ageologicaland
highaltitudevegetationreserve,alsopartofaSpecialProtectedArea(SPA)includedin
theNatura2000NetworkasaCommunityImportantSite(CIS).Climaxvegetationin
thisbeltincludesseveralrupicolouscommunities,whichmaydevelopwheretreecover
andgrazingareabsent.OneofthemistheArmeriomaderensis‐Parafestucetum
albidae,dominatedbyArmeriamaderensisLowe,Deschampsiamaderensis(Hack.&
Bornm.)Buschm.,Parafestucaalbida(Lowe)Alexeev,Anthoxanthummaderensis
Teppner,andAnthyllislemmanianaLowe.Moderategrazingofthiscommunityseems
toresultinthereplacementbytheassociationViolarivianae‐agrostietumcastellanae,
dominatedbynon‐endemics(Costaetal.2004;M.Silva,D.Menezes,S.King,E.
MenezesdeSequeira,M.MenezesdeSequeira,unpubl.).Inlocationsexposedtoheavy
grazingandsoilerosion,evenpoorerannualcommunitiesareestablished(Leontodo
longirrostris‐Ornithopetumperpusilli).
Grazingseemstobeanimportantfactordeterminingtherestricteddistribution
ofthespecies.In2003,theregionalgovernmentcompletedtheprogramofremovalof
goatsintheMadeiranMountainsinitiatedin1994intheframeoftheEUHabitats
Directive92/43/EEC.Fromthatmomenton,Armeriamaderensishasexperienceda
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
spectacularincreaseofitspopulations,colonizingmoreaccessiblealpinepastures
(Violarivianae‐agrostietumcastellanaeandLeontodolongirrostris‐Ornithopetum
perpusilli)inadditiontotheinaccessiblerockcrevicesthatweretheexclusivehabitat
before.Moreover,ageneralincreaseoffloristicdiversityinMadeiranMountaiscould
beobserved(M.Silva,D.Menezes,S.King,E.MenezesdeSequeira,M.Menezesde
Sequeira,unpubl.).
LikeotherMacaronesianendemics(reviewedinJuanetal.2000;Emerson2002;
Carineetal.2004),A.maderensisappearstohaveitsclosestrelativesintheWestern
Mediterranean.NuclearribosomalITSphylogeniesareconsistentwiththisgeneral
trendandrevealasubstantialdivergence(NietoFelineretal.2001;FuertesAguilarand
NietoFeliner2003).Unluckily,accurateestimationofisolationtimeandaswellas
identificationofitssisterspeciesareprecludedbythelowlevelresolutionoftheITS
tree,duetothefrequentinterspecifichybridizationinnaturalpopulationsofArmeria
andthelikelyrecentdiversificationofthegenus(GutiérrezLarenaetal.2002;Fuertes
AguilarandNietoFeliner2003;Tauleigne‐GomesandLefèbvre2005).
ThisstudyusesAFLPdatatoassessthegeneticstructureanddiversitylevelsof
Armeriamaderensis,tointerpretitsevolutionaryhistoryandtoevaluateits
conservationperspectives.Oursamplingwasperformedin2003.Therefore,itprovides
anaccuratedescriptionofthegeneticstructureofthespeciesjustbeforegoatswere
definitivelyremoved,afteralmost600yearsofgrazing(Sousa2003).
Inordertocorrectforphylogeneticbias,followingGitzendannerandSoltis(2000),
wehaveevaluatedthelevelsofgeneticdiversityinA.maderensisincomparisonwitha
previousAFLPstudyonthewesternMediterraneanwidespreadcongenerA.pungens
(Piñeiroetal.2007).ArmeriapungensisdisjunctlydistributedintheAtlanticandthe
Mediterranean.Ithasamainareaalonga500kmstripeinsouthernAtlanticIberia,
fromthemouthoftheTagusRivertotheGibraltarStrait.Italsooccursontwodisjunct
archipelagos:intheAtlantic,intheCíesislands(offshoreGaliciancoast,northern
Spain),andintheMediterraneaninsouthernCorsicaandnorthernSardinia.Previous
morphologicalandmoleculardatarevealthatA.pungenspresentsadiverseancestral
lineageoccurringintheAtlanticcoastsofSWPortugal(Piñeiroetal.2007;Piñeiroet
al.,unpubl.),whileintrogressionevents(Piñeiroetal.,unpubl.)mayexplainthe
relativelyhighdiversityintheCíesislands.TheremainingpopulationsintheSouthern
5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
partoftheAtlanticrange(GulfofCadiz)aswellasthedisjunctMediterranean
populationsinCorsicaandSardiniaaretheresultofrecentexpansionsfromthe
originalPortuguesearea.Colonizationeventsmeantthelossofgeneticdiversity,
especiallyintheGulfofCadiz,probablyduetothedifferentenvironmentalconditions
inthisarea.
Specifically,inthisstudythefollowingquestionsareinvestigated:i)Istherestricted
distributionofA.maderensisparalleledbyalowgeneticdiversity?ii)Isgenetic
variationgeographicallystructuredinA.maderensis?iii)Whichmightbethefactors
influencingcurrentgeneticstructureandlevelsofdiversity?iv)Whatarethe
implicationsofthecurrentgeneticstructureanddiversityfortheconservationofthe
species?
MaterialandMethods
StudySystem
Armeriamaderensisistheonlyendemicrepresentativeofthegenusin
Macaronesia.Morphologically,themostuniquefeatureofthisspecieswithinthe
genusisthelackofimbricationofinvolucrebracts,whicharefew,narrowand
seeminglyarrangedinasinglerowsothatitcanbehardlysaidthattheyconstitutean
involucre.Theinsertionoftheflowerpedicelonthecalyxisfrequentlymoretruncate
andthuslessspurredthaninothercongeners.Anotherapparentfeatureisthepatent
arrangementoftheinnerflowerineachspikeletwithintheglomerule.These
morphologicalcharactersareusefultoidentifyA.maderensisbuttotheextentthat
theyarenotsharedwithotherspecies,theydonothelpinfindingitsclosestrelatives.
SamplingStrategy,DNAisolation,AFLPprotocol
Thesamplingwasperformedin2003inthesmalldistributionareabetween
peaksRuivoandAreeirobeforegoatswereremovedfromtheisland(Table1,Fig.1).
Toourknowledge,nopreviousfieldstudieshadattemptedtolocalizeorquantifythe
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
populationsofA.maderensis.Ninesites(nr.1−9)werefound,themostdistantones
beinglessthan3kmapart.Wesucceededatcollectingfruitsfromeightofthesesites
(Table1).Anadditionalinaccessiblesite,harbouringafewindividualsonavertical
north‐facingwall(closetositenr.8,onthepathtoTorrinhaspeak),wasalsodetected.
Sites2,4,5and6correspondedtoconsistentpopulations,whereassites1,3,7
and8consistedofveryfewscatteredindividuals(Table1,Fig.1).Theremoteand
inaccessiblestatusofpopulationslimitedthenumberofindividualscollectedateach
site(e.g.populationnr.4hadtobesampledbyequippedclimbers).Intotal,wewere
abletosampleripefruitsfrom44separatemotherplants.
Threereplicatespermotherplantweregerminatedafteracoldtreatmentof
onemonth.SeedlingswerecultivatedinthegreenhouseattheBotanicalGardenof
MadridbetweenOctober2003andJune2005inordertoprovidefreshleavesforDNA
isolation.Thisisalimitationofourstudy,becausewehaveactuallyassessedthe
geneticdiversityinapotentialfuturegeneration.
DNAwasextractedwithPlantDNeasyMinikit(Qiagen).TheAFLPprotocolwas
performedaccordingtoGaudeuletal.(2000)forEcoRI/MseIenzymecombinationand
Piñeiroetal.(2007)forKpnI/MseI.Thefollowingthreeprimercombinationswere
used:(6‐FAM)EcoRI+acc/MseI+cacc,(6‐FAM)EcoRI+acg/MseI+ctac,(6‐FAM)KpnI+
atc/MseI+cag.Protocolsandselectiveprimerswerethesameusedinthe
phylogeographicstudyofthecongenerA.pungens(Piñeiroetal.2007).Thefactthat
AFLPmarkershavebeenobtainedusingtwodifferentenzymecombinationsincreased
thegenomicregionsrepresentedinthefingerprints(Vosetal1995;Ulrichetal.1999).
Intotal,31individualsweresuccessfullygenotyped.Theremainingindividuals
collecteddidnotsurviveinthegreenhouseorfailedforamplificationwithatleastone
primercombinations.Samplingofmorethanoneindividualfromthesamemother
plantwasavoided.Thesampling,althoughsmall,mightappropriatelyrepresentthe
geneticvariationofA.maderensisgivenitsextremelyrestricteddistribution.Voucher
specimensarekeptatMA.
Areproducibilitytestwasperformedforeachprimerpairbyre‐extractingDNA
andrepeatingthewholeprocedure(7,6and5individualswerere‐amplifiedusingthe
threeprimercombinationsgivenabove,respectively).Theerrorratewascalculatedas
thetotalnumberoflocidifferencesrelativetothetotalnumberoflocicomparisons
7
1
2
3
4
5
6
7
andsubsequentlyaveragedoverthethreecombinations.Tofurtherassessand
eventuallyrefinethequalityoftheAFLPdata,potentiallynon‐homologousbandswere
checkedfollowingfourdifferentcriteria:i)slightsizedifferencesamongputative
homologousbandsacrossindividuals;ii)lowintensitybands;iii)changingintensityof
onebandacrosssamples;andiv)bandsofhigh(upper10%and20%)orsmall(lower
10%and20%)molecularweight(Bagleyetal.2001;Boninetal.2004).Onceidentified
thebandsfallingintoanyofthosecategories,theerrorrateimprovementwas
calculatedafterremovingbandsfromeachcategory(Piñeiroetal.2007).8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
GeneticStructureofArmeriamaderensis
BayesianclusteringanalyseswereperformedwithSTRUCTURE2.1(Pritchardet
al.2000;Falushetal.2007)andBAPS3.2(Coranderetal.2006).WithSTRUCTUREwe
usedrunlengthsof106followingaburninof105.Longburninperiodswerenecessary
toreachconvergenceofthealphastatisticbeforetheendoftheburninphase.Each
phenotypewascodedbyasinglealleleandamissingdatumaccordingtothe
indicationsinthemanual(1‐missingfordominantmarkersand2‐missingforrecessive).
Weselectedthemodelofcorrelatedallelefrequencies,appropriateincaseswhere
weakgeneticstructureisexpected,andtestedboththeno‐admixture(tenrepetitions
ateachK)andtheadmixture(fiverepetitions)ancestrymodels.SimulationsfromK=1
toK=8wererun,i.e.themaximumnumberofgeneticgroupstestedequalledthe
numberofgeographicalsites.Thenumberofgeneticgroups(K)inourdatasetwas
inferredtakingintoaccounttheestimatedposteriorlogprobabilityofthedata,LK),as
wellasthestabilityoftheassignmentpatternsofindividualsintoKgroupsacross
repetitions.BAPSsimulationswererunfromK=1toK=8asthemaximumnumberof
groups,withfourreplicatesateachK.
Dicesimilarityamongindividualswascalculatedandvisualizedwithaprincipal
coordinatesanalysis(PCoA;NTSYSpc2.1;Rohlf1998).Inaddition,Jaccardandsimple
matchingcoefficientswerecalculated.Aminimumspanningtree(MST)basedonDice
wasimposedonthePCoAtodetectlocaldistortions.NeiandLidistance(1979)was
alsocalculatedwithPAUP4.0b10(Swofford2002).CorrelationbetweenNeiandLi
8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
distancesandgeographicdistanceswascalculatedbyperformingaManteltestwith
NTSYSpc2.1.Significancewastestedbyrandomization(1000permutations).
GeneticDiversityofArmeriamaderensis
Threegeneticdiversityestimateswerecomputedatthetotalspeciesleveland
atthewithin‐populationslevel:i)allelicrichness,fromthepercentageofpolymorphic
loci,P(POPGENE3.2;YehandBoyle1997);ii)genediversityofNei(1973),H
(POPGENE3.2);andiii)allelesimilarityusingShannonindex(1948),Sh(POPGENE3.2).
TocalculatetheglobalgeneticdiversitywithinA.maderensis,allgenotyped
individualswerepooled.Incontrast,calculationsonaper‐populationbasiswere
challengedbythefactthatonlythreeoutofeightcollectedsitesarewell‐separated
populations(pops.nr.2,5and6).Therefore,within‐populationgeneticdiversitywas
reportedastheaverageoftheestimatesforthesethreesites.
Standarddeviationsofdiversityestimatesarereported.Monomorphicand
polymorphiclociwereincludedinthecalculations.Nei’s&Shannon’smeasureswere
calculatedforeachlocusandaveragedoverloci.Sincetheconceptofheterozygosity
cannotbeappliedtodominantmarkers,averageNei’sgenediversity(H)issimplya
measureofgeneticvariation.WealsocalculatedNei’sdiversityestimateusingLynch&
Milligan’smethod(1994)implementedwithTFPGA(Miller1997),whichattemptsto
correctthebiasgeneratedbydominantmarkersbypruningfrequentlociforthe
estimationofallelefrequencies.
ComparisonwiththeWidespreadCongenerArmeriapungens
ForthewesternMediterraneanwidespreadcongenerA.pungens,thesame
threegeneticdiversityestimateswerecalculatedasdescribedabove.Thecomparison
ofthegeneticdiversityvaluesofA.maderensiswithA.pungens,inadditiontothetype
ofmarker,lifehistorytraitscategoryandpopulationgeneticparameters,correctsfor
phylogeneticbiasandhomogenizestheAFLPprotocolinbothspecies,includingthe
selectiveprimersused.
9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Still,theAFLPstudyonA.pungensinvolved221individualsfrom23welldefined
populationsspanningarangeofhundredsofkilometres,whichimpliesanimportant
differencewiththesamplingstrategyandspatialscaleofthecurrentassessmentofA.
maderensis(Piñeiroetal.2007).Inordertoaccountforsuchdifferences,aper‐
populationcomparisonofA.pungensandA.maderensiswouldbedesirable.However,
thescattereddistributionofA.maderensisindividualschallengesthereliabilityof
within‐populationestimates.Wehavethusmadeacomparisononthebasisofthe
geneticlineagesdetectedwithinA.maderensisusingBayesianandgeneticdistance
methodswiththosepreviouslyfoundinthewidespreadA.pungens(Piñeiroetal.
2007):Cíesislands,Portugal,Vicente‐Bordeira,GulfofCadizandCorsica‐Sardinia(hear
calledI,II,III,IV,VI,respectively).Anadditionallineage(lineageV,Camarinal
population)wasnotincluded,givenitslowsamplesizeandhybridorigin(Piñeiroetal.
2007;Piñeiroetal.,unpubl.).
Forthecomparisonacrossintraspecificgeneticlineages,independent
presence/absencematriceswereeditedfromthecompleteAFLPmatricesforA.
maderensis(presentstudy)andforeachlineageofA.pungens(fromtheoriginaldata
inPiñeiroetal.2007).Foreachgeneticlineage,twomatriceswereedited,oneatthe
populationandanotheratthetotalgeneticlineagelevel,anddiversityparameters
wererecalculatedfromthem.Accordingtothelowestsamplesizes,thenumberof
individualswasstandardizedton=6atthepopulationlevelandton=15atthetotal
geneticlineagelevel.Thiswasachievedbyrandomexclusionofindividuals.Lociabsent
inallindividualsofonelineagewereremovedtoavoidunderestimationofthegenetic
variability.
ComparisonwithReferenceValuesofAFLPDiversityinPlants
Nei’sunbiasedgenediversity(1978)wasalsocalculatedforA.maderensiswith
TFPGA(Miller1997)atthespecieslevel(Ht)andwithinpopulations(Hs).Thisestimate
waschosensinceitwastheoneusedbyNybom(2004)forcomparisonofwithin‐
populationparametersacrossstudiesbasedondominantmarkers.Itcorrectsfor
differentsamplingsizesbymultiplyingtheindexper2n/2n‐1,wherenisthesample
size(Nei1987:equation8.4).Thebiasiseffectivelyreducedforsamplingsizes<50and
10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
largenumberoflociavailable,whichfitsoursamplingstrategy.FollowingNybom’s
approach,unbiasedNei’sdiversityisherereportedonlyforpolymorphicbands.
ThecomparisonofNei’sunbiasedgenediversityvaluesforA.maderensiswith
thereferencevaluesreportedinNybom(2004)basedondominantmarkersfor
perennialandoutcrossingplantsaccountsforthetypeofmarker,lifehistorytraitsand
populationgeneticsparameters.
Results
AFLPProfiles
Byrecalculatingtheerrorrateafterremovingeachofthecategoriesof
potentiallynotreproduciblebands,thosebandschangingintensityacrosssamples
wereobservedtobetheleastreliable(Table2).Discardingthemmeantadecreaseof
theerrorratebelow5%(3.1%).Accordingly,67unreliablebandswerediscarded.An
additionalunreliableband,nonreproducibleinmostcomparisons,waseliminated.
Subsequently,16individualsthatwerenotamplifiedforoneoftheprimer
combinationswereremoved,whichmeantthelossof32bands.Afinaldatasetof31
individualsand90markerswasretainedforanalysis.Markersspannedfrom56bpto
447bpandonly58(64.44%)werepolymorphic.Noidenticalphenotypesamong
individualsweredetected.
GeneticStructure
BAPSandSTRUCTUREinferredasingleBayesianclustercomprisingallsampled
individualsofA.maderensis,revealingtheweakgeneticstructureintheAFLPdata(Fig.
2a).BAPSfoundtheoptimalpartitionatK=1(resultsnotshown).IntheSTRUCTURE
analysis,individualswereevenlyassignedtotheKgroupsinsimulationsfromK=2to
K=8forbothadmixtureandno‐admixturemodels(Fig.2a).AsstatedintheSTRUCTURE
manual,thissituation,whentheproportionofthesampleassignedtoeachpopulation
isroughlysymmetric,isindicativeofnopopulationstructure.Consistently,L(K)didnot
showamaximumvalueatanyspecificK.Instead,runsatK=1,K=2,K=6,K=7andK=8
11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
yieldedverysimilarposteriorprobabilitiesbetweenL(K)=‐589.3andL(K)=‐586.7(Fig.
2b).
Incontrast,thePCoArepresentingDicesimilaritiesamongindividuals(Fig.3)
showedsomedegreeofgeneticstructureatlocalscales,sincegenotypesspecificto
differentpopulationscouldbedistinguished.Nonetheless,theabsenceof
discontinuitiesinthePCoAscatterplotconfirmedthelowlevelofgeneticdivergence
andweakstructuringoftheoverallgeneticvariationwithinA.maderensis,aspointed
byBayesianclusteringanalyses.Jaccardandsimplematchingcoefficientsgavealmost
identicalresultsasDice(r=0.99withJaccardandr=0.98withsimplematching).The
Manteltest(r=‐0.01608;PrandomZ<observedZ=0.6134)corroboratedthelackof
overalllinearcorrelationbetweengeneticandgeographicdistances.
GeneticDiversity
WhenthetotaldiversityestimatesofA.maderensisarecomparedwitheachof
thegeneticlineagesofthewidespreadcongenerA.pungens,diversityofA.maderensis
resultedtobelowerthanthatinthelineagewiththelowestdiversityofA.pungens
(lineageIV;Table3).Thispatternholdsforthepercentageofpolymorphisms,Nei´s
genediversity(Ht;Nei1973)andShannonindex(Sh).TheremaininglineagesofA.
pungensshowedsignificantlyhigherdiversitylevelsforallthreediversityparameters,
especiallylineagesI,IIandIII,followedbyintermediatelevelsofdiversityinlineageVI.
Ineverycase,correctionofNei’sindexfordominantmarkersusingestimationofallele
frequenciesbyLynchandMilligan’s(1994)(resultsnotshown)methodgavealmost
identicalresultsasthosebasedonthesquaredrootofthefrequencyoftherecessive
allele(Nei1973).
TheconclusionofalowerdiversityofA.maderensisascomparedtolineages
withinA.pungens,drawnfromthetotaldiversitymeasures,holdformeasuresona
per‐populationbasis,asshowninTable4.Forcomparison,weestimatedthediversity
levelsofthedifferentlineagesofA.pungensincludingalsothosebandsthatwere
absentinallindividualsofonelineage.Inthiscase,thediversitylevelsofthedifferent
lineagesofA.pungensslightlydecreasedbutwerestillhigherthaninA.maderensis
(resultsnotshown).
12
Finally,theunbiasedwithin‐populationgenediversityofNei(1978)forA.
maderensisaveragedoverpopulations2,5and6wasH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
s=0.19.Poolingallgenotyped
individuals,itwasHt=0.14.
Discussion
IsArmeriamaderensisGeneticallyDepauperate?
Inherreviewofpopulationgeneticsstudiesbasedondominantmarkers,
Nybom(2004)reportedanaveragewithin‐populationunbiasedgenediversityofNei
(1978)ofHs=0.27foroutcrossingplantsandofHs=0.25forperennials.Thelowerand
upperlimitsofAFLPdiversityinplantswereHs=0.15andHs=0.31,respectively(average
Hs=0.23).Inthiscontext,A.maderensis,withHs=0.19atthepopulationleveland
Ht=0.14atthetotalspecieslevel,exhibitssignificantlylowlevelsofgeneticdiversity.
Nonetheless,thiscomparisonshouldbetakenwithcautionforthreereasons.First,
althoughlifehistorytraitsareconsidered,phylogeneticconstraintsarenotcontrolled
for.Second,Nybom´sestimatesaregiveninaper‐populationbasis,whereasthisis
difficulttoobtainforA.maderensisgivenitsparticulargeographicaldistribution.Third,
Nybom´scalculationswerebasedonpolymorphicloci,butconsideringonly
polymorphicmarkersinaplantlikeA.maderensis,withahighpercentageof
monomorphicloci(52.23%,seeTable3),probablyleadstoanoverestimationofthe
geneticdiversity.
ThecomparisonwiththewidespreadcongenerA.pungensismorereliable
becauseitiscorrectedforbothbiological(lifehistorytraitsandphylogeny)and
methodologicalconstraintsandbecausethephylogeographichistoryofA.pungensis
wellknownbasedonmorphologicalandmoleculardata(Piñeiroetal.2007;Piñeiroet
al.,unpubl.).OurgeneticdiversityestimatesforA.maderensisareshowntobe,bothat
thetotalgeneticlineagelevel(Table3)andatthepopulationlevel(Table4),even
lowerthanfortheextremelyimpoverishedlineageIVofA.pungensthathasrecently
colonizedtheGulfofCadiz.Still,thesecomparisonswithA.pungensmustbealso
consideredcautiously.Ontheonehand,thecomparisononthebasisofgenetic
lineagesdoesnotfullyaccountforthedifferentspatialscalesofA.pungensandA.
13
maderensis,stilllargerinA.pungenslineages(maximaldistanceswithinlineagesfrom
21kmto413km)thatinA.maderensis(maximaldistanceabout3km).Ontheother
hand,theaveragewithin‐populationdiversityforA.maderensisisonlybasedon
calculationsforthreesites.Anotherpossibility,istoconsiderthefactthatdiversity
estimatesforthewholerangeofA.maderensis(H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
t=0.08,Sh=0.14,n=15;Table3)are
belowthelowestwithin‐populationestimatesofA.pungens(Hs=0.10−0.19,
Sh=0.15−0.27,n=6;Table4).Thisassessment,atcomparablespatialscales,definitively
confirmsthereducedlevelofgeneticdiversitywithinA.pungensbeyondany
reasonabledoubt.
Besidestheinformationprovidedbythepopulationgeneticestimates,the
infraspecificgeneticstructurewithinA.maderensisisweakandshowntoberestricted
tolocalscales.
ThreatsforArmeriamaderensisandFutureProspects
WeconsideredthepossibilitythatthereducedgeneticdiversityinA.
maderensisisactuallyreflectingashifttoautogamyduringestablishmentafterlong‐
distancedispersal.Thebreakdownofself‐incompatibilityisobservedinArmeriain
circumpolarareas.Ithasbeenhypothesizedthatthismechanismfavours
establishmentafterlongdistancedispersalorinareaspoorinpollinators(Baker1966).
However,twodifferentpollen‐stigmamorphsthatareassociatedtotheincompatibility
systeminArmeriahavebeendetectedinA.maderensisplants(NietoFeliner,unpubl.),
suggestingthatincompatibilityhasbeenmaintainedaftercolonisation.Mechanisms
favouringoutcrossinghavebeenreportedforotherMacaronesianspecies(Francisco‐
Ortegaetal.2000).
Therefore,oncediscardedtheinfluenceofthebreedingsystem,thegenetic
impoverishmentofA.maderensisseemstoresultfromhistoricalevents.Thesignificant
increaseofthedistributionofA.maderensisintoaccessiblehorizontalpasturessince
theremovalofgoatsin2003,pointsatgrazingasoneofthefactorsresponsibleforthe
reducedgeneticdiversityofthespecies.IsolatedevolutioninMadeiraprecludinggene
flow,long‐termsmallpopulationsizes(Frankhametal.2002),foundereffectsduring
thecolonizationofMadeirabymainlandancestors(Winkworthetal.1999;Charbonnel
14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
etal.2002;CowieandHolland2006)ordestructiveeffectofvolcaniceruptionsmight
alsobeconsidered.
Althoughnofragmentationoftherangehastakenplace,theobserved
levelofgeneticdiversitymayincreasetheriskofinbreedingdepression,
whichcouldreducesurvivalandfecundityintheshortterm.However,to
assessaccuratelytheamountofinbreeding,co‐dominantmarkerswouldbe
required.Long‐termadaptationtoenvironmentalchangesmightbealso
compromized(Frankhametal.2002;PetersonandMcCracken2005).To
preventtheserisks,werecommendmonitoringthepopulationsofA.
maderensisinthefollowingyears,tosurveyitsrecoveryintheabsenceof
goats.FuturegeneticassessmentsofA.maderensismaybeperformedand
thepresentgeneticstudyusedasareferenceofthediversitylevels
immediatelybeforeeradicationofgrazing.Iftheevolutionofthepopulations
wasobservedtobenonappropriate,takingintoaccounttheobservedlackof
geneticstructure,areinforcementofpopulationscouldbedesignedinorder
toreducethedangerofoutbreedingdepression.Germinationratesofseeds
areusuallyhighinArmeria(WoodellandDale1993),andaremaximizedwhen
seedsfollowacoldtreatment(personalobservation).
AsidefromthepracticalapplicationofourgeneticstudytotheconservationofA.
maderensis,itprovidestheopportunitytoaddressinthenearfuturethetheoretical
questionofhowthegeneticvariationparallelstherecoveryinnumberofindividuals
afterapopulationbottleneck.Thismightcomplementtheavailablereportsofincrease
ofthecoverofvegetationorspecificrichnessfollowingtheremovalofherbivores
(Mueller‐DomboisandSpatz1975;Coblentz1977;Schofield1989;LorvelecandPascal
2005).
AcknowledgementsWethankAndreaCostaforprovidingplantmaterialandfield
support,andtheNaturalParkofMadeiraforcollectingpermitsandofferofequipped
climberstoassistfieldwork.PilarCatalán,JuliCuajapéandJoséMaríaIriondomade
valuablecommentsonthemanuscript.ThisworkwassupportedbytheSpanish
DirecciónGeneraldeEnseñanzaSuperioreInvestigaciónCientífica(grantBOS2001–
1839).
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Thisresearchcomplieswiththecurrentlawsofthecountriesinwhichitwas
performed.
References
AguinagaldeI,HampeA,MohantyA,MartinJP,DuminilJ,PetitRJ(2005)Effectsoflife‐
historytraitsandspeciesdistributionongeneticstructureatmaternally
inheritedmarkersinEuropeantreesandshrubs.JBiogeogr32:329–339
BagleyMJ,AndersonSL,MayB(2001)Choiceofmethodologyforassessinggenetic
impactsofenvironmentalstressors:PolymorphismandreproducibilityofRAPD
andAFLPfingerprints.Ecotoxicology10:239–244
BakerHG(1966)Theevolution,functioningandbreakdownofheteromorphic
incompatibilitysystems,I.ThePlumbaginaceae.Evolution20:349–368
BoninA,BellemainE,BronkenEidesenP,PompanonF,BrochmannC,TaberletP(2004)
Howtotrackandassessgenotypingerrorsinpopulationgeneticsstudies.Molec
Ecol13:3261–3273
CarineMA,RussellSJ,Santos‐GuerraA,Francisco‐OrtegaJ(2004)Relationshipsofthe
MacaronesianandMediterraneanfloras:molecularevidenceformultiple
colonizationsintoMacaronesiaandback‐colonizationofthecontinentin
Convolvulus(Convolvulaceae).AmerJBot91:1070–1085
CharbonnelN,AngersB,RasatavonjizayR,BrémondP,DebainC,JarneP(2002)The
influenceofmatingsystem,demography,parasitesandcolonizationonthe
populationstructureofBiomphalariapfeifferiinMadagascar.MolecEcol
11:2213–2228
CoblentzBE(1977)SomerangerelationshipsofferalgoatsonSantaCatalinaIsland,
California.JRangeManagem30:415–419
CoblentzBE(1978)Theeffectsofferalgoats(Caprahircus)onislandecosystems.Biol
Conservation13:279–286
CoranderJ,MarttinenP,MäntyniemS(2006)Bayesianidentificationofstockmixtures
frommolecularmarkerdata.FishBull104:550–558
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
CostaJC,CapeloJ,JardimR,SequeiraM(2004)Catálogosintaxonómicoeflorísticodas
comunidadesvegetaisdaMadeiraePortoSanto.InCapeloJ(ed)Apaisagem
vegetaldaIlhadaMadeira.Quercetea6:61–183
CowieRH,HollandBS(2006)Dispersalisfundamentaltobiogeographyandthe
evolutionofbiodiversityonoceanicislands.JBiogeogr33:193–198
CulleyTM,WallaceLE,Gengler‐NowakKM,CrawfordDJ(2002)Acomparisonoftwo
methodsofcalculatingGST,ageneticmeasureofpopulationdifferentiation.
AmerJBot89:460–465
CuevasJG,LeQuesneC(2006)Lowvegetationrecoveryaftershort‐termcattle
exclusiononRobinsonCrusoeIsland.PlEcol183:105–124
DoddSC,HelenurmK(2002)GeneticdiversityinDelphiniumvariegatum
(Ranunculaceae)acomparisonoftwoinsularendemicsubspeciesandtheir
widespreadmainlandrelative.AmerJBot89:613–622
EllisJR,PashleyCH,BurkeJM,McCauleyDE(2006)Highgeneticdiversityinarareand
endangeredsunflowerascomparedtoacommoncongener.MolecEcol
15:2345–2355
EmersonBC(2002)Evolutiononoceanicislands:molecularphylogeneticapproachesto
understandingpatternandprocess.MolecEcol11:951–966
FalushD,StephensM,PritchardJK(2003)Inferenceofpopulationstructureusing
multilocusgenotypedata:Linkedlociandcorrelatedallelefrequencies.
Genetics164:1567–1587
22 FalushD,StephensM,PritchardJ.K(2007)Inferenceofpopulationstructureusing
23
24
25
26
27
28
29
30
31
32
multilocusgenotypedata:Dominantmarkersandnullalleles.MolecEcolNotes
7:574–578
FelsensteinJ(1985)Phylogenyandthecomparativemethod.AmerNaturalist125:1–15
Francisco‐OrtegaJ,Santos‐GuerraA,KimS‐C,CrawfordDJ(2000)Plantgenetic
diversityintheCanaryIslands:aconservationperspective.AmerJBot87:909–
919
FrankhamR(1997)Doislandpopulationshavelessgeneticvariationthanmainland
populations?Heredity78:311–327
FrankhamJ,BallouJD,BriscoeDA(2002)Introductiontoconservationgenetics.
CambridgeUniversityPress,Cambridge
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
FuertesAguilarJ,NietoFelinerG(2003)Additivepolymorphismsandreticulationinan
ITSphylogenyofthrifts(Armeria,Plumbaginaceae).MolecPhylogenEvol
28:430–447
GaudeulM,TaberletP,Till‐BottraudI(2000)Geneticdiversityinanendangeredalpine
plant,EryngiumalpinumL.(Apiaceae),inferredfromamplifiedfragmentlength
polymorphismmarkers.MolecEcol9:1625–1637
GeldmacherJ,vandenBogaardP,HoernleK,SchminckeH(2000)The40Ar/39Arage
datingoftheMadeiraArchipelagoandhotspottrack(easternNorthAtlantic).
GeochemGeophysGeosyst1:1008,doi:10.1029/1999GC000018
GitzendannerMA,SoltisPS(2000)Patternsofgeneticvariationinrareandwidespread
plantcongeners.AmerJBot87:783–792
GutiérrezLarenaB,FuertesAguilarJ,NietoFelinerG(2002)Glacial‐inducedaltitudinal
migrationsinArmeria(Plumbaginaceae)inferredfrompatternsofchloroplast
DNAhaplotypesharing.MolecEcol11:1965–1974
HamrickJ,GodtM(1989)Allozymediversityinplantspecies.InBrownA,CleggM,
KahlerA,WeirB(eds)Plantpopulationgenetics,breedingandgenetic
resources.Sinauer,SunderlandMA,pp43–63
HolmgrenM(2002)Exoticherbivoresasdriversofplantinvasionandswitchto
ecosystemalternativestates.BiolInvasions4:25–33
HolsingerKE,LewisPO,DeyDK(2002)ABayesianapproachtoinferringpopulation
structurefromdominantmarkers.MolecEcol11:1157–1164
HolsingerKE,LewisPO(2005)Hickory:Apackageforanalysisofpopulationgenetic
datav1.0.4.Storrs,UniversityofConnecticut,CT
JardimR,FranciscoD(2000)FloraendémicadaMadeira.MúchiaPublicaçôes,Funchal
JuanC,EmersonBC,OromíP,HewittGM(2000)Colonizationanddiversification:
towardsaphylogeographicsynthesisfortheCanaryIslands.TrendsEcolEvol
15:104–108
LorvelecO,PascalM(2005)Frenchattemptstoeradicatenon‐indigenousmammals
andtheirconsequencesfornativebiota.BiolInvasions7:135–140
LynchM,MilliganB(1994)AnalysisofpopulationgeneticstructurewithRAPDmarkers.
MolecEcol3:91–99
18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MesquitaS,CapeloJ,SousaJ(2004)BioclimatologiadaIlhadaMadeira:abordagem
numérica.InCapeloJ(ed)ApaisagemvegetaldaIlhadaMadeira.Quercetea
6:61–183
MillerMP(1997)Toolsforpopulationgeneticanalyses(TFPGA).AWindowsprogram
fortheanalysisoftheallozymesandmoleculargeneticdata.Departmentof
BiologicalScience,NorthernArizonaUniversity,Flagstaff
MoreiradaSilvaR,WilsonFernandesG,BernadeteLovatoM(2007)Geneticvariation
intwoChamaecristaspecies(Leguminosae),oneendangeredandnarrowly
distributedandanotherwidespreadintheSerradoEspinhaço,Brazil.CanadJ
Bot85:629–636
Mueller‐DomboisD,SpatzG(1975)Theinfluenceofferalgoatsonlowlandvegetation
inHawaiiVolcanoesNationalPark.Phytocoenologica3:1–29
NeiM(1973)Analysisofgenediversityinsubdividedpopulations.ProcNatlAcadUSA
70:3321–3323
NeiM(1978)Estimationofaverageheterozygosityandgeneticdistancefromasmall
numberofindividuals.Genetics89:583–590
NeiM(1987)Molecularevolutionarygenetics.ColumbiaUniversityPress,NewYork
NeiM,LiWH(1979)Mathematicalmodelforstudyinggeneticvariationintermsof
restrictionendonucleases.ProcNatlAcadUSA76:5269–5273
NietoFelinerG,FuertesAguilarJ,RossellóJA(2001)Canextensivereticulationand
concertedevolutionresultinacladisticallystructuredmoleculardataset?
Cladistics17:301–312
NybomH(2004)ComparisonofdifferentnuclearDNAmarkersforestimating
intraspecificgeneticdiversityinplants.MolecEcol13:1143–1155
PetersonPM,McCrackenCL(2005)Geneticconsequencesofreduceddiversity:
heterozytosityloss,inbreedingdepressionandeffectivepopulationsize.In
KrupnickGA,KressWJ(eds)Plantconservation.Anaturalhistoryapproach.The
UniversityofChicagoPress,Chicago
PetitRJ,DuminilJ,FineschiS,HampeA,SalviniD,VendraminGG(2005)Comparative
organizationofchloroplast,mitochondrialandnucleardiversityinplant
populations.MolecEcol14:689–701
19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PiñeiroR,FuertesAguilarJ,DraperMuntD,NietoFelinerG(2007)Ecologymatters:
Atlantic‐Mediterraneandisjunctionofthesand‐duneshrubArmeriapungens
(Plumbaginaceae).MolecEcol16:2155–2171
PressJR,ShortMJ(1994)FloraofMadeira.TheNaturalHistoryMuseum,London
PrimackRB(1998)Essentialsofconservationbiology.SinauerAssociates,Sunderland
PritchardJK,StephensM,DonnellyP(2000)Inferenceofpopulationstructureusing
multilocusgenotypedata.Genetics155:945–959
RiesebergLH,SwensenS(1996)Conservationgeneticsofendangeredislandplants.In
AviseJ,HamrickJL(eds)Conservationgenetics.Casehistoriesfromnature.
Chapman&Hall,NewYork,pp305–327
RohlfFJ(1998)NTSYS‐PCnumericaltaxonomyandmultivariateanalysissystem.Exeter
Publications,Setauket
SchofieldEK(1989)Effectsofintroducedplantsandanimalsonislandvegetation:
examplesfromGalápagosArchipelago.ConservationBiol3:227–239
ShannonCE(1948)Amathematicaltheoryofcommunication.BellSystTechJ27:379–
423,623–656(BellSystemTechnicalJournal)
SoltisPS,SoltisDE,NorvellTL(1997)Geneticdiversityinrareandwidespreadspecies
ofLomatium(Apiaceae).Madroño44:59–73
SousaP(2003)50anosaservirafloresta.GovernoRegionaldaMadeira.Secretaria
RegionaldoAmbienteeRecursosNaturais,DirecçãoRegionaldeFlorestas,
Funchal
SwoffordD(2002)Phylogeneticanalysisusingparsimony(andothermethods),Version
4.SinauerAssociates,Sunderland
Tauleigne‐GomesC,LefèbvreC(2005)Naturalhybridizationbetweentwocoastal
endemicspeciesofArmeria(Plumbaginaceae)fromPortugal.1.Populationalin
situinvestigations.PlSystEvol250:215–230
UlrichG,MuellerL,WolfenbargerLR(1999)AFLPgenotypingandfingerprinting.Trends
EcolEvol14:389–394
VieiraR(1992)FloradaMadeira:ointeressedasplantasendémicasmacaronésicas.
ServiçoNacionaldeParques,ReservaseConservaçâodaNatureza,Lisboa
WCMC–WorldConservationMonitoringCentre(1992)Globalbiodiversity:statusof
theearth'slivingresources,ChapmanandHall,London
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
VosP,HogersR,BleekerM,ReijansM,vandeLeeT,HornesM,FritersA,PotJ,
PalemanJ,KuiperM,ZabeauM(1995)AFLP:anewtechniqueforDNA
fingerprinting.NuclAcidsRes23:4407–4414
WinkworthRC,RobertsonAW,EhrendorferF,LockhartPJ(1999)Theimportanceof
dispersalandrecentspeciationinthefloraofNewZealand.JBiogeogr
26:1323–1325
WolfeAD,ListonA(1998)Contributionsofthepolymerasechainreactiontoplant
systematics.InSoltisD.E,SoltisP.S,DoyleJ.J(eds)Molecularsystematicsof
plantsII.DNAsequencing.KluwerAcademicPublishers,NewYork,pp43–86
WoodellSRJ,DaleA(1993)Armeriamaritima(Mill.)Willd.(StaticearmeriaL.;S.
maritimaMill.).JEcol81:573–588
YehFC,BoyleTJB(1997)Populationgeneticanalysisofcodominantanddominant
markersandquantitativetraits.BelgJBot129:157
YoungAB,BrownAHD(1996)Comparativepopulationgeneticstructureofthe
rarewoodlandshrubDaviesiasuaveolensanditscommoncongenerD.
mimosoides.ConservationBiol10:1220–1228
21
1
2 Table1DetailsofsamplesitesofArmeriamaderensisfortheAFLPstudy(allinMadeira;seealsoFig.1)
Site
nr.
Site,habitat(altitude)Latitude
Longituden
collected/
genotyped
1PicoAreeiro,stonypasturesinthesummit(1779m)
32º44’16.6’’N
16º55’42.5’’W2/2
2PicoAreeiro,rockcrevices(1668m)32º44’21.5’’N
16º55’55.3’’W
12/6
3FromPicoAreeirotoPicoRuivo,rockcrevices(1753m)32º44’23.7’’N
16º55’58.8’’W
1/1
4FromPicoAreeirotoPicoRuivo,MangaGrande,rockcrevices(ca.1650m)32º44’12.7’’N
16º56’03.3’’W
5/4
5FromPicoAreeirotoPicoRuivo,pr.PicodoGato,rockcrevices(1779m)32º44’35.5’’N
16º56’17.5’’W
12/8
6Pr.PicoAreeiro,westernslopeofPicodoGato,rockcrevices(1599m)32º44’39.3’’N
16º56’13.4’’W
10/8
7FromPicoRuivotoPicodasTorrinhas,stonyopenshrubsandpastures(1739m)32º45’42.2’’N
16º56’41.2’’W
1/1
8FromPicoRuivotoPicodasTorrinhas,rockycrevicesinwalls(1741m)32º45’42.2’’N
16º57’02.9’’W
1/1
3
4 Collectors:A.Costa;G.NietoFeliner;J.FuertesAguilar,M.MenezesdeSequeira,andR.Lansac.Date:July2003
30
1
2
3
3
4
5
6
7
8
9
10
Table2ErrorrateintheAFLPdatasetofArmeriamaderensis,calculatedasthetotal
numberoflocidifferencesrelativetothetotalnumberoflocicomparisons,and
subsequentlyaveragedoverthethreeprimercombinations
Nr.bands
retained
%error
rate
Allbandsincluded1907.1
Typeofbandsremoved:
Differentsizeamongsamples 1476.4
Lowintensity1446.6
Changingintensityamongsamples1233.1
Upper10%molecularweight1726.9
Lower10%molecularweight 1726.7
Upper10%molecularweight
+Lower10%molecularweight
1546.4
Upper20%molecularweight1547.1
Lower20%molecularweight 1546.1
Errorrateswerecalculatedforthewholedatasetandafterremovingpotentiallynon‐
homologousbandsaccordingtofourdifferentcriteria:i)slightsizedifferencesamong
putativehomologousbandsacrossindividuals;ii)lowintensitybands;iii)changing
intensityofonebandacrosssamples;andiv)bandsofhighorsmallmolecularweight
(Bagleyetal.2001;Boninetal.2004;seethetext)
Upper20%molecularweight
+Lower20%molecularweight
1325.6
Nr.bands
retained
%error
rate
Allbandsincluded1907.1
Typeofbandsremoved:
Differentsizeamongsamples 1476.4
Lowintensity1446.6
Changingintensityamongsamples1233.1
Upper10%molecularweight1726.9
Lower10%molecularweight 1726.7
Upper10%molecularweight
+Lower10%molecularweight
1546.4
Upper20%molecularweight1547.1
Lower20%molecularweight 1546.1
Upper20%molecularweight
+Lower20%molecularweight
1325.6
22
1
2
3
Table3ComparisonofthetotalAFLPdiversityinArmeriamaderensiswithfivelineages
detectedwithinthewidespreadcongenerArmeriapungensaccordingtoBayesian
clusteringmethods(recalculatedfromPiñeiroetal.2007)
n=15
P
Ht
Sh
A.maderensis
47.77
0.08(0.14)
0.14(0.20)
A.pungens
lineageI
(mainland+island)
73.91
0.21(0.18)
0.33(0.26)
A.pungens
lineageII
(mainland)
81.81
0.21(0.17)
0.33(0.23)
A.pungens
lineageIII
(mainland)
83.9
0.24(0.18)
0.37(0.24)
A.pungens
lineageIV
(mainland)
51.85
0.14(0.18)
0.22(0.26)
A.pungens
lineageVI
(Island)
77.44
0.19(0.18)
0.30(0.25)
4
5
6
7
8
9
10
P
−
percentageofpolymorphicloci;Ht
−
Nei’sgenediversity(1973)atthe
species/lineagelevel;Sh
−
allelesimilarity,Shannonindex(1948).Samplesizewas
standardizedto15individualsaccordingtothesizeofthesmallestlineage.Standard
deviationisreportedinbrackets.ThelineageofA.pungenswiththelowestdiversity
levelishighlighted.
23
1
2
3
4
5
6
Table4Within‐populationAFLPdiversityofA.maderensisandthefivelineages
detectedwithinthewidespreadcongenerArmeriapungensaccordingtoBayesian
clusteringmethods(recalculatedfromPiñeiroetal.2007)
n=6
P
Hs
Sh
A.maderensis
Pop.2 17.780.06(0.14)0.09(0.20)
Pop.524.440.07(0.14)0.11(0.20)
Pop.627.780.06(0.11)0.12(0.19)
Mean22.330.060.11
A.pungenslineageI
Pop.1 43.470.14(0.19)0.21(0.28)
Pop.250.430.18(0.26)0.20(0.29)
Mean46.950.160.20
A.pungenslineageII
Pop.3 51.510.18(0.20)0.27(0.29)
Pop.4 35.610.11(0.17)0.17(0.25)
Pop.5 43.180.13(0.18)0.21(0.26)
Mean43.430.140.22
A.pungenslineageIII
Pop.6 50.000.18(0.20)0.26(0.29)
Pop.7 54.240.19(0.20)0.28(0.29)
Mean52.120.190.27
A.pungenslineageIV
Pop.8 26.670.09(0.17)0.14(0.25)
Pop.9 38.520.14(0.19)0.20(0.28)
Pop.10 23.700.09(0.17)0.13(0.24)
Pop.11 20.000.07(0.16)0.11(0.23)
Pop.12 34.070.11(0.18)0.17(0.25)
Pop.13 25.180.09(0.18)0.14(0.25)
Mean28.020.100.15
A.pungenslineageVI
Pop.15 50.000.16(0.19)0.25(0.27)
24
Pop.16 29.270.11(0.18)0.16(0.26)
Pop.17 39.020.13(0.18)0.19(0.26)
Pop.18 28.660.10(0.18)0.15(0.26)
Pop.19 42.070.15(0.19)0.22(0.28)
Pop.20 42.680.15(0.19)0.22(0.28)
Pop.21 35.370.13(0.19)0.19(0.27)
Pop.22 35.980.13(0.19)0.20(0.28)
Pop.23 31.710.11(0.17)0.16(0.25)
Mean37.200.130.19
1
2
3
4
5
P
−
percentageofpolymorphicloci;Hs
−
Nei’sgenediversity(1973)atthepopulation
level;Sh
−
allelesimilarity,Shannonindex(1948).Populationsamplesizeswere
standardizedtosixindividuals.Standarddeviationisreportedinbrackets.Thelineage
ofA.pungenswiththelowestdiversitylevelishighlighted
25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
FIGURECAPTIONS
Fig.1LocationofsampledsitesofArmeriamaderensisfortheAFLPstudy,numbered
asinTable1
Fig.2AFLPstructureofArmeriamaderensisestimatedwithBayesianclusteringusing
STRUCTURE.aAssignmentof31individualsintoKgroups.Everyindividualis
representedbyaverticalbardividedinstripesofdifferentcolourcorrespondingtothe
estimatedassignmentprobabilitiestoeachgroup.Sampledsitesarenumberedasin
Table1.TenreplicatesateachKproducednearlyidenticalassignmentpatterns;the
highestprobabilityrunsateachKarerepresentedhere.bLogprobabilityofthedata
asafunctionofKaveragedover10STRUCTURErunsfromK=1toK=8.
Fig.3Principalcoordinatesanalysis(PCoA)representingDicesimilaritiesbetweenAFLP
phenotypesofArmeriamadarensis.Plotof31phenotypeseachcorrespondingtoa
singleindividualagainstthefirstandsecondprincipalaxesisshown,withaminimum
spanningtree(MST)superimposed.Thepercentageofvarianceaccountedforbyeach
axisisindicated.
26
1
2
3
4
5
6
7
27
1
2
3
4
28