ChapterPDF Available

Understanding the Benefits and Costs of Urban Forest Ecosystems



One of the first considerations in developing a strong and comprehensive urban forestry program is determining the desired outcomes from managing vegetation in cities. Urban trees can provide a wide range of benefits to the urban environment and well-being of people. However, there are also a wide range of potential costs and as with all ecosystems, numerous interactions that must be understood if one is to optimize the net benefits from urban vegetation. Inadequate understanding of the wide range of benefits, costs, and expected outcomes of urban vegetation management options, as well as interactions among them, may drastically reduce the contribution of vegetation toward improving urban environments and quality of life. By altering the type and arrangement of trees in a city (i.e., the urban forest structure), one can affect the city’s physical, biological, and socioeconomic environments. Management plans can be developed and implemented to address specific problems within cities. Although trees can provide multiple benefits at one site, not all benefits can necessarily be realized in each location. Individual management plans should focus on optimizing, in a particular area, the mix of benefits that are most important. 2. Urban Land in the United States The importance of urban forests and their benefits in the United States is increasing because of the expansion of urban land. The percentage of the coterminous land in United States, classified as urban, increased from 2.5% in 1990 to 3.1% in 2000, an area about the size of Vermont and New Hampshire combined. The states with the
1. Introduction
One of the first considerations in developing a strong and comprehensive urban
forestry program is determining the desired outcomes from managing vegetation in
cities. Urban trees can provide a wide range of benefits to the urban environment and
well-being of people. However, there are also a wide range of potential costs and as
with all ecosystems, numerous interactions that must be understood if one is to opti-
mize the net benefits from urban vegetation. Inadequate understanding of the wide
range of benefits, costs, and expected outcomes of urban vegetation management
options, as well as interactions among them, may drastically reduce the contribution
of vegetation toward improving urban environments and quality of life.
By altering the type and arrangement of trees in a city (i.e., the urban forest struc-
ture), one can affect the city’s physical, biological, and socioeconomic environments.
Management plans can be developed and implemented to address specific problems
within cities. Although trees can provide multiple benefits at one site, not all benefits
can necessarily be realized in each location. Individual management plans should focus
on optimizing, in a particular area, the mix of benefits that are most important.
2. Urban Land in the United States
The importance of urban forests and their benefits in the United States is increas-
ing because of the expansion of urban land. The percentage of the coterminous land
in United States, classified as urban, increased from 2.5% in 1990 to 3.1% in 2000, an
area about the size of Vermont and New Hampshire combined. The states with the
Urban and Community Forestry in the Northeast, 2nd ed., edited by, J. E. Kuser.
© 2007 Springer.
Chapter 2
Understanding the Benefits and Costs
of Urban Forest Ecosystems
David J. Nowak1and John F. Dwyer2
David J. Nowak USDA Forest Service, Northeastern Research Station, Syracuse, New York
John F. Dwyer The Morton Arboretum, Lisle, Illinois
highest percentage of urban land are New Jersey (36.2%), Rhode Island (35.9 %),
Connecticut (35.5%), and Massachusetts (34.2%) with 7 of the top 10, most urban-
ized states in the Northeast United States (Fig. 1) (Nowak et al., 2005).
The most urbanized regions of the United States are the Northeast (9.7%) and the
Southeast (7.5%), with these regions also exhibiting the greatest increase in percentage
of urban land between 1990 and 2000 (1.5% and 1.8%, respectively). States with the
greatest increase in percentage of urban land between 1990 and 2000 were Rhode Island
(5.7%), New Jersey (5.1%), Connecticut (5.0%), Massachusetts (5.0%), Delaware
(4.1%), Maryland (3.0%), and Florida (2.5%) (Nowak et al., 2005). Nationally, urban
tree cover in the United States averages 27.1%. However, urban tree cover tends to be
highest in forested regions (34.4% urban tree cover), followed by grasslands (17.8%),
and deserts (9.3%) (Dwyer et al., 2000; Nowak et al., 2001).
Patterns of urban growth reveal that increased growth rates are likely in the future
(Nowak et al., 2005). As the Northeast is the most urbanized region of the country and
is likely to have some of the greatest increases in urban land growth over the next sev-
eral decades, understanding the benefits and costs of urban vegetation is paramount
to sustain human health and environmental quality in this region.
3. Physical/Biological Benefits and Costs of Urban Vegetation
Through proper planning, design, and management, urban trees can mitigate many
of the environmental impacts of urban development by moderating climate, reducing
building energy-use and atmospheric carbon dioxide (CO2), improving air quality,
26 David J. Nowak and John F. Dwyer
FIGURE 1. Urban areas in coterminous United States (2000) based on the US Census Bureau Definition
of Urban Land.
lowering rainfall runoff and flooding, and reducing noise levels. However, inappropri-
ate landscape designs, tree selection, and tree maintenance can increase environmental
costs, such as pollen production and chemical emissions from trees and maintenance
activities that contribute to air pollution, and also increase building energy-use, waste
disposal, infrastructure repair, and water consumption. These potential costs must be
weighed against the environmental benefits in developing management programs.
3.1. Urban Atmosphere
Trees influence the urban atmosphere in the following four general, interactive
ways that can be remembered by using the word TREE (Nowak, 1995): (1) Temperature
and microclimatic effects, (2) Removal of air pollutants, (3) Emission of volatile organ-
ic compounds by trees and emissions due to tree maintenance, and (4) Energy conser-
vation in buildings and consequent effects on emissions from power plants. The cumu-
lative effect of these four factors determines the overall impact of urban trees on the
urban atmosphere and particularly air pollution.
3.1.1. Temperature and Microclimatic Modifications
Trees influence climate at a range of scales, from an individual tree to a forest
covering an entire metropolitan area. By transpiring water, altering windspeeds, shad-
ing surfaces, and modifying the storage and exchanges of heat among urban surfaces,
trees affect local climate and thereby influence thermal comfort and air quality. Often,
one or more of these microclimatic influences of trees produces an important benefit,
while other influences can reduce benefits or increase costs (Heisler et al., 1995).
Trees alter windspeed and direction. Dense tree crowns have a significant impact
on wind, but for isolated trees, their influence nearly disappears within a few crown
diameters downwind (Heisler et al., 1995). Several trees on a residential lot, in con-
junction with trees throughout the neighborhood, reduce windspeed significantly. In
a residential neighborhood in central Pennsylvania with 67% tree cover, windspeeds
at 2 m above ground level were reduced by 60% in winter and 67% in summer com-
pared to windspeeds in a comparable neighborhood with no trees (Heisler, 1990a).
Trees also have a dramatic influence on incoming solar radiation, and can reduce
it by 90% or more (Heisler, 1986). Some of the radiation absorbed by tree canopies
leads to the evaporation and transpiration of water from leaves. This evapotranspira-
tion cools tree leaves and the air. Despite large amounts of energy used for evapo-
transpiration on sunny days, air movement rapidly disperses cooled air, thereby dis-
persing the overall cooling effect. Under individual and small groups of trees, air tem-
perature at 1.5 m above the ground is usually within 1°C of the air temperatures in an
open area (Souch and Souch, 1993). Along with transpirational cooling, tree shade
can help cool the local environment by reducing the solar heating of some below-
canopy artificial surfaces (e.g., buildings, parking lots). Together these effects can
reduce air temperatures by as much as 5°C (Akbari et al., 1992).
Although trees usually contribute to cooler summer air temperatures, their pres-
ence can increase air temperatures in some instances (Myrup et al., 1991). In areas
with scattered tree canopies, radiation can reach and heat ground surfaces; at the same
time, the canopy may reduce atmospheric mixing such that cooler air is prevented
Benefits and Costs of Urban Forest Ecosystems 27
from reaching the area. In this case, tree shade and transpiration may not compensate
for the increased air temperatures due to reduced mixing (Heisler et al., 1995). Thus,
it is important to recognize that it is the combined effects of trees on radiation, wind,
and transpirational cooling that affect local air temperatures and climate.
Besides providing for transpirational cooling, the physical mass and thermal/
radiative properties of trees can affect other aspects of local meteorology and micro-
climate, such as ultraviolet radiation loads, relative humidity, turbulence, albedo, and
boundary-layer heights (i.e., the height of the layer of atmosphere that, because of
turbulence, interacts with the earth’s surface on a time scale of a few hours or less
(Lenschow, 1986)).
3.1.2. Removal of Air Pollutants
Trees remove gaseous air pollution primarily by uptake through leaf stomata,
though some gases are removed by the plant surface (Smith, 1990). Once inside the
leaf, gases diffuse into intercellular spaces and may be absorbed by water films to form
acids or react with the inner surfaces of leaves. Trees also remove pollution by inter-
cepting airborne particles. Some particles can be absorbed into the tree (Ziegler, 1973;
Rolfe, 1974), though most intercepted particles are retained on the plant surface.
Often vegetation is only a temporary retention site for atmospheric particles as the
intercepted particles may be resuspended to the atmosphere, washed off by rain, or
dropped to the ground with leaf and twig fall (Smith, 1990).
Pollution removal by trees in a city varies throughout the year (Fig. 2).
28 David J. Nowak and John F. Dwyer
Removal (t)
FIGURE 2. Monthly pollution removal by trees (metric tons) in Philadelphia, PA (1994). PM10 = partic-
ulate matter <10 microns; O3= ozone; NO2= nitrogen dioxide; SO2= sulfur dioxide; CO = carbon monoxide.
PM10 removal assumes 50% resuspension of particles. City area = 350 km2; tree cover = 21.6%.
Factors that affect pollution removal by trees include the amount of healthy leaf-
surface area, concentrations of local pollutants, and local meteorology. Computer
simulations using the Urban Forest Effects Model (Nowak and Crane, 2000, Nowak
et al., 2002b) with local field data reveal that pollution removal by urban trees in var-
ious cities range from 19 metric tons per year in Freehold, New Jersey to over 1500
metric tons per year in Atlanta and New York (Table 1). Pollution removal was typi-
cally greatest for ozone, followed by particulate matter less than 10 microns, nitrogen
dioxide, sulfur dioxide, and carbon monoxide. Value of pollution removal, based on
national median externality values for each pollutant (Murray et al., 1994), ranged
from $109,000 in Freehold to $8.3 million in Atlanta.
Average annual pollution removal per square meter of canopy cover was 9.3 g,
but ranged between 6.6 g/m2in Syracuse and 12.0 g/m2in Atlanta (Table 1). The aver-
age annual dollar value per hectare of tree cover was $500, but ranged between
$378/ha cover in Syracuse and $663/ha cover in Atlanta. As existing canopy cover in
cities remove significant amounts of air pollution, increasing tree cover in urban areas
will lead to greater pollution removal, as well as reduced air temperatures that can
help improve urban air quality.
Average improvement in air quality from pollution removal by trees during the
daytime of the in-leaf season among 14 cities (Table 1) was 0.62% for particulate mat-
ter less than 10 microns (PM10), 0.61% for ozone (O3), 0.60% for sulfur dioxide (SO2),
0.39% for nitrogen dioxide (NO2), and 0.002% for carbon monoxide (CO). Air quali-
ty improvement increases with increased percentage of tree cover and decreased
boundary-layer heights. In urban areas (Table 1) with 100% tree cover (i.e., contigu-
ous forest stands), short-term improvements (1 h) in air quality due to pollution
removal from trees were as high as 14.9% for SO2, 14.8% for O3, 13.6% for PM10,
8.3% for NO2, and 0.05% for CO. In Chicago in 1991, large, healthy trees—those >77
cm in diameter at breast height (dbh)—removed an estimated 1.4 kg of pollution,
about 70 times more pollution than small (<7 cm dbh) trees (Nowak, 1994a).
Trees can also reduce atmospheric CO2by directly storing carbon (C) from CO2
as they grow. Large trees store approximately 3 metric tons of carbon (tC) or 1000
times more carbon than stored by small trees (Nowak, 1994b). Healthy trees contin-
ue to sequester additional carbon each year; large, healthy trees sequester about 93 kg
C/year vs 1 kg C/year for small trees. Net annual sequestration by trees in the Chicago
area (140,600 tC) equals the amount of carbon emitted from transportation in the
Chicago area in about 1 week (Nowak, 1994b).
Urban trees in the coterminous United States currently store 700 million metric
tons of carbon (335 to 980 million tC; $14,300 million value) with a gross carbon seques-
tration rate of 22.8 million tC/year (13.7 to 25.9 million tC/year; $460 million/year)
(Nowak and Crane, 2002). These results correspond with previous analyses that
estimated national carbon storage by urban trees as between 350–750 million tC
(Nowak, 1993a) and 600–900 million tC (Nowak, 1994b). Carbon storage by urban trees
nationally is only 4.4% of the estimated 15,900 million tC stored in trees in US nonurban
forest ecosystems (Birdsey and Heath, 1995). The estimated carbon storage by urban
trees in United States is equivalent to the amount of carbon emitted by the US popula-
tion in about 5.5 months. National annual carbon sequestration by urban trees is equiv-
alent to the US population emissions over a 5-day period (Nowak and Crane, 2002).
Benefits and Costs of Urban Forest Ecosystems 29
30 David J. Nowak and John F. Dwyer
Table 1. Total Estimated Pollution Removal (Metric Tons) by Trees During Nonprecipitation Periods (Dry Deposition), and Associated Monetary
Value for Various Cities (Pollutant Year = 2000)
City Pollution removed
CO (t) NO2(t) O3(t) PM10 (t) SO2(t) Total (t) Range (t) g/m2covera$ $/ha coverb
New York, NY 67 364 536 354 199 1,521 (619–2,185) 9.1 8,071,000 482
Atlanta, GA 39 181 672 528 89 1,508 (538–2,101) 12.0 8,321,000 663
Baltimore, MD 9 94 223 142 55 522 (183–725) 9.9 2,876,000 545
Philadelphia, PA 10 93 185 194 41 522 (203–742) 9.7 2,826,000 527
San Juan, PR 56 55 161 153 86 511 (222–768) 11.2 2,342,000 511
Washington, DC 18 50 152 107 51 379 (150–568) 8.3 1,956,000 429
Boston, MA 6 48 108 73 23 257 (94–346) 8.1 1,426,000 447
Woodbridge, NJ 6 42 66 62 15 191 (72–267) 10.8 1,037,000 586
San Francisco, CA 7 25 47 42 7 128 (51–195) 9.0 693,000 486
Moorestown, NJ 2 14 43 38 9 107 (41–157) 10.1 576,000 541
Syracuse, NY 2 12 55 23 7 99 (37–134) 6.6 568,000 378
Morgantown, WV 1 5 26 18 9 60 (22–98) 7.5 311,000 387
Jersey City, NJ 2 9 13 9 5 37 (16–56) 8.4 196,000 445
Freehold, NJ 1 3 9 6 1 20 (7–27) 11.4 110,000 632
Estimates are for particulate matter less than 10 microns (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO). Pollution removal model methods are described
in Nowak et al. (1998). Monetary value of pollution removal by trees was estimated using the median externality values for United States for each pollutant. Externality values are: NO2= $6750 t1,
PM10 = $4500 t1,SO
2= $1650 t1, and CO = $950 t1(Murray et al., 1994). Externality values for O3were set to equal the value for NO2.
aAverage grams of pollution removal per year per square meter of canopy cover.
bAverage dollar value of pollution removal per year per hectare of canopy cover.
Carbon storage within the cities ranges from 1.2 million tC in New York City and
Atlanta to 19,300 tC in Jersey City, New Jersey (Table 2).
Urban trees in the North Central, Northeast, South Central and Southeast
regions of the United States store and sequester the most amount of carbon, with
average carbon storage per hectare greatest in Southeast (31.1 tC/ha), North Central
(30.7 tC/ha), Northeast (30.5 tC/ha), and Pacific Northwest (30.2 tC/ha) regions,
respectively. The national average urban forest carbon storage density is 25.1 tC/ha as
compared to 53.5 tC/ha in forest stands (Nowak and Crane, 2002).
3.1.3. Emission of Volatile Organic Compounds and Tree Maintenance Emissions
Some trees emit into the atmosphere volatile organic compounds (VOCs) such as
isoprene and monoterpenes. These compounds are natural chemicals that make up
essential oils, resins, and other plant products and may be useful to the tree in attract-
ing pollinators or repelling predators (Kramer and Kozlowski, 1979). Isoprene is also
believed to provide thermal protection to plants by helping prevent irreversible leaf
damage at high temperatures (Sharkey and Singsaas, 1995). The VOC emissions by
trees vary with species, air temperature, and other environmental factors (Tingey
et al., 1991; Guenther et al., 1994).
Volatile organic compounds can contribute to the formation of O3and CO
(Brasseur and Chatfield, 1991). Because the VOC emissions are temperature dependent
and trees generally lower air temperatures, it is believed that increased tree cover lowers
overall VOC emissions and, consequently, reduces O3levels in urban areas. A comput-
er simulation of June 4, 1984 ozone conditions in Atlanta, Georgia revealed that a 20%
loss in the area’s forest could lead to a 14% increase in O3concentrations. Although
there were fewer trees to emit VOCs, an increase in Atlanta’s air temperatures due to
Benefits and Costs of Urban Forest Ecosystems 31
Table 2. Estimated Carbon Storage, Gross and Net Annual Sequestration, Number of Trees, and
Percent Tree Cover for 10 US Cities (Nowak and Crane, 2002)
City Storage Annual sequestration No. of trees Tree cover
(tC) Gross (tC/yr) Net (tC/yr) (×103) (percent)
Total SE Total SE Total SE Total SE % SE
New York, NY 1,225,200 150,500 38,400 4,300 20,800 4,500 5,212 719 20.9 2.0
Atlanta, GA 1,220,200 91,900 42,100 2,800 32,200 4,500 9,415 749 36.7 2.0
Sacramento, CAa1,107,300 532,600 20,200 4,400 na na 1,733 350 13.0 na
Chicago, ILb854,800 129,100 40,100 4,900 na na 4,128 634 11.0 0.2
Baltimore, MD 528,700 66,100 14,800 1,700 10,800 1,500 2,835 605 25.2 2.2
Philadelphia, PA 481,000 48,400 14,600 1,500 10,700 1,300 2,113 211 15.7 1.3
Boston, MA 289,800 36,700 9,500 900 6,900 900 1,183 109 22.3 1.8
Syracuse, NY 148,300 16,200 4,700 400 3,500 400 891 125 24.4 2.0
Oakland, CAc145,800 4,900 na na na na 1,588 51 21.0 0.2
Jersey City, NJ 19,300 2,600 800 90 600 100 136 22 11.5 1.2
aMcPherson (1998).
bNowak (1994b).
cNowak (1993c).
SE = standard error.
na = not analyzed.
the urban heat island, which occurred concomitantly with the tree loss, increased VOC
emissions from the remaining trees and anthropogenic sources and altered O3photo-
chemistry such that concentrations of O3increased (Cardelino and Chameides, 1990).
A simulation of California’s South Coast Air Basin suggested that the impact on
air quality from increased urban tree cover might be locally positive or negative. The
net basinwide effect of increased urban vegetation is a decrease in O3concentrations
if the additional trees are low-VOC emitters (Taha, 1996). Examples of low-VOC
emitting genera include Fraxinus spp., Ilex spp., Malus spp., Prunus spp., Pyrus spp.,
and Ulmus spp.; high-VOC emitters include Eucalyptus spp., Quercus spp., Platanus
spp., Populus spp., Rhamnus spp., and Salix spp. (Benjamin et al., 1996).
Tree management and maintenance also affects pollutant emissions. The equip-
ment used in many maintenance activities emits pollutants and global gases such as
VOCs, CO, CO2, nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter
(US EPA, 1991). Thus, while evaluating the overall net change in air quality due to
trees, managers and planners must consider the amount of pollution that results from
tree maintenance and management activities. The greater the use of fossil fuels (e.g.,
from vehicles, chain saws, augers, and chippers) in establishing and maintaining a cer-
tain vegetation structure, the longer the trees must live and function to offset the pol-
lutant emissions from vegetation maintenance.
While considering the net effect of tree growth on atmospheric CO2, managers
must also consider that nearly all of the carbon sequestered by trees will be converted
back to CO2due to decomposition after the tree dies. Hence, the benefits of carbon
sequestration will be relatively short-lived if vegetation structure is not sustained.
However, if carbon (via fossil-fuel combustion) is used to maintain vegetation structure
and health, urban forest ecosystems will eventually become net emitters of carbon
unless secondary carbon reductions (e.g., energy conservation) or limiting decomposi-
tion via long-term carbon storage (e.g., wood products, landfills) can be accomplished
to offset the carbon emissions during maintenance (Nowak et al., 2002c).
Trees in parking lots can also help reduce VOCs emissions by shading parked
cars and thereby reducing evaporative emissions from vehicles. Increasing parking lot
tree cover from 8% to 50% could reduce Sacramento County, California, light duty
vehicle VOC evaporative emission rates by 2% and nitrogen oxide start emissions by
<1% (Scott et al., 1999).
3.1.4. Net Effects on Ozone
Besides the studies by Cardelino and Chameides (1990) and Taha (1996), other
studies reveal that increased urban tree cover can lead to reduced ozone concentra-
tions. Modeling the effects of increased urban tree cover on ozone concentrations
from Washington, DC to central Massachusetts revealed that urban trees generally
reduce ozone concentrations in cities. Interactions of the effects of trees on the phys-
ical and chemical environment demonstrate that trees can cause changes in pollution
removal rates and meteorology, particularly air temperatures, wind fields, and mixing-
layer heights, which, in turn, affect ozone concentrations. Changes in urban tree species
composition had no detectable effect on ozone concentrations (Nowak et al., 2000).
Modeling of the New York City metropolitan area also revealed that increasing tree
32 David J. Nowak and John F. Dwyer
cover by 10% within urban areas could reduce maximum ozone levels by about 4 ppb,
which is about 37% of the amount needed for attainment of the National Ambient
Air Quality Standard (Luley and Bond, 2002).
Based on the various research on urban tree effects on ozone, the US
Environmental Protection Agency (US EPA) released a guidance document that
details how new measures, including “strategic tree planting,” can be incorporated in
State Implementation Plans as a means to help states meet National Ambient Air
Quality Standards (US EPA, 2004).
3.1.5. Energy Conservation
Trees can reduce building heating and cooling energy needs, as well as conse-
quent emissions of air pollutants and CO2by power plants, by shading buildings and
reducing air temperatures in the summer, and by blocking winds in winter. However,
trees that shade buildings in winter can also increase heating needs. Energy conserva-
tion from trees varies by regional climate, the size and amount of tree foliage, and the
location of trees around buildings. Tree arrangements that save energy provide shade
primarily on east and west walls and roofs, and wind protection from the direction of
prevailing winter winds. However, wind reduction in the summer can lead to increased
energy use for air conditioning, but wind and shade effects combined lead to reduced
summer energy use for cooling (Akbari et al., 1992; Heisler, 1990b). Energy use in a
house with trees can be 20% to 25% lower per year than that for the same house in an
open area (Heisler, 1986). It has been estimated that establishing 100 million mature
trees around residences in the United States could save about $2 billion annually in
reduced energy costs (Akbari et al., 1988).
Proper tree placement near buildings is critical to maximize energy conservation.
For example, it has been estimated that annual costs of air conditioning and heating
for a typical residence in Madison, Wisconsin, would increase from $671 for an ener-
gy-efficient planting design to $700 for no trees and $769 for trees planted in locations
that block winter sunlight and provide little summer shade (McPherson, 1987). In this
instance, average annual energy savings with properly placed trees were about 4%
more than with no trees and 13% more than with improperly placed trees.
3.2. Urban Hydrology
By intercepting and retaining or slowing the flow of precipitation reaching the
ground, trees (in conjunction with soils) can play an important role in urban hydro-
logic processes. They can reduce the rate and volume of stormwater runoff, flood-
ing damage, stormwater treatment costs, and other problems related to water qual-
ity. Estimates of runoff for an intensive storm in Dayton, Ohio, showed that the
existing tree canopy (22%) reduced potential runoff by 7% and that a modest
increase in canopy cover (to 29%) would reduce runoff by nearly 12% (Sanders,
1986). A study of the Gwynns Falls watershed in Baltimore indicated that heavily
forested areas can reduce total runoff by as much as 26% and increase low-flow
runoff by up to 13% compared with nontree areas in existing land cover and land-
use conditions (Neville, 1996). Further, tree cover over pervious surfaces reduced
Benefits and Costs of Urban Forest Ecosystems 33
total runoff by as much as 40%; while tree canopy cover over impervious surfaces
had a limited effect on runoff.
In reducing runoff, trees function like retention/detention structures. In many
communities, reduced runoff due to rainfall interception can also reduce costs
of treating stormwater by decreasing the volume of water handled during periods of
peak runoff (Sanders, 1986).
There may also be hydrologic costs associated with urban vegetation, particular-
ly in arid environments where water is increasingly scarce or on reactive clay soils
where water uptake by roots may cause localized-soil drying, shrinkage, and cracking.
Increased water use in desert regions could alter the local water balance and various
ecosystem functions that are tied to the desert water cycle. In addition, annual costs
of water for sustaining vegetation can be twice as high as energy savings from shade
for tree species that use large amounts of water, e.g., mulberry (McPherson and
Dougherty, 1989). However, in Tucson, Arizona, 16% of the annual irrigation require-
ment of trees was offset by the amount of water conserved at power plants due to
energy savings from trees (Dwyer et al., 1992).
3.3. Urban Noise
Field tests have shown that properly designed plantings of trees and shrubs can
significantly reduce noise. Leaves and stems reduce transmitted sound primarily by
scattering it, while the ground absorbs sound (Aylor, 1972). For optimum noise reduc-
tion, trees and shrubs should be planted close to the noise source rather than the
receptor area (Cook and Van Haverbeke, 1971). Wide belts (30 m) of tall, dense trees
combined with soft ground surfaces can reduce apparent loudness by 50% or more
(6 to 10 decibels) (Cook, 1978). For narrow planting spaces (<3 m wide), reductions
of 3 to 5 decibels can be achieved with dense belts of vegetation, i.e., one row of
shrubs along the road and one row of trees behind it (Reethof and McDaniel, 1978).
Buffer plantings in these circumstances typically are more effective in screening views
than in reducing noise.
Vegetation can also mask sounds by generating its own noise as wind moves tree
leaves or as birds sing in the tree canopy. These sounds may make individuals less
aware of offensive noises because people are able to filter unwanted noise while con-
centrating on more desirable sounds (Robinette, 1972). The perception of sounds by
humans is also important. By visually blocking the sound source, vegetation can
reduce individuals’ perceptions of the amount of noise they actually hear (Anderson
et al., 1984). The ultimate effectiveness of plants in moderating noise is determined by
the sound itself, the planting configuration used, the proximity of the sound source,
receiver, and vegetation, as well as climatic conditions.
3.4. Urban Wildlife and Biodiversity
There are many additional benefits associated with urban vegetation that con-
tribute to the long-term functioning of urban ecosystems and the well-being of urban
residents. These include wildlife habitat and enhanced biodiversity. Urban wildlife can
34 David J. Nowak and John F. Dwyer
provide numerous benefits but also have detrimental effects (VanDruff et al., 1995).
Urban wildlife can serve as biological indicators of changes in the health of the envi-
ronment (e.g., the decline of certain bird populations was traced to pesticides), and
can provide economic benefit to individuals and society (VanDruff et al., 1995). For
example, bird feeding supports a $170 to $517 million American industry (DeGraff
and Payne, 1975; Lyons, 1982).
Surveys have shown that most city dwellers enjoy and appreciate wildlife in their
day-to-day lives (Shaw et al., 1985). Among New York State’s metropolitan residents,
73% showed an interest in attracting wildlife to their backyard (Brown et al., 1979).
Feelings of personal satisfaction from helping wildlife were the most frequently
reported reason for feeding wildlife in backyards across America (Yeomans and
Barclay, 1981). Detrimental wildlife effects include damage to plants and structures,
droppings, threats to pets, annoyance to humans, animal bites, and transmission of
diseases (VanDruff et al., 1995).
Urbanization can sometimes lead to the creation and enhancement of animal
and plant habitats, which, in turn, usually increases biodiversity. For example, tree
species diversity and richness in Oakland, California, increased from an index value
of about 1.9 (Shannon–Weiner diversity index value) and 10 species in 1850 to 5.1 and
>350 species in 1988 (Nowak, 1993c). However, the introduction of new plant species
into urban areas can lead to problems for managers in maintaining native plant struc-
ture, as exotic plants can invade and displace native species in forest stands. One
example of exotic plant invasion in some areas of the northeastern United States is
that by Norway maple (Acer platanoides L.) (Nowak and Rowntree, 1990). Also, alter-
ing vegetation structure in urban areas can change the prevalence of certain tree
insects and diseases (Nowak and McBride, 1992) and could increase the potential for
urban wildfires (East Bay Hills Vegetation Management Consortium, 1995).
Urban forests can act as reservoirs for endangered species. For example, 20
threatened or endangered faunal species and 130 plant species are listed for Cook
County, the most populated county of the Chicago Metropolitan Area (Howenstine,
1993). In addition, urbanites are increasingly preserving, cultivating, and restoring
rare and native species and ecosystems (Howenstine, 1993). A notable example of the
involvement of a wide range of individuals and groups in the restoration and man-
agement of urban natural areas is the work of the Chicago Region Biodiversity
Council, often known as Chicago Wilderness (2005).
Because of increased environmental awareness and concerns about quality of life
and sustainability of natural systems, ecological benefits of the urban forest are like-
ly to increase in significance over time (Dwyer et al., 1992).
3.5 Phytoremediation
Trees and other plants show significant potential for remediating brownfields,
landfills, and other contaminated sites by absorbing, transforming, and containing a
number of contaminants (Westphal and Isebrands, 2001). More information about
brownfields and the issues and opportunities that they present can be obtained from
USEPA (2000) and De Sousa (2003).
Benefits and Costs of Urban Forest Ecosystems 35
4. Social and Economic Benefits and Costs of Urban Vegetation
In conjunction with the many effects of urban trees on the physical/biological
environment, trees and associated forest resources can significantly influence the
social and economic environment of a city. These influences range from altered aes-
thetic surroundings and increased enjoyment with everyday life to improved health
and a greater sense of meaningful connection between people and the natural envi-
ronment. The benefits and costs associated with these influences are highly variable
within and among urban areas and often difficult to measure. Nevertheless, they
reflect important contributions of trees and forests to the quality of life for urban
4.1. Benefits to Individuals
Urban forest environments provide aesthetic surroundings and are among the
most important features contributing to the aesthetic quality of residential streets and
community parks (Schroeder, 1989). Perceptions of aesthetic quality and personal
safety are related to features of the urban forest such as number of trees per acre and
viewing distance (Schroeder and Anderson, 1984). Urban trees and forests provide
significant emotional and spiritual experiences that are important in people’s lives and
can foster a strong attachment to particular places and trees (Chenoweth and Gobster,
1990; Dwyer et al., 1991; Schroeder, 1991, 2002, 2004). A wide range of individual
benefits has been associated with volunteer tree planting and care (Westphal, 1993).
Volunteers continue to play an increasingly important role in urban forestry efforts,
such as inventory (Bloniarz and Ryan, 1996), and Sommer (2003) encourages explo-
ration of expanding opportunities for resident involvement in tree planting and care.
Nearby nature, even when viewed from an office window, can provide substantial
psychological benefits that affect job satisfaction and a person’s well-being (Kaplan,
1993). Reduced stress and improved physical health for urban residents have been asso-
ciated with the presence of urban trees and forests in a number of environments. Living
in a green environment has been associated with a wide range of individual benefits,
including improved learning and behavior by children in urban areas (Taylor, Kuo, and
Sullivan, 2001a, b; Wells, 2000). Experiences in urban parks have been shown to change
moods and reduce stress (Hull, 1992a; Kaplan and Kaplan, 1989), and to provide pri-
vacy refuges (Hammitt, 2002). Hospital patients with window views of trees have been
shown to recover significantly faster and with fewer complications than the patients
without such views (Ulrich, 1984). In addition, tree shade reduces ultraviolet radiation
and thus can help reduce health problems associated with increased ultraviolet radia-
tion exposure, e.g., cataracts, skin cancer (Heisler et al., 1995).
Many of the benefits associated with urban trees contribute to improved human
health in a wide variety of ways, ranging from improved air quality to reduction of
stress and interpersonal conflict. With increased concern over obesity and the need for
changing lifestyles (e.g., more exercise) to reduce obesity, trees and forests are receiv-
ing increased attention as contributing to a solution. This solution ranges from pro-
viding environments that encourage exercise (e.g., playing in well-landscaped parks or
walking/running along tree-lined streets and trails) to the actual exercise experienced
36 David J. Nowak and John F. Dwyer
by the many volunteers who work with trees and associated landscapes (Librett et al.,
2005). A comprehensive overview of the relationship of urban design to human health
and condition concluded, “There are strong public health arguments for the incorpo-
ration of greenery, natural light, and visual and physical access to open space in
homes and other buildings (Jackson, 2003).”
Along with the human health benefits, such as those outlined above in this sec-
tion, some decreases in well-being and increases in health care costs may be associat-
ed with urban vegetation. This negative side to urban trees is associated with allergic
reactions to plants, pollen, or associated animal and insects, diseases such as Lyme
disease that are carried by wildlife, injuries from branch or tree failures, and a fear of
trees, forests, and associated environments.
4.2. Benefits to Communities
Urban forests can make important contributions to the economic vitality and
character of a city, neighborhood, or subdivision. It is no accident that many cities,
towns, and subdivisions are named after trees (e.g., Oakland, Elmhurst, Oak Acres)
and that many cities strive to be a “Tree City USA.” Often, trees and forests on pub-
lic lands–and on private lands to some extent–are significant “common property”
resources that contribute to the economic vitality of an entire area (Dwyer et al.,
1992). The substantial efforts that many communities undertake to develop and
enforce local tree ordinances and manage their urban forest resource attest to the sub-
stantial return that they expect from these investments.
A stronger sense of community and empowerment of inner-city residents to
improve neighborhood conditions can be attributed to involvement in urban forestry
efforts (Feldman and Westphal, 1999; Westphal, 1999, 2003). Active involvement in
tree-planting programs has been shown to enhance a community’s sense of social
identity, self-esteem, and territoriality; it teaches residents that they can work togeth-
er to choose and control the condition of their environment. Planting programs also
can project a visible sign of change and provide the impetus for other community
renewal and action programs (Feldman and Westphal, 1999; Westphal, 1999, 2003).
Several studies have shown that participation in tree-planting programs influences
individuals’ perceptions of their community (Sommer et al., 1994a, 1994b, 1995,
2003). Conversely, a loss of trees within a community can have a significant psycho-
logical effect on residents (Hull, 1992b). A useful framework for considering social
benefits of urban and community forestry projects has been developed and illustrat-
ed with community examples (Westphal, 2003).
Urban trees and forests can help alleviate some of the hardships of inner-city liv-
ing, especially for low-income groups (Dwyer et al., 1992). Extensive research in inner-
city areas of Chicago suggests that urban trees and forests contribute to stronger ties
among neighbors, greater sense of safety and adjustment, more supervision of children
in outdoor places, healthier patterns of children’s play, more use of neighborhood
common spaces, fewer incivilities, fewer property crimes, and fewer violent crimes
(Kuo, 2003; Kuo et al., 1998; Kuo and Sullivan, 2001a,b; Sullivan and Kuo, 1996).
While there is sometimes concern over the influence of trees and other vegeta-
tion in urban areas on the incidence of crime, research has provided management
Benefits and Costs of Urban Forest Ecosystems 37
guidelines that can reduce the fear of crime in urban forest areas (Schroeder and
Anderson, 1984; Michael and Hull, 1995).
Consumer behavior has been found to be positively correlated with streetscape
greening, suggesting important benefits to commercial establishments and a basis for
partnerships with the business community in urban forest planning and management
(Wolf, 2003a, 2004). However, improper landscaping of business areas can have a neg-
ative impact by blocking business signs and/or reducing the attractiveness of the area.
Regardless of the community benefits derived from urban trees, tree planting and
maintenance programs might be perceived by some people as an inappropriate use of
resources because of the perception that funds for such efforts could be used to
address what they see as more critical urban community problems.
4.3. Real Estate Values
The sales value of real estate reflects the benefits that buyers attach to attributes
of the property, including vegetation on and near the property. A survey of sales of
single-family homes in Athens, Georgia indicated that landscaping with trees was asso-
ciated with an increase in sales prices of 3.5% to 4.5% (Anderson and Cordell, 1988).
Builders have estimated that homes on wooded lots sell on an average for 7% more than
equivalent houses on unwooded lots (Selia and Anderson, 1982, 1984). Research in
Baton Rouge, Louisiana indicates that mature trees contributed about 2% of the home
market (Dombrow et al., 2000). A recent study in Athens, Georgia indicates that an
additional percentage increase in relative tree cover is associated with an increase of
$296 in residential value (Sydor et al., 2005). A study of small, urban-wildland inter-
face properties in the Lake Tahoe Basin indicates that forest density and health char-
acteristics contributed between 5% and 20% to property values (Thompson et al.,
1999). Shopping centers often landscape their surroundings to attract shoppers, there-
by increasing the value of the business and shopping center (Dwyer et al., 1992).
Parks and greenways have been associated with increases in nearby residential
property values (Corrill et al., 1978; More et al., 1988; Crompton, 2004). Some of
these increased values have been substantial, and it appears that parks with “open
space character” add the most to nearby property values. Part of the contribution to
the value of residential property is associated with the view from that property.
A study of the value of a view in the single-family housing market suggests that a
good view adds 8% to the value of a single-family house (Rodriquez and Sirmans,
1994). A premium of 5% to 12% in housing prices in the Netherlands was associated
with an attractive landscape view from the property (Luttik, 2000). Although this
remains to be investigated, parks also may have a negative impact on local property
values if these are perceived as unmaintained or a place where undesirable/criminal
activities are concentrated.
Increased real estate values generated by trees also produce direct economic gains
to the local community through property taxes. A conservative estimate of a 5%
increase in residential property values due to trees converts to $25/year on a tax bill of
$500 and is equivalent to $1.5 billion/year based on 62 million single-family homes in
the United States (Dwyer et al., 1992). However, from a homeowner’s perspective,
increased tax expense due to trees is an additional annual cost of owning a home.
38 David J. Nowak and John F. Dwyer
4.4. Tree Value Formulas
Various approaches and formulas are used to estimate the value of individual
trees (see Chapter 19). One of the most widely used is the Council of Tree and
Landscape Appraisers’ (2000), Guide for Plant Appraisal, which estimates the com-
pensation that landowners should receive for the loss of a tree on their property. For
smaller trees, the value is the replacement cost. For larger trees, the formula calculates
tree value from measured tree variables and tree assessments by professionals. The
species, diameter, location, and condition of the tree are an integral part of the
assessment. Because the values estimated with the tree valuation formula are not nec-
essarily tied to the functions that trees perform in the urban environment, they do not
relate directly to the values associated with the environmental, social, and economic
benefits from trees. An exception is a single study that suggested that the formula pro-
duced values that were similar to a tree’s contribution to residential property values
(Morales et al., 1983).
Compensatory values represent compensation to owners for the loss of an indi-
vidual tree and can be viewed as the value of the tree as a structural asset.
Compensatory value is based on the structure in place as an asset, while the functional
value is an annual value based on the various functions of the particular structure.
Trees can have both positive (e.g., air pollution removal) and negative functional val-
ues (e.g., trees can increase annual building energy use in certain locations). Trees also
have various maintenance costs, which are essential for maintaining tree health,
human safety, and overall tree functional benefits. Management of urban forests is
needed to enhance functional values and improve human health and well-being, and
environmental quality in cities. Maximizing net functional benefits of the urban for-
est will lead to the greatest value to society (Nowak et al., 2002a).
Based on the data from eight cities, overall citywide compensatory values ranged
between $23 and $64/m2($2.1–$5.9/feet2) of tree cover. However, 75% of the city val-
ues were between $27 and $39 m2($2.5–$3.6/feet2) of cover. The total compensatory
value for the urban forests of the 48 adjacent US states is estimated at $2.4 trillion or
$630/tree (Nowak et al., 2002a).
Urban forest compensatory values can be used to estimate actual or potential
loss due to catastrophic agents. For example, the loss to the urban forest in Oakland,
California, due to a large fire in 1991 was estimated at $26.5 million (Nowak 1993b).
Compensatory value of potential loss due to Asian longhorned beetle (Anoplophora
glabripennis) infestation in various US cities ranges between $72 million (Jersey City,
New Jersey) and $2.3 billion (New York, New York). The estimated maximum poten-
tial national urban impact of infestations by A. glabripennis is $669 billion (Nowak
et al., 2001b).
4.5. Other Benefits and Costs of Urban Trees and Forests
The presence of urban trees and forests can make the urban environment a
more pleasant place to live, work, and spend leisure time. A study of urbanites that
use parks and forest preserves indicated that they were willing to pay extra to have
trees and forests in recreation areas (Dwyer et al., 1989). For example, they would
Benefits and Costs of Urban Forest Ecosystems 39
be willing to pay an addition $1.60/visit to have a site that was “mostly wooded,
some open grassy areas under trees” rather than “mowed grass, very few trees any-
where.” The total contribution of trees in urban park and recreation areas to the
value of the outdoor leisure and recreation experiences in the United States may
exceed $2 billion/year (Dwyer, 1991).
A national survey indicated that drivers prefer trees as a screen of commercial
developments along highways (Wolf, 2003b). Reduced driver aggression (Cackowski
and Nasar, 2003) and stress recovery (Parsons, et al., 1998) have also been associated
with treed thoroughfares. These findings provide the basis for opportunities to incor-
porate urban forestry into the planning of high-speed urban transportation corridors
(Wolf, 2003b).
Urban trees and forests often figure prominently in urban environmental educa-
tion programs. The high visibility, variability, and complexity of urban forest ecosys-
tems make an outstanding laboratory for environmental education. The lessons
learned about forest ecosystems have implications for the management of public and
private forest resources far beyond the city boundary (Dwyer and Schroeder, 1994).
Because trees and forests can increase the quality of the urban environment and
make spending leisure time there more attractive, there can be a substantial saving in
the amount of automobile fuel used because people do not need to drive long dis-
tances to reach recreation sites.
At the same time there are direct economic costs associated with urban trees.
These include costs of planting, maintenance, management, and removal, as well as
costs of damage from falling tree limbs and cracked sidewalks due to tree roots
(Dwyer, 1995). However, these costs can be offset by economic benefits generated by
trees. For example, homeowners may pay for tree care and driveway repair due to root
damage, but receive savings on their utility bill from the energy conserving effects of
the trees. At a larger scale, a municipality paying for street and park tree maintenance
and management may receive increased tax revenues due to the contribution of trees
to property values, and also may achieve savings in storm water management costs
due to the influence of trees. Net benefits or costs need to be considered when devel-
oping urban vegetation designs or management plans.
5. Benefit–Cost Analyses
The wide range of important benefits and costs that may be associated with man-
aging the urban forest and the significant interactions between the processes that pro-
duce important outcomes complicate the analysis of options available to urban forest
resource managers. This complexity makes it difficult to predict the influence of trees
on the urban environment for various vegetation designs and management options. In
many instances, the location of trees with respect to other resources can make a sub-
stantial difference in the benefits that they provide, such as with building heating and
cooling costs and the management of rights-of-way where improperly placed trees can
greatly increase costs. Not all of the benefits are easily translated into monetary terms,
and even when they are, it often is difficult to assess the incidence of benefits and
costs, i.e., who pays and who gains? Trees planted on a residential property may
40 David J. Nowak and John F. Dwyer
provide benefits to others in the neighborhood and across the city in terms of aes-
thetics, reduced air temperatures, and improved air quality. Yet these very trees may
present problems for one’s neighbor by blocking solar heating through windows in the
winter and making it difficult to grow flowers or a vegetable garden in the summer.
The management of trees in public areas and rights-of-way often is intertwined with
that of other resources, such as park and recreation facilities and programs, streets
and roads, utilities, and other aspects of the urban infrastructure. When attempting
benefit–cost analyses, one must be aware of these various interconnections, as well as
the limitations of the information used in the analyses.
6. Implications for Planning, Design, and Management
It is clear that careful planning and design are critical to increasing the net ben-
efits of trees and forests in urban environments. A change in species or location of
trees with respect to each other or buildings and other components of the urban infra-
structure can have a major impact on benefits and costs. Similarly, maintenance activ-
ities can greatly influence benefits and costs. It often is critical that forest resources are
managed in the context of other aspects of the urban structure; including people,
buildings, roads and streets, utility rights-of-way, recreation areas, and other open
Management plans must consider the potential of vegetation to improve indi-
vidual site conditions or alleviate local problems (e.g., poor air quality, neighborhood
revitalization) and design appropriate vegetation structure at the site with considera-
tion of how individual sites interact across the landscape (i.e., the benefits at one site
might lead to costs and benefits at other site). Determining the benefits and costs over
the urban environment is a complex task that often calls for approaching problems at
the landscape level (and sometimes extending beyond the urban system), particularly
with respect to aesthetics, meteorology, pest problems, risk of fire, and air quality.
Urban landscape designs and management plans must take account of these numer-
ous interactions and the myriad of potential benefits and costs to implement appro-
priate strategies to maximize the net environmental, social, economic, and human
health benefits of urban vegetation. In addition, careful attention must be given to the
question of who gains and who pays as a result of forest management efforts across
the urban landscape.
Akbari, H., Davis, S., Dorsano, S., Huang, J., and Winnett, S., 1992, Cooling Our Communities: A Guidebook
on Tree Planting and Light-colored Surfacing, US Environmental Protection Agency, Washington, DC.
Akbari, H., Huang, J., Martien, P., Rainier, L., Rosenfeld, A., and Taha, H., 1988, The impact of summer heat
islands on cooling energy consumption and CO2emissions, in Proceedings of the 1988 Summer Study in
Energy Efficiency in Buildings, American Council for an Energy-Efficient Economy, Washington, DC.
Anderson, L. M., and Cordell, H. K., 1988, Influence of trees on residential property values in Athens,
Georgia (USA): A survey based on actual sales prices, Landscape Urban Plann.15:153–164.
Anderson, L. M., Mulligan, B. E., and Goodman, L. S., 1984, Effects of vegetation on human response to
sound, J. Arboric.10(2):45–49.
Benefits and Costs of Urban Forest Ecosystems 41
Aylor, D. E., 1972, Noise reduction by vegetation and ground, J. Acoust. Soc. Am.51(1):197–205.
Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M., 1996, Low-emitting urban forests: A taxo-
nomic methodology for assigning isoprene and monoterpene emission rates, Atmos. Environ.
Birdsey, R. A., and Heath, L. S., 1995, Carbon changes in US forests, in Climate Change and the
Productivity of America’s Forests, (L. A. Joyce, ed.), Gen. Tech. Rep. RM-271, US Department of
Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp. 56–70.
Bloniarz, D. V., and Ryan, H. D. P., 1996, The use of volunteer initiatives in conducting urban forest inven-
tories, J. Arboric.22(2):75–82.
Brasseur, G. P., and Chatfield, R. B., 1991, The fate of biogenic trace gases in the atmosphere, in Trace Gas
Emissions by Plants (T. D. Sharkey, E. A. Holland, and H. A. Mooney, eds.), Academic Press, New York,
pp. 1–27.
Brown, T. L., Dawson, C. P., and Miller, R. C., 1979, Interests and attitudes of metropolitan New York resi-
dents about wildlife, Trans. 44th North. Am. Wildl. and Nat. Resour. Conf.44:289–297.
Cackowski, J. M., and Nassar, J. L., 2003, The restorative effects of nature: Implications for driver anger
and frustration, Env. Behav.25:736–751.
Cardelino, C. A., and Chameides, W. L., 1990, Natural hydrocarbons, urbanization, and urban ozone,
J. Geophys. Res.95(D9):13,971–13,979.
Chicago Wilderness website at, Last accessed May, 2005.
Chenoweth, R. E., and Gobster, P. H., 1990, The nature and ecology of aesthetic experiences in the land-
scape, Landscape J.9:1–18.
Cook, D. I., 1978, Trees, solid barriers, and combinations: Alternatives for noise control, in Proceedings of
the National Urban Forestry. Conference (G. Hopkins, ed.), SUNY College of Environmental Science
and Forestry, Syracuse, NY, pp. 330–339.
Cook, D. I., and Van Haverbeke, D. F., 1971, Trees and shrubs for noise abatement, in Res. Bull., vol. 246,
Nebraska Agricultural Experiment Station, Lincoln.
Corrill, M., Lillydahl, J., and Single, L., 1978, The effects of greenbelts on residential property values: Some
findings on the political economy of open space, Land Econ.54:207–217.
Council of Tree and Landscape Appraisers, 2000, Guide for Plant Appraisal, International Society of
Arboriculture, Urbana, IL.
Crompton, J. L., 2004, The Proximate Principle: The Impact of Parks, Open Space and Water Features on
Residential Property Values and the Property Tax Base, National Recreation and Park Association,
Ashburn, VA, 184pp. plus appendix.
De Sousa, C. A., 2003, Turning brownfields into green space in the City of Toronto, Env. Behav.63:181–198.
DeGraff, R. M., and Payne, B. R., 1975, Economic values of nongame birds and some research needs,
Trans. North. Am. Wildl. Nat. Resour. Conf.40:281–287.
Dombrow, J., Rodriquez, M., and Sirmans, C. F., 2000, The market value of mature trees in single family
housing markets, Apprais. J. 68: 39–43.
Dwyer, J. F., 1991, Economic value of urban trees, in A National Research Agenda for Urban Forestry in the
1990’s, International Society of Arboriculture, Urbana, IL, pp. 27–32.
Dwyer, J. F., 1995, The significance of trees and their management in built environments, in Trees and
Building Sites: Proceedings of an International Conference held in the Interest of Developing a Scientific
Basis for Managing Trees in Proximity to Buildings (G. Watson, and D. Neely, eds.), International
Society of Arboriculture, Savoy, IL, pp. 3–11.
Dwyer, J. F., Nowak, D. J., Noble, M. H., and Sisinni, S. M., 2000, Assessing our Nation’s Urban Forests:
Connecting People with Ecosystems in the 21st Century, Gen. Tech. Rep. PNW-460, US Department of
Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.
Dwyer, J. F., and Schroeder, H. W., 1994, The human dimensions of urban forestry, J. For .92(10):12–15.
Dwyer, J. F., Schroeder, H. W., and Gobster, P. H., 1991, The significance of urban trees and forests: Toward
a deeper understanding of values, J. Arboric.17:276–284.
Dwyer, J. F., Schroeder, H. W., Louviere, J. J., and Anderson, D. H., 1989, Urbanites willingness to pay for
trees and forests in recreation areas, J. Arboric.15(10):247–252.
Dwyer, J. F., McPherson, E. G., Schroeder, H. W., and Rowntree, R. A., 1992, Assessing the benefits and
costs of the urban forest, J. Arboric.18(5):227–234.
42 David J. Nowak and John F. Dwyer
East Bay Hills Vegetation Management Consortium, 1995, Fire Hazard Mitigation Program and Fuel
Management Plan for the East Bay Hills, Report prepared by Amphion Environmental, Inc., Oakland,
Feldman, R., and Westphal, L., 1999, Restoring participatory design and planning: Incorporating com-
munity empowerment as a tool for social justice, Places 12(2):34–37.
Guenther, A., Zimmerman, P., and Wildermuth, M., 1994, Natural volatile organic compound emission
rate estimates for US woodland landscapes, Atmos. Environ.28(6):1197–1210.
Hammitt, W. E., 2002, Urban forests and parks as privacy refuges, J. Arboric.28(1):19–26.
Heisler, G. M., 1986, Energy savings with trees, J. Arboric.12(5):113–125.
Heisler, G. M., 1990a, Mean wind speed below building height in residential neighborhoods with different
tree densities, ASHRAE Trans.96(1):1389–1396.
Heisler, G. M., 1990b, Tree plantings that save energy, in Proceedings of the 4th Fourth National Urban
Forestry Conference (P. Rodbell, ed.), American Forestry Association, Washington, DC, pp. 58–62.
Heisler, G. M., Grant, R. H., Grimmond, S., and Souch, C., 1995, Urban forests’ cooling our communi-
ties?, in Proceedings of the Seventh National Urban Forestry Conference (C. Kollin, and M. Barratt,
eds.), American Forests, Washington, DC, pp. 31–34.
Howenstine, W. L., 1993, Urban forests as part of the whole ecosystem, in Proceedings of the 6th National
Urban Forestry Conference (C. Kollin, J. Mahon, and L. Frame, eds.), American Forests, Washington,
DC, pp. 118–120.
Hull, R. B., 1992a, Brief encounters with urban forests produce moods that matter, J. Arboric.
Hull, R. B., 1992b, How the public values urban forests, J. Arboric.18(2):98–101.
Jackson, L. E., 2003, The relationship of urban design to human health and condition, Landscape Urban
Kaplan, R., 1993, Urban forestry and the workplace, in Managing Urban and High Use Recreation Settings
(P. H. Gobster, ed.), Gen. Tech. Rep. USDA Forest Service, North Central Forest Experiment Station,
NC-163, St. Paul, MN, pp. 41–45.
Kaplan, R., and Kaplan, S., 1989, The Experience of Nature: A Psychological Approach, Cambridge
University Press, Cambridge, UK.
Kramer, P. J., and Kozlowski, T. T., 1979, Physiology of Woody Plants, Academic Press, New York.
Kuo, F. E., 2003, The role of arboriculture in healthy social ecology, J. Arboric.29(3):148–155.
Kuo, F. E., Bacaicoa, M., and Sullivan, W. C., 1998, Transforming inner-city landscapes: Trees, sense of
safety, and preference, Enviorn. Behav.30(1):28–59.
Kuo, F. E., and Sullivan, W. C., 2001a, Environment and crime in the inner city: Does vegetation reduce
crime?, Enviorn. Behav.33(3):343–365.
Kuo, F. E., and Sullivan, W. C., 2001b, Aggression and violence in the inner city: Impacts of environment
via mental fatigue, Enviorn. Behav.33(4):543–571.
Lenschow, D. H. (ed.), 1986, Probing the Atmospheric Boundary Layer, American Meteorological Society,
Boston, MA.
Librett, J., Yore, M., Buchner, D. M., and Schmid, T. L., 2005, Take pride in America’s health: Volunteering
as a gateway to physical activity, Am J. Health Ed.36(1):8–13.
Luley, C. J., and Bond, J., 2002, A Plan to Integrate Management of Urban Trees into Air Quality Planning,
Report to Northeast State Foresters Association, Davey Resource Group, Kent, OH, 73pp.
Luttik, J., 2000, The value of trees, water, and open space as reflected by house prices in the Netherlands,
Landscape Urban Plan.48:161–167.
Lyons, J. R., 1982, Nonconsumptive wildlife-associated recreation in the US: Identifying the other con-
stituency, Trans. North. Am. Wildl. Nat. Resour. Conf.47:677–685.
McPherson, E. G., 1987, Effects of Vegetation on Building Energy Performance, Ph.D. Discussion, SUNY
College of Environmental Science and Forestry, Syracuse, NY.
McPherson, E. G., and Dougherty, E., 1989, Selecting trees for shade in the Southwest, J. Arboric.15:35–43.
McPherson, E. G., 1998, Atmospheric carbon dioxide reduction by Sacramento’s urban forest, J. Arboric.
Michael, S. E., and Hull, R. B., 1995, Effects of vegetation on crime in urban parks, Arborist News,
February, p. 45.
Benefits and Costs of Urban Forest Ecosystems 43
Morales, D. J., Micha, R. R., and Weber, R. L., 1983, Two methods of valuating trees on residential sites,
J. Arboric.9:21–24.
More, T. A., Stevens, T., and Allen, P. G., 1988, Valuation of urban parks, Landscape Urban Plan.
Murray, F. J., Marsh, L., and Bradford, P. A., 1994, New York State Energy Plan, Vol. II: Issue Reports,
New York State Energy Office, Albany.
Myrup, L. O., McGinn, C. E., and Flocchini, R. G., 1991, An analysis of microclimate variation in a sub-
urban environment, in Seventh Conference of Applied Climatology, American Meteorological Society,
Boston, MA, pp. 172–179.
Neville, L. R., 1996, Urban Watershed Management: The Role of Vegetation, Ph.D. Discussions., SUNY
College of Environmental Science and Forestry, Syracuse, NY.
Nowak, D. J., 1993a, Atmospheric carbon reduction by urban trees, J. Environ. Manage.37(3):207–217.
Nowak, D. J., 1993b, Compensatory value of an urban forest: An application of tree-value formula,
J. Arboric.19(3):173–177.
Nowak, D. J., 1993c, Historical vegetation change in Oakland and its implications for urban forest man-
agement, J. Arboric.19(5):313–319.
Nowak, D. J., 1994a, Air pollution removal by Chicago’s urban forest, in Chicago’s Urban Forest
Ecosystem: Results of the Chicago Urban Forest Climate Project (E. G. McPherson, D. J. Nowak, and
R. A. Rowntree, eds.), Gen. Tech. Rep. NE-186, USDA Forest Service, Northeastern Forest
Experiment Station, Radnor, PA, pp. 63–81.
Nowak, D. J., 1994b, Atmospheric carbon dioxide reduction by Chicago’s urban forest, in Chicago’s Urban
Forest Ecosystem: Results of the Chicago Urban Forest Climate Project (E. G. McPherson, D. J. Nowak,
and R. A. Rowntree, eds.), Gen. Tech. Rep. NE-186, USDA Forest Service, Northeastern Forest
Experiment Station, Radnor, PA, pp. 83–94.
Nowak, D. J., 1995, Trees pollute? A “TREE” explains it all, in Proceedings 7th National Urban Forestry
Conference (C. Kollin, and M. Barratt, eds.), American Forests, Washington, DC, pp. 28–30.
Nowak, D. J., Civerolo, K. L., Rao, S. T., Sistla, S., Luley, C. J., and Crane, D. E., 2000, A modeling study
of the impact of urban trees on ozone, Atmos. Environ.34:1601–1613.
Nowak, D. J., and Crane, D. E., 2000, The Urban Forest Effects (UFORE) Model: Quantifying urban for-
est structure and functions, in Proceedings of the Integrated Tools for Natural Resources Inventories in
the 21st Century, IUFRO Conference, 16–20 August 1998, Boise, ID (M. Hansen, and T. Burk eds.),
Gen. Tech. Rep.NC-212, US Department of Agriculture, Forest Service, North Central Research
Station, St. Paul, MN, pp. 714–720.
Nowak, D. J., and Crane, D. E., 2002, Carbon storage and sequestration by urban trees in the USA,
Environ. Poll.116(3):381–389.
Nowak, D. J., Crane, D. E., and Dwyer, J. F., 2002a, Compensatory value of urban trees in the United
States, J. Arboric.28(4):194–199.
Nowak, D. J., Crane, D. E., Stevens, J. C., and Ibarra, M., 2002b, Brooklyn’s Urban Forest, Gen. Tech. Rep.
NE-290, US Department of Agriculture, Forest Service, Northeastern Research Station, Newtown
Square, PA.
Nowak, D. J., and McBride, J. R., 1992, Differences in Monterey pine pest populations in urban and natu-
ral forests, For. Ecol. Manage.50:133–144.
Nowak, D. J., Noble, M. H., Sisinni, S. M., and Dwyer, J. F., 2001a, Assessing the US urban forest resource,
J. For.99(3):37–42.
Nowak, D. J., Pasek, J., Sequeira, R., Crane, D. E., and Mastro, V., 2001b, Potential effect of Anoplophora
glabripennis (Coleoptera: Cerambycidae) on urban trees in the United States, J. Econom. Entomol.
Nowak, D. J., and Rowntree, R. A., 1990, History and range of Norway maple, J. Arboric.16(11):291–296.
Nowak, D. J., McHale P. J., Ibarra, M., Crane, D., Stevens, J., and Luley, C., 1998, Modeling the effects of
urban vegetation on air pollution, in Air Pollution Modeling and Its Application XII (S. Gryning, and
N. Chaumerliac, eds.), Plenum Press, New York, pp. 399–407.
Nowak, D. J., Stevens, J. C., Sisinni, S. M., and Luley C. J., 2002c, Effects of urban tree management and
species selection on atmospheric carbon dioxide, J. Arboric.28(3):113–122.
Nowak, D. J., Walton, J. T., Dwyer, J. F., Kaya, L. G., and Myeong, S., 2005, The increasing influence of
urban environments on US forest management, J. Forestry 103(8): 377–382.
44 David J. Nowak and John F. Dwyer
Parsons, R., Tassinary, L. G., Ulrich, R. S., Hebl, M. R., and Grossman-Alexander, M., 1998, The view
from the road: Implications for stress recovery and immunization, J. Enviorn. Psych.18(2):113–140.
Reethof, G., and McDaniel, O. H., 1978, Acoustics and the urban forest, in Proceedings of the National
Urban Forestry Conference (G. Hopkins, ed.), SUNY College of Environmental Science and Forestry,
Syracuse, NY, pp. 321–329.
Robinette, G. O., 1972, Plants/People/ and Environmental Quality, USDI National Park Service,
Washington, DC.
Rodriquez, M., and Sirmans, C. F., 1994, Quantifying the value of a view in single-family housing markets,
Apprais. J., 62(4): 600–603.
Rolfe, G. L., 1974, Lead distribution in tree rings, For. Sci.20(3):283–286.
Sanders, R. A., 1986, Urban vegetation impacts on the urban hydrology of Dayton Ohio, Urban Ecol.
Schroeder, H. W., and Anderson, L. M., 1984, Perception of personal safety in urban recreation sites,
J. Leis. Res.16(2):178–194.
Schroeder, H. W., 1989, Environment, behavior, and design research on urban forests, in Advances in
Environment, Behavior, and Design (E. H. Zube, and G. L. Moore, eds.), Plenum Press, New York,
pp. 87–107.
Schroeder, H. W., 1991, Preference and meaning of arboretum landscapes: Combining quantitative and
qualitative data, J. Environ. Psych.11:231–248.
Schroeder, H. W., and Anderson, L. M., 1984, Perception of personal safety in urban recreation sites,
J. Leisure Res.16:178–194.
Schroeder, H. W., 2002, Experiencing nature in special places, J. For.100(5):8–14.
Schroeder, H. W., 2004. Special Places in the Lake Calumet Area, USDA Forest Service North Central
Research Station, General Technical Report 249, St Paul MN, 23pp.
Scott, K. I., Simpson, J. R., and McPherson, E. G., 1999, Effects of tree cover on parking lot microclimate
and vehicle emissions, J. Arboric.25(3):129–142.
Selia, A. F., and Anderson, L. M., 1982, Estimating costs of tree preservation on residential lots, J. Arboric.
Selia, A. F., and Anderson, L. M., 1984, Estimating tree preservation costs on urban residential lots in met-
ropolitan Atlanta, Georgia For. Res. Pap. No. 48. MACON, 6A. 6pp.
Sharkey, T. D., and Singsaas, E. L., 1995, Why plants emit isoprene, Nature 374(27 April):769.
Shaw, W. W., Magnum, W. R., and Lyons, J. R., 1985, Residential enjoyment of wildlife resources by
Americans, Leisure Sci.7:361–375.
Smith, W. H., 1990, Air Pollution and Forests, Springer-Verlag, New York.
Sommer, R., Learey, F., Summit, J., and Tirell, M., 1994a, Social benefits of resident involvement in tree
planting: Compressions with developer-planted trees, J. Arboric.20(6):323–328.
Sommer, R., Learey, F., Summitt, J., Tirrell, M., 1994b, Social benefits of residential involvement in tree
planting, J. Arboric.20(3):170–175.
Sommer, R., Summitt, J., Learey, R., and Tirrell, M., 1995, Social and educational benefits of a communi-
ty shade tree program: A replication, J. Arboric.21(5):260.
Sommer, R., 2003, Trees and human identity, in Identity and the natural environment: The psychological
significance of nature (S. Clayton, and S. Opotow, eds.), MIT Press, Cambridge and London,
pp. 179–204.
Sullivan, W. C., and Kuo, F. E., 1996, Do trees strengthen urban communities, reduce domestic violence?
Arbor. News 5(2):33–34.
Souch, C. A., and Souch, C., 1993, The effect of trees on summertime below canopy urban climates: A case
study, Bloomington, Indiana, J. Arboric.19(5):303–312.
Sydor, T., Bowker, J. M., Newman, D. H., and Cordell, H. K., 2005, Valuing Trees in a Residential Setting:
Revisiting Athens, Clarke County, Georgia, draft paper, 15pp.
Taha, H., 1996, Modeling impacts of increased urban vegetation on ozone air quality in the South Coast
Air Basin, Atmos. Environ.30(20):3423–3430.
Taylor, A. F., Kuo, F. E., and Sullivan, W. C., 2001a, Coping with ADD: The surprising connection to green
play settings, Enviorn. Behav.33(1):54–77.
Taylor, A. F., Kuo, F. E., and Sullivan, W. C., 2001b, Views of nature and self-discipline: Evidence from
inner-city children, J. Enviorn. Psych.21:49–63.
Benefits and Costs of Urban Forest Ecosystems 45
Thompson, R., Hanna, R., Noel, J., and Piirto, D., 1999, Valuation of tree aesthetics on small urban-
interface properties, J. Arboric.25(5):225–234.
Tingey, D. T., Turner, D. P., and Weber, J. A., 1991, Factors controlling the emissions of monoterpenes and
other volatile organic compounds, in Trace Gas Emissions by Plants (T. D. Sharkey, E. A. Holland, and
H. A. Mooney, eds.), Academic Press, New York, pp. 93–119.
Ulrich, R. S., 1984, View through a window may influence recovery from surgery, Science, 224:420–421.
US Environmental Protection Agency, 1991, Nonroad engine and vehicle emission study report, USEPA
Office of Air and Radiation ANR-43. EPA-21A-2001, Washington, DC.
US Environmental Protection Agency, 2004, Incorporating Emerging and Voluntary Measures in a State
Implementation Plan (SIP), USEPA Air Quality Strategies and Standards Division, Office of Air
Quality Planning and Standards, Research Triangle Park, NC.
US Environmental Protection Agency, 2000, Introduction to Phytoremediation, US EPA Office of Research
and Development, Washington, DC.
VanDruff, L. W., Leedy, D. L., and Stearns, F. W., 1995, Urban wildlife and human well-being, in Urban
Ecology as the Basis of Urban Planning (H. Sukopp, M. Numata, and A. Huber, eds.), SPB Academic
Publishing, Amsterdam, pp. 203–211.
Wells, N. M., 2000, At home with nature: Effects of “greening” on children’s cognitive functioning, Enviorn.
Westphal, L. M., 1993, Why trees? Urban forestry volunteers values and motivations, in Managing Urban
and High Use Recreation Settings (P. H. Gobster, ed.), Gen. Tech. Rep. NC-163, USDA Forest Service,
North Central Forest Experiment Station, St. Paul, MN, pp. 19–23.
Westphal, L. M., 1999, Empowering people through urban greening projects: Does it happen? in
Proceedings of the 1999 National Urban Forestry Conference (C. Kollin, ed.), American Forests,
Washington, D.C, pp. 60–63.
Westphal, L. M., and Isebrands, J. G., 2001, Phytoremediation of Chicago’s brownfields: Consideration
of ecological approaches to social issues, in Brownfields 2001 Proceedings, Chicago IL,, Last accessed April, 2005.
Westphal, L. M., 2003, Urban greening and social benefits: A study of empowerment outcomes, J. Arboric.
Wolf, K. L., 2003a, Public response to the urban forest in inner-city business districts, J. Arboric.
Wolf, K. L., 2003b, Freeway roadside management: The urban forest beyond the white line, J. Arboric.
Wolf, K. L., 2004, Trees and business district preferences: A case study of Athens, Georgia US, J. Arboric.
Yeomans, J. A., and Barclay, J. S., 1981, Perceptions of residential wildlife programs, Trans. North. Am.
Wildl. Nat. Resour. Conf.46:390–395.
Ziegler, I., 1973, The effect of air–polluting gases on plant metabolism, in Environmental Quality and
Safety, vol. 2, Academic Press, New York, pp. 182–208.
46 David J. Nowak and John F. Dwyer
... Trees and forests in urban and peri-urban areas represent the main ecological lungs (Solomou et al., 2019) providing timber and NTFPs to urban residents (Cilliers et al., 2013;Moussa et al., 2020;Shackleton et al., 2015;Solomou et al., 2019). Urban greenspaces moderate harsh climates in urban areas by cooling the air, improving air quality, reducing wind speeds and providing shade (Agbelade et al., 2017;Greene & Millward, 2017;Nowak & Dwyer, 2007;Nowak et al., 2016;Solomou et al., 2019). Therefore, forests in urban areas greatly contribute to mitigate climate change impacts through carbon sequestration (Greene & Millward, 2017;Moussa et al., 2020;Nowak et al., 2016;Solomou et al., 2019) and pollution removal (Agbelade et al., 2017;Nowak & Dwyer, 2007). ...
... Urban greenspaces moderate harsh climates in urban areas by cooling the air, improving air quality, reducing wind speeds and providing shade (Agbelade et al., 2017;Greene & Millward, 2017;Nowak & Dwyer, 2007;Nowak et al., 2016;Solomou et al., 2019). Therefore, forests in urban areas greatly contribute to mitigate climate change impacts through carbon sequestration (Greene & Millward, 2017;Moussa et al., 2020;Nowak et al., 2016;Solomou et al., 2019) and pollution removal (Agbelade et al., 2017;Nowak & Dwyer, 2007). Sustaining the management of urban and peri-urban forests is an effective means for biodiversity conservation, and a key-nature based solution for addressing the societal and environmental challenges posed by urbanization namely deforestation, carbon emissions, winds, higher temperatures, air pollution and flooding (Agbelade et al., Page 3 of 15 1077 ...
... The need for a more sustainably urbanization has led to a growing body of empirical studies on various aspects on urban ecosystems around the world (Berland, 2012;Cilliers et al., 2013;Gillespie et al., 2017;Greene & Millward, 2017;Kim & Jo, 2022;Nowak & Dwyer, 2007;Nowak et al., 2016;Shackleton et al., 2015;Solomou et al., 2019;Yang & Yang, 2017). Yet, the ecological attributes and processes of urban landscapes remain poorly studied in West Africa. ...
Full-text available
Urban and peri-urban forests greatly contribute to the well-being of urban dwellers in West Africa. However, increasing urban densification and spatial expansion negatively affect the functioning of urban ecosystems. Therefore, highlighting the negative impacts of land use change on the ecological attributes of urban landscapes is fundamental for sustainable urban planning. This study aimed to assess the impacts of land use on woody species diversity, structure and carbon storage in peri-urban areas in Burkina Faso. Forest inventories were conducted in 167 plots across two peri-urban forests and their adjacent agroforestry systems. We found a total diversity of 91 woody species representing 69 genera and 26 families. Diversity indices were significantly higher (p-value < 0.0001) in the peri-urban forests than in the agroforestry systems, highlighting a negative impacts of land use on tree diversity. Besides, peri-urban forests had significantly lower tree diameter (15.749 ± 9.194 cm), but higher basal area (5.030 ± 4.407 m2. ha-1) and denser stands (317.308 ± 307.845 ind. ha-1) compared to the agroforestry systems. Tree aboveground biomass was significantly higher (p-value < 0.0001) in the peri-urban forests (18.198 ± 23.870 Mg. ha-1) than in the agroforestry systems (7.821 ± 6.544 Mg. ha-1). Multivariate analyses revealed that denser stands hold higher diversity in peri-urban areas, and that stand basal area mostly drives carbon storage than tree density and diversity. These findings highlight the potential of peri-urban forests to conserve plant biodiversity and mitigate climate change. The study advocates for a sustainable urban land use and planning.
... Shultz and Brownson showed that a large tree can save about 4.7% of cooling needs and 3.3% of electricity bills in cities (Shultz and Brownson, 2012). In a study conducted in New York in 1994, 5.22 million trees had a canopy coverage rate of 16.6% and purified 1821 tonnes of air (Nowak and Dwyer, 2007), Generally, as the growth rate and biomass of trees increase, their carbon storage capacity will increase, and they will J o u r n a l P r e -p r o o f absorb a large amount of carbon (Stephenson et al., 2014). Plants in cities play an important role in reducing urban greenhouse gases, lowering urban temperatures, and purifying air quality, so more priority needs to be given to urban green spaces (Varol et al., 2019). ...
... The pollution of heavy metal waste and chemical fuels emitted by cities has altered plant phenotypes and physiologicalfunctions, which is another reason for the extinction of plant species(Bernhardt et al., 2017) (see the chapter 3). Therefore, cities need to carry out reasonable plant planting, protect plant diversity, in essence, it is to protect the sustainability of human social development.The average temperature of cities exceeds that of natural environments and more urban green space reduces this(McLachlan et al., 2007;Nowak et al., 2007;Varol et al., 2019). The climatic effect created by shading trees can save up to 30% of cooling and heating energy (Jo and Kim, 2018), trees may cool cities by around 3 ℃ at 2 PM. ...
... Moreover, the location of urban trees in strategic places can provide cover for buildings and obstruct winter winds thus reducing the high costs of heating and cooling buildings: in the long run lowering carbon dioxide emissions by individuals, households, and organizations (Nowak & Dwyer, 2007). McPherson and Simpson (2003) further explain how trees help in conserving energy and eventually, saving energy costs for the urban community. ...
... Among these benefits, UGS decrease air temperatures (Oliveira et al. 2011), and urban heat island (UHI) (Solecki et al. 2005;McPherson and Simpson 2003). Furthermore, UGS reduce the superficial flow of water aiding in the maintenance of the better moisture in soils, the impact of the winds, the solar incidence (O'Dell et al. 1977;Nowak and Dwyer 2007;Fang and Ling 2005;McPherson and Muchnick 2005) and contribute to the mitigation of climate change by increasing carbon sequestration capacity (Davies et al. 2011;Murata and Kawai 2018). Many middle and low-income countries are working on a series of policies to conserve these UGS, although they are depleting in cities all over the world (Okech and Nyadera 2021;Shuvo et al. 2020). ...
Full-text available
Urban green spaces provide ecosystem services that directly or indirectly benefit people, however, urban growth (especially in developing countries) generates the loss of these green areas and consequently of their ecosystem services. This paper aims to present the effects of land use and land cover changes in the last 30 years on two basic urban ecosystem services, water flow regulation and local and regional climate in two of main Latin American megacities (São Paulo and Mexico City). The study focuses on urban green spaces because they reduce the urban heat island effects, improve air quality, create habitats for biodiversity conservation, provide cultural services, and contribute to flooding prevention and groundwater conservation. A spatial analysis with the aid of geographic information systems was performed to assess (i) the urbanization process of the Metropolitan Areas of both cities over time; (ii) how this process generated changes in the land cover in both metropolises, and (iii) how these changes caused environmental negative impacts on ecosystem services. The loss of green areas as a consequence of urban expansion in the Metropolitan Areas of São Paulo and Mexico City changed the spatial distribution of urban heat island and increased the surface runoff, generating floods during the rainy periods. Our results suggest the urgent need for implementation of ecosystem-based spatial planning and ecological restoration of urban green areas in both studied cities to prevent further losses in ecosystem services and to improve the quality of life of urban inhabitants.
Full-text available
Urban forest inventories are conducted to obtain important information regarding trees and the ecosystem services they provide in the urban environment. This information is derived from a sample of ground plots within which all trees are measured. It is common that some of the selected sample plots are unable to be measured, primarily due to lack of permission to access privately owned lands. At a minimum, nonresponse results in decreased sample sizes and eroded confidence in information derived from the inventory. Further, concern is raised regarding sample bias and its associated effects on analytical outcomes when the nonresponse cannot be considered random with respect to population characteristics. In this study, data from urban forest inventories conducted in 33 cities across the U.S. were used to assess amounts of nonresponse present. Total amounts of nonresponse ranged from 1.7% in Madison, WI to 36.8% in Bridgeport, CT. Examinations of potential nonrandom occurrence of nonresponse were conducted using plot location information in conjunction with various digital map layers and notable trends were found in relation to median income, median age, percent canopy cover, percent residential ownership, and percent impervious surface. In contrast, there appeared to be little correlation between nonresponse and percent of English-only speaking households. As a caveat to overly broad interpretation, in Houston, TX it was shown there was no correlation between nonresponse and median income and the relationship with percent canopy cover was opposing that of the general trend. The magnitude of potential nonresponse bias in estimates of tree biomass and tree frequency was investigated by substituting predicted values for nonresponse plots, with underestimation of both attributes ranging from approximately 1% to 10%. Thus, urban forest inventory practitioners should evaluate city-specific circumstances to effectively mitigate potential bias resulting from nonresponse in the sample.
Urban trees and forests across the globe provide numerous benefits that affect environmental quality and the health and well-being of human populations. These benefits include moderating climate, reducing building energy use and atmospheric carbon dioxide (CO2), mitigating rainfall runoff and flooding, and improving air quality. Air quality impacts of trees are derived from the altering of local air temperatures, microclimates, and building energy use; direct removal of air pollution by tree leaves; and the emission of various chemicals. At US national level, urban forest benefits are conservatively estimated at $18.4 billion per year; $5.4 billion from air pollution removal, $5.4 billion from reduced building energy use, $4.8 billion from carbon sequestration, and $2.7 billion from avoided pollutant emissions. In New York City, tree benefits equate to over $100 million dollar per year from carbon sequestration ($6.8 million per year), pollution removal ($78 million per year), reduced residential energy costs ($17.1 million per year), reduced carbon emissions from power plants ($1.6 million per year), and reduced runoff ($4.6 million/year). These are just a few of the benefits derived from forests. Understanding how trees function to affect the local physical and social environments can lead to enhanced engineering solutions with trees to improve environmental quality and human health.
Full-text available
Complex mixtures of substances are in the atmosphere and they can cause diseases in humans and biological communities after acute or chronic exposition. This paper focuses on the physical measurement of particulate matter, a proxy for air pollution, and a biological method for mutation assessment due to plants’ exposure to air pollution. The objective of this research was to characterize the air pollution seasonality in municipalities in southern Brazil, and also to understand the relation between air pollution and the biological response of the Tradescantia sp. clone 4430. The optical sensor SDS011 was used for measurements of particulate matter (PM) and the Trad-SHM bioassay was chosen to quantify the mutagenic alterations that occurred in stamen hairs during the study period, with PM data being measured every 5 seconds and the flowers being harvested approximately every two weeks for laboratory analysis. The Pearson test was applied to verify the correlation between PM and mutations in stamen hair as a result of which it was observed that there is a positive correlation between these data, with the highest value found being r = 0.61. Also, the period with the highest occurrence of pink cells was between autumn and spring, the same period in which an unusual increase in PM concentrations was also observed, a period that corresponds to a less favorable dispersion of pollutants in the atmosphere. The use of Tradescantia sp. clone 4430 showed sensitivity to the environments in which it was exposed. Biomonitoring is an important tool for understanding the effects of pollutants on the ecosystem.
Full-text available
Urban trees and forests play a vital role in maintaining the balance of urban ecosystems and mitigating global warming. However, due to the lack of data and information on the potential of urban forests, their importance remains largely unknown. This study aims to describe citizens' perceptions of trees and assess the forest community's density, diversity, and carbon stock in the residential area of Bobo-Dioulasso, the second-largest city in Burkina Faso. To carry out the study, tree inventories, and interviews were conducted on 240 selected dwellinghouses using a two-stage stratified sampling approach. The sample was allocated proportionally to three strata based on their population size: the center town (20 %), pericenter (20 %), and periphery (60 %). Trees were found in 86 % ± 0.5 % of dwellings, with an average of four trees per dwellinghouse (4 ± 1). About 63 % of households reported planting trees in their homes, including along roadsides. The main motivations for planting trees were for fruits, shading, and ornamental purposes. However, factors such as discomfort, property ownership, and management costs discouraged some residents from planting more trees. A total of 934 trees belonging to 69 species and 30 botanic families were counted in the study sample. The most abundant species families were Anacardiaceae, Moraceae, and Moringaceae. Mangifera indica (41 %), Ficus polita (12 %), and Moringa oleifera (8 %) had the highest relative densities of all species found in dwellings. Using existing allometric equations, the study estimated that the residential area trees stored about 210,000 tons of carbon dioxide equivalent. Based on these findings, it is recommended that city governments implement an action plan to promote urban forestry to strengthen and protect urban forest cover.
Full-text available
Background Tree risk assessment methods have been developed to assist arborists in conducting thorough and systematic inspections of trees and the threat they pose to people or property. While these methods have many similarities, they also have a few key differences which may impact the decisions of those employing them. Moreover, arborists specify the associated timeframe for their risk assessment, which can range from months to years. How this impacts risk assessment reproducibility is unknown. Methods To assess the impact of risk assessment methodology, we sent videos depicting trees in urban settings to arborists holding the International Society of Arboriculture (ISA) Tree Risk Assessment Qualification (TRAQ; n = 28) or Quantified Tree Risk Assessment (QTRA; n = 21) training. These assessments were compared to those prepared by North American arborists lacking the TRAQ credential (ISA BMP; n = 11). ISA BMP arborists were also asked to assess trees using both a 1-year and a 3-year timeframe. Results While a direct comparison between the QTRA and TRAQ assessments is not possible given differences in terminology, arborists with the latter training were less likely to rate trees as having “high” or “extreme” risk compared to their ISA BMP counterparts. Moreover, we found that switching to a longer timeframe did not increase the variability of risk assessments. Conclusions These results give further insights into how different risk assessment methods compare when assessing the same group of trees as well as the impact of training efforts and specified timeframe.
Full-text available
Anoplophora glabripennis Motschulsky, a wood borer native to Asia, was recently found in New York City and Chicago. In an attempt to eradicate these beetle populations, thousands of infested city trees have been removed. Field data from mine U.S. cities and national tree cover data were used to estimate the potential effects of A. glabripennis on urban resources through time. For the cities analyzed, the potential tree resources at risk to A. glabripennis attack based on host preferences, ranges from 12 to 61% of the city tree population, with an estimated value of $72 million-$2.3 billion per city. The corresponding canopy cover loss that would occur if all preferred host trees were killed ranges from 13-68%. The estimated maximum potential national urban impact of A. glabripennis is a loss of 34.9% of total canopy cover, 30.3% tree mortality (1.2 billion trees) and value loss of $669 billion.
Sportsmen are the traditional clientele of wildlife management. As an organized force, sportsmen have long endorsed the principles of conservation upon which wildlife management is based. As a source of political and financial support, sportsmen continue to represent wildlife's most recognized constituency.
Urban forests and parks are forested areas that can serve as refuges for privacy. This article presents a conceptual argument for urban forests and parks as privacy refuges, and data that support the argument. On-site visitors (n = 610) to four Cleveland, Ohio, U.S., Metroparks were surveyed in 1995. Results indicated that considerable amounts of privacy were obtained during visits to the urban forests and parks, that people spent an average of two-plus hours per visit to these privacy refuges, that certain settings (habitats) within the refuges were preferred over others for privacy, and that "reflective thought" was the most important function (benefit) that privacy served within the refuges. The findings have implications for preserving and managing urban forests and parks as nearby refuges where the basic human need for privacy can be found.
The accuracy and validity of urban forest resource data collected by trained volunteers were established, using an actual case study in Brookline, Massachusetts. Results indicate that the data collected by trained volunteers are valid, and the accuracy compares favorably with levels found among a control group of certified arborists. Indirect benefits associated with this type of volunteer effort include the development of a more informed urban forest constituency, increased environmental awareness, an increased political voice, and an improved quality of life for urban residents. The cost of utilizing community volunteers to conduct urban forest inventories is competitive with similar programs conducted by professional arborists.