Article

Saponins in Calendula officinalis L. – Structure, Biosynthesis, Transport and Biological Activity

Phytochemistry Reviews (Impact Factor: 2.41). 06/2005; 4(2):151-158. DOI: 10.1007/s11101-005-4053-9

ABSTRACT

Trends in research on Calendula officinalis L. saponins performed in Department of Plant Biochemistry at Warsaw University are reviewed. Calendula officinalis, a well known medicinal plant, contains significant amounts of oleanane saponins, which form two distinct series of related Trends in research on Calendula officinalis L. saponins performed in Department of Plant Biochemistry at Warsaw University are reviewed. Calendula officinalis, a well known medicinal plant, contains significant amounts of oleanane saponins, which form two distinct series of related
compounds, called “glucosides” and “glucuronides” according to the structure of the respective precursor. Both series differ compounds, called “glucosides” and “glucuronides” according to the structure of the respective precursor. Both series differ
in the pathway of their biosynthesis and further metabolism, i.e. the rate of formation and stages of possible degradation; in the pathway of their biosynthesis and further metabolism, i.e. the rate of formation and stages of possible degradation;
distribution in the single cell and in the whole plant, including accumulation sites; and the possible physiological role distribution in the single cell and in the whole plant, including accumulation sites; and the possible physiological role
played in the plant according to appropriate biological activities. played in the plant according to appropriate biological activities.

Download full-text

Full-text

Available from: Anna Szakiel
    • "The plants belonging to the Oleaceae family, including olive (Olea europaea), are rich sources of oleanolic acid. This compound exists in nature either as a free acid or as an aglycone precursor for triterpenoid saponins, in which it can be linked to one or more sugar chains (Liu 2005; Szakiel et al. 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is one of the most frequently diagnosed cancers and major cause of death in women in the world. Emerging evidence underscores the value of dietary and non-dietary phytochemicals, including triterpenoids, in the prevention and treatment of breast cancer. Oleanolic acid, an oleanane-type pentacyclic triterpenoid, is present in a large number of dietary and medicinal plants. Oleanolic acid and its derivatives exhibit several promising pharmacological activities, including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, antipruritic, spasmolytic, antiallergic, antimicrobial and antiviral effects. Numerous studies indicate that oleanolic acid and other oleanane triterpenoids modulate multiple intracellular signaling pathways and exert chemopreventive and antitumor activities in various in vitro and in vivo model systems. A series of novel synthetic oleanane triterpenoids have been prepared by chemical modifications of oleanolic acid and some of these compounds are considered to be the most potent anti-inflammatory and anticarcinogenic triterpenoids. Accumulating studies provide extensive evidence that synthetic oleanane derivatives inhibit proliferation and induce apoptosis of various cancer cells in vitro and demonstrate cancer preventive or antitumor efficacy in animal models of blood, breast, colon, connective tissue, liver, lung, pancreas, prostate and skin cancer. This review critically examines the potential role of oleanolic acid, oleanane triterpenoids and related synthetic compounds in the chemoprevention and treatment of mammary neoplasia. Both in vitro and in vivo studies on these agents and related molecular mechanisms are presented. Several challenges and future directions of research to translate already available impressive preclinical knowledge to clinical practice of breast cancer prevention and therapy are also presented.
    No preview · Article · Dec 2014 · Phytochemistry Reviews
    • "The identification of natural compounds as a PLK1 inhibitor prompted us to further investigate the inhibitory activity of natural compounds isolated from plants. Plants belonging to Asteraceae species are a source of many biologically active compounds such as essential oils,[25262728] polyphenolic compounds,[2930] flavonoids,[31323334] terpenoids,[3235363738] phenolic acids,[313439] alkaloids,[40] lignans,[31] saponins,[323841] stilbenes, sterols,[34] polysaccharides,[35] and many others. Plants from Asteraceae family are commonly used in treatment of various diseases including cancer due to their bio-active properties. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural products from plant sources, embracing inherently ample structural diversity than synthetic ones are the major sources of anticancer agents and will constantly play as protagonists for discovering new drugs. Polo-like kinases (PLKs) play a leading role in the ordered execution of mitotic events and 4 mammalian PLK family members have been identified. PLK1 is an attractive target for anticancer drugs in mammalian cells, among the four members of PLKs. The present study expresses the molecular interaction of compounds (1,2-Benzenedicarboxylic acid bis (2 ethylhexyl) ester, squalene, 3,5-bis (1,1-dimethylethyl) phenol, Pentamethyl tetrahydro-5H-chromene, (1,4-Cyclohexylphenyl) ethanone and 6-Vinyl-7-methoxy-2,2-dimethylchromene) isolated from methanolic extract of leaves of Ageratum houstonianum with PLK1 enzyme. Docking between PLK1 and each of these compounds (separately) was performed using "Auto dock 4.2." (1,4-Cyclohexylphenyl) ethanone showed the maximum potential as a promising inhibitor of PLK1 enzyme with reference to ∆G (-6.84 kcal/mol) and Ki (9.77 μM) values. This was sequentially followed by Pentamethyl tetrahydro-5H-chromene (∆G = -6.60 kcal/mol; Ki = 14.58 μM), squalene (∆G = -6.17 kcal/mol; Ki = 30.12 μM), 6-Vinyl-7-methoxy-2,2-dimethylchromene (∆G = -5.91 kcal/mol; Ki = 46.68 μM), 3, 5-bis (1,1-dimethylethyl) phenol (∆G = -5.70 kcal/mol; Ki = 66.68 μM) and 1,2-Benzenedicarboxylic acid bis (2 ethylhexyl) ester (∆G = -5.58 kcal/mol; Ki = 80.80 μM). These results suggest that (1,4-Cyclohexylphenyl) ethanone might be a potent PLK1 inhibitor. Further, in vitro and in vivo rumination are warranted to validate the anticancer potential of (1,4-Cyclohexylphenyl) ethanone.
    No preview · Article · Mar 2014 · Pharmacognosy Magazine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this review is to highlight updated results on the biologically active saponins from Leguminosae-Mimosoideae. Acacic acid-type saponins (AATS), is a class of very complex glycosides possessing a common aglycon unit of the oleanane-type (acacic acid = 3β, 16α, 21β trihydroxy-olean-12-en-28 oic acid), having various oligosaccharide moieties at C-3 and C-28 and an acyl group at C-21. About sixty molecules of this type have been actively explored in recent years from Leguminosae family, from a chemical point of view and some fifty were reported to possess cancer related activities. These include cytotoxic/antitumor, immunomodulatory, antimutagenic, and apoptosis inducing properties and appear to depend on the acylation and esterification by different moieties at C-21 and C-28 of the acacic acid-type aglycone. One can observe that the (6S) configuration of the outer monoterpenyl moiety (MT) seems more potent in mediating high cytotoxicity than its (6R) isomer. Furthermore, the trisaccharide moiety {β-d-Xylopyranosyl-(1→2)-β-d-Fucopyranosyl-(1→6)- N-Acetamido 2-β-d-Glucopyranosyl-} at C-3, the tetrasaccharide moiety {β-d-Glucopyranosyl-(1→3)-[α-L-Arabinofuranosyl-(1→4)]-α-l-Rhamnopyranosyl-(1→2)-β-d-Glucopyranosyl} at C-28 of the aglycone, and the inner MT hydroxylated at its C-9, having a (6S) configuration can be important substituent patterns for the induction of apoptosis of AATS. Because of their interesting cytotoxic/apoptosis inducing activity, some AATS can be useful in the search for new potential antitumor agents from Fabaceae. Furthermore, the sequence 28-O-{Glc-(1→3)-[Araf-(1→4)]-Rha-(1→2)-Glc-Acacic acid}, often encountered in the genera Acacia, Albizia, Archidendron, and Pithecellobium may represent a chemotaxonomic marker of the Mimosoideae subfamily.
    No preview · Article · Dec 2011 · Phytochemistry Reviews
Show more