A combined microdialysis and FDG-PET study of glucose metabolism in head injury

ArticleinActa Neurochirurgica 151(1):51-61 · January 2008with11 Reads
Impact Factor: 1.77 · DOI: 10.1007/s00701-008-0169-1

Background Microdialysis continuously monitors the chemistry of a small focal volume of the cerebral extracellular space. Positron emission tomography (PET) establishes metabolism of the whole brain but only for the scan’s duration. This study’s objective was to apply these techniques together, in patients with traumatic brain injury, to assess the relationship between microdialysis (extracellular glucose, lactate, pyruvate, and the lactate/pyruvate (L/P) ratio as a marker of anaerobic metabolism) and PET parameters of glucose metabolism using the glucose analogue [18F]-fluorodeoxyglucose (FDG). In particular, we aimed to determine the fate of glucose in terms of differential metabolism to pyruvate and lactate. Materials and methods Microdialysis catheters (CMA70 or CMA71) were inserted into the cerebral cortex of 17 patients with major head injury. Microdialysis was performed during FDG-PET scans with regions of interest for PET analysis defined by the location of the gold-tipped microdialysis catheter. Microdialysate analysis was performed on a CMA600 analyser. Findings There was significant linear relationship between the PET-derived parameter of glucose metabolism (regional cerebral metabolic rate of glucose; CMRglc) and levels of lactate (r = 0.778, p < 0.0001) and pyruvate (r = 0.799, p < 0.0001), but not with the L/P ratio. Conclusion The results suggest that in this population of patients, glucose was metabolised to both lactate and pyruvate, but was not associated with an increase in the L/P ratio. This suggests an increase in glucose metabolism to both lactate and pyruvate, as opposed to a shift towards anaerobic metabolism.

    • "Unlike (Hutchinson et al., 2009), there was no correlation between microdialysis parameters and regional CMRglc (Vespa et al., 2005). The apparent disparity between the two studies' results was suggested to have stemmed at least partly from the different proportions of metabolic crisis patients (Hutchinson et al., 2009). As diffusion across the microdialysis membrane is bidirectional , microdialysis can also be used to deliver molecules ( " retrodialysis " e.g., 13 C-labeled substrates), thereby microdosing a region of interest around the catheter tip, whilst simultaneously collecting the products in the emerging microdialysate, for subsequent NMR analysis. "
    [Show abstract] [Hide abstract] ABSTRACT: In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well recognised, and are associated statistically with unfavourable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolised via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate’s association with unfavourable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilise lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilisation of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labelled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labelling in glutamine consistent with lactate utilisation via the TCA cycle. This suggests that where neurons are too damaged to utilise the lactate produced from glucose by astrocytes, i.e. uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining association between high lactate and poor outcome. An intravenous exogenous lactate supplementation study in TBI patients showed evidence for a beneficial effect judged by surrogate endpoints. Here we review current knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better clinical outcome.
    Full-text · Article · Apr 2015 · Frontiers in Neuroscience
    0Comments 6Citations
    • "Under such conditions, exogenously administered lactate cannot be metabolized further. However, emerging clinical data suggest that lactate increase is mainly non-hypoxic in patients with TBI [13, 30, 31]. In the present study, TBI patients did not display low PbtO 2 , meaning that the administered lactate could indeed be converted to pyruvate, which is subsequently metabolized via the TCA cycle and the associated ATP-generating oxidative phosphorylation. "
    [Show abstract] [Hide abstract] ABSTRACT: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95 % confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.
    Full-text · Article · Jan 2014 · Intensive Care Medicine
    0Comments 34Citations
    • "The extent of the region addressed by the microdialysis catheter is not precisely known. In a combined FDG- PET and cerebral microdialysis study (without 13 C-labelling) in TBI patients, the cerebral metabolic rate of glucose measurements in a 2 cm region of interest around the microdialysis catheter tip correlated significantly with endogenous lactate and pyruvate concentrations in the microdialysates (Hutchinson et al., 2009).6. Left panel: Magnetic resonance imaging (MRI) scan, using 3D MP-RAGE sequence, at 3 Tesla, showing the brain of a TBI patient with a microdialysis catheter (via a cranial access device) in position, the catheter tip indicated by an arrow (yellow). "
    [Show abstract] [Hide abstract] ABSTRACT: Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons’ tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of 13C-labelled cerebral microdialysis both to deliver 13C-labelled substrates into brains of TBI patients and recover the 13C-labelled metabolites, with high-resolution 13C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of 13C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and 13C research modalities addressing them.
    Full-text · Article · Dec 2013 · European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences
    0Comments 8Citations
Show more

Similar publications