ArticlePDF Available

Abstract and Figures

Introduction For large trees without a continuous sequence of growth rings in their trunk, such as the African baobab (Adansonia digitata L.), the only accurate method for age determination is radiocarbon dating. As of today, this method was limited to dating samples collected from the remains of dead specimens. • Methods Our research extends significantly the dating of such trees to large live specimens with inner cavities. The new approach is based on collecting samples from the cavities and their subsequent radiocarbon dating. • Results The giant two-stemmed Platland tree, also known as Sunland baobab, was investigated by using this new approach. AMS radiocarbon dates of the oldest sample segments originating from the two inner cavities indicate that the large stem I (364.5 m 3) is 750±75 years old, while the much smaller stem II (136.7 m 3) has 1,060±75 years. Results also show that stem I is still growing very fast, while the older stem II slowed down consistently its growth over the past 250 years. The complete mapping of Platland tree determined an overall wood volume of 501.2 m 3. • Conclusions Dating results demonstrate that the size-age relation cannot be used for estimating accurately the age of African baobabs.
Content may be subject to copyright.
Age determination of large live trees with inner cavities:
radiocarbon dating of Platland tree, a giant African
baobab
Patrut, Karl Reden, Pelt, Diana Mayne, Daniel Lowy, Margineanu
To cite this version:
Patrut, Karl Reden, Pelt, Diana Mayne, Daniel Lowy, et al.. Age determination of large live
trees with inner cavities: radiocarbon dating of Platland tree, a giant African baobab. Annals
of Forest Science, Springer Verlag (Germany), 2011, 68 (5), pp.993-1003. <10.1007/s13595-
011-0107-x>.<hal-00930675>
HAL Id: hal-00930675
https://hal.archives-ouvertes.fr/hal-00930675
Submitted on 1 Jan 2011
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destin´ee au d´epˆot et `a la diffusion de documents
scientifiques de niveau recherche, publi´es ou non,
´emanant des ´etablissements d’enseignement et de
recherche fran¸cais ou ´etrangers, des laboratoires
publics ou priv´es.
ORIGINAL PAPER
Age determination of large live trees with inner cavities:
radiocarbon dating of Platland tree, a giant African baobab
Adrian Patrut &Karl F. von Reden &Robert Van Pelt &
Diana H. Mayne &Daniel A. Lowy &Dragos Margineanu
Received: 9 October 2010 / Accepted: 23 January 2011 / Published online: 1 July 2011
#INRA and Springer Science+Business Media B.V. 2011
Abstract
&Introduction For large trees without a continuous
sequence of growth rings in their trunk, such as the African
baobab (Adansonia digitata L.), the only accurate method
for age determination is radiocarbon dating. As of today,
this method was limited to dating samples collected from
the remains of dead specimens.
&Methods Our research extends significantly the dating of
such trees to large live specimens with inner cavities. The
new approach is based on collecting samples from the
cavities and their subsequent radiocarbon dating.
&Results The giant two-stemmed Platland tree, also known
as Sunland baobab, was investigated by using this new
approach. AMS radiocarbon dates of the oldest sample
segments originating from the two inner cavities indicate
that the large stem I (364.5 m
3
) is 750±75 years old, while
the much smaller stem II (136.7 m
3
) has 1,060±75 years.
Results also show that stem I is still growing very fast,
while the older stem II slowed down consistently its growth
over the past 250 years. The complete mapping of Platland
tree determined an overall wood volume of 501.2 m
3
.
&Conclusions Dating results demonstrate that the sizeage
relation cannot be used for estimating accurately the age of
African baobabs.
Keywords Adansonia digitata .Radiocarbon dating .Age
determination .Growth rate .Accelerator mass spectrometry
1 Introduction
For trees which exhibit annual or seasonal growth rings,
ring counting, possibly refined by cross-dating, represents
the most accurate and reproducible method for age and
growth rate determination. Ring counting is typically
performed on the remaining stumps of dead trees. Never-
theless, there are several cases in which this procedure
cannot be utilized. Relevant examples are trees with growth
rings that are not strictly annual or seasonal, with no well-
defined rings or without a continuous sequence of rings, as
a consequence of their hollow parts. In such cases, ring
counting is replaced by alternative direct (radiocarbon
dating) or indirect dating methods (relation size/diameter-
age, projections of short-term growth data, projections
based on mortality rates, etc.) (Worbes 2002; Patrut et al.
2010a). The most investigated species of this type is the
African baobab (Adansonia digitata L.), the angiosperm
with the stoutest trunk. For large and old baobabs, a
Handling Editor: Erwin Dreyer
A. Patrut (*):D. Margineanu
Department of Chemistry, Babes-Bolyai University,
Arany Janos 11,
400028 Cluj-Napoca, Romania
e-mail: apatrut@gmail.com
K. F. von Reden
NOSAMS Facility, Department of Geology & Geophysics,
Woods Hole Oceanographic Institution,
Woods Hole, MA 02543, USA
R. Van Pelt
College of Forest Resources, Box 352100,
University of Washington,
Seattle, WA 98195, USA
D. H. Mayne
Baobab Trust,
Parklands 2121,
Johannesburg, South Africa
D. A. Lowy
FlexEl, LLC,
College Park, MD 20742, USA
Annals of Forest Science (2011) 68:9931003
DOI 10.1007/s13595-011-0107-x
hypothetically accurate ring counting is not possible, as
growth rings may no longer be observed in certain areas
ofthetrunkandtheyarealsomissingintheareaoflarge
cavities.
As indirect methods often provide questionable results,
radiocarbon investigation represents the only alternative
method for the accurate dating of such trees. Given its
higher costs, so far, radiocarbon dating was not used on the
large scale. Several noteworthy investigations were per-
formed, however, on different tropical species, for deter-
mining the age of trees and/or growth rates, for accurately
dating the observed growth rings, for checking and
correcting ring counting, or for providing climate informa-
tion (Martinez-Ramos and Alvarez-Buylla 1998; Worbes
and Junk 1999; Poussart et al. 2006). Traditionally, for large
trees, such as the African baobab, this research was
limited to dating wood samples collected from the
remains of dead specimens, which decay very fast (Swart
1963;Patrutetal.2007). Work reported here extends
considerably the possibility of aging African baobabs, by
introducing a methodology which allows, to date standing
and live specimens. This new approach is based on
radiocarbon dating of very small wood samples collected
from the inner cavities of live baobabs. The first live
specimen investigated by this methodology was the huge
two-stemmedPlatlandtree.
Dating results for segments extracted from samples
originating from the two cavities of Platland tree, which
correspond to a depth of over 20 cm in the wood, are
presented and discussed. As these segments consist of
the original old wood, dating results made it possible to
determine the age of the two stems of Platland tree,
which was the main goal of our research. We also present
for the first time results of the complete mapping of a
large African baobab. The age difference of the two
stems is discussed in the framework of the questionable
sizeage relation.
2 Materials and methods
2.1 Dating live African baobabs
The main characteristics of the new approach for age
determination of large live trees via dating samples
collected from their inner cavities, applied to the case of
the African baobab, can be summarized as follows:
1. Collection of samples from inner cavities through
cavity walls and subsequent radiocarbon dating of
these samples define the new methodology.
2. The extant wood collected with an increment borer
from cavities, at depth values exceeding 20 cm, is the
original old wood which corresponds to the respective
positions. Such a depth is needed for excluding
successive regrowth layers triggered by cavity fires
and also by a somewhat limited ability of the baobab of
repairing its wounds, i.e., for closing its cavity. A 60-
cm increment borer is more than sufficient for reaching
the original old wood and preventing collection of any
regrowth layer.
3. The age of an investigated baobab is calculated by
extrapolating age values of the oldest radiocarbon-dated
samples to the symmetry/geometric center of the trunk
at that height. Extrapolation is done by using growth
rate values of the trunk, calculated from different
sample ages, as well by considering growth rate values
reported in the literature.
4. The symmetry center at a certain height above ground
level can be accurately determined from a cross-section
of the trunk at this height.
5. In order to evaluate more accurately both the age and
the growth rate dynamics, one collects additional
(younger) samples from the exterior (through the bark);
these samples are also radiocarbon dated.
6. Usually, the pith of a tree, including the African
baobab, is not perfectly centered. However, with the
exception of certain individuals with a highly
irregular trunk, it is reasonable to assume that in
single-stemmed baobabs, the pith is relatively close
to the symmetry center of the trunk. If one assigns
the symmetry center to the pith and one considers the
fast growth rate of young baobabs, an additional
error of ±50 years for the final age value would
cover for all these assumptions.
7. In the case of baobabs with a multi-stemmed trunk,
the current symmetry center of a stem cannot be
assigned to its pith. One should consider that, after
fusion, the growth of stems continued only in
directions where there was room for accommodating
their growth. Thus, one must calculate the symmetry
center of a stem prior to fusion, which can be
reasonably approximated by the pith. The moment of
fusion must be estimated from the age of samples
collected from the fusion area.
2.2 The study area
The Platland tree (Fig. 1) is located on the Sunland Nursery
of the Platland farm, 10 km from Modjadjiskloof (formerly
Duiwelskloof) and 25 km from Tzaneen in the Limpopo
Province, South Africa. Its GPS coordinates are 23°37.255
S, 030°11.884E, and the altitude is 719 m. Mean annual
rainfall in the area is 492 mm (Mooketsi station; 1925
2009).
994 A. Patrut et al.
2.3 Measurements
The common external measurements of the Platland tree and the
measurements inside the two inner cavities were performed by
using a Bosch DLE 70 Professional laser rangefinder (Robert
Bosch GmbH, Stuttgart, Germany) and graduated tapes.
Cross-sections of the Platland tree at ground level, 1, 2, 2.5,
and 5 m were mapped by setting up a frame around the tree
with a graduated tape. A compass and an Impulse 200 laser
rangefinder (Laser Technology, Inc., Centennial, CO, U.S.A.)
were used to map the cross-sections. Additional cross-sections
on the largest section were mapped at 6.5 and 8 m. All of the
Fig. 1 (top) The very impressive Platland tree, which is also called
Sunland baobab. General view taken from the east; (bottom) The
image taken from the north shows the two-stemmed trunk of Platland
tree, with the larger and taller stem I to the left, while stem II is on the
right. The fusion area of the stems can also be observed
Age determination of large live trees 995
mostly round branch and stem sections above or around this
had their basal diameters estimated by using a Criterion 400
survey laser (Laser Technology, Inc., Centennial, CO, U.S.A.).
System lengths were either measured directly or interpreted
from detailed photos of the tree structure without leaves.
Parabolic or conic equations were used for these smaller
systems based on how robust and foliated each system was.
2.4 Sample collection
Seven wood samples (numbered 1 to 7) were collected from
different positions of the walls of the two cavities of Platland
tree, according to the previously described methodology. Due
to the irregular profile of the cavities' walls, the inner samples
originate from heights of 0.401.70 m above cavity level. A
number of three additional samples (numbered 11 to 13)
were collected from the exterior of the two stems through the
bark. The sampling was performed at heights of 1.202.75 m
above ground level. All samples were obtained by using a
Haglöf CO600 increment borer (60 cm long, 0.43 cm inner
diameter) (Haglöf Sweden AB, Langsele, Sweden).
The projections of sampling points on a cross-section of
the trunk with the cavities included are shown in Fig. 2.
One should mention that all seven samples collected from
the two large cavities, as well the three samples collected
from the exterior, were shorter than 60 cm, having lengths
between 22 and 51 cm. These values indicate the existence
of additional hollow parts between the open cavities and the
exterior of the stems. Segments with a length of 0.5 cm
were extracted from determined positions of the original ten
samples. The segments were processed and investigated by
accelerator mass spectrometry (AMS) radiocarbon dating.
2.5 Sample/segment preparation
The standard acidbaseacid pretreatment method (Olsson
1986) was used to remove soluble and mobile organic
components. The resulting cellulose samples were combusted
to CO
2
by using the closed tube combustion method (Sofer
1980). Then, CO
2
was reduced to graphite on iron catalyst,
under hydrogen atmosphere (Vogel et al. 1984). Eventually,
the resulting graphite samples were analyzed by AMS.
2.6 AMS measurements
Radiocarbon measurements were carried out at the National
Ocean Sciences AMS Facility of the Woods Hole Ocean-
ographic Institution with the Pelletron ® Tandem 500 kV
AMS system (Roberts et al. 2010) and the Tandetron 3MV
AMS system (von Reden et al. 1994). The surface of the
graphite samples was sputtered with cesium ions, and the
secondary negative ions were extracted and accelerated in
the AMS system.
12
C and
13
C ions were measured in
Faraday cups, where a ratio of their currents was recorded.
Simultaneously,
14
C ions were recorded in a particle
detector, so that instantaneous ratios of
14
Cto
12
C were
also recorded. These raw signals were compared to ratios
obtained with a known standard material (Oxalic Acid I,
NIST-SRM-4990) and converted to a fraction modern
value, which was corrected for isotopic fractionation with
the normalized δ
13
C value of 25
0
/
00
. Fraction modern
values were ultimately converted to a radiocarbon date.
2.7 Calibration
Fraction modern values were calibrated and converted into
calendar ages with the OxCal v4.1 for Windows (Bronk
Ramsey 2009), by using the IntCal09 atmospheric data set
(Reimer et al. 2009).
3 Results
3.1 Mapping results
The trunk of Platland tree, which consists of two stems (I
and II), has a total circumference at breast height (cbh;
1.30 m above ground level) of 34.11 m and a footprint of
67.9 m
2
, which corresponds to a functional diameter of
9.30 m at ground level. It is to mention that the huge trunk
is covered by a very thin silver colored bark, which is less
than 1 mm thick. The canopy dimensions are of 37.7 m (in
direction NS) and 32.4 m (in direction WE).
The larger stem I has a height of 18.9 m, a cbh value of
24.20 m, a footprint of 43.9 m
2
, and a cross-sectional area
Fig. 2 Cross-section of the two-stemmed Platland tree (at 1 m above
ground), showing the two connected cavities (displayed at cavity
level), the positions of the ten sampling points and the sampling
directions. Because the samples were collected at various heights,
several sampling points are not located right on the contour of the
cavity or of stems, which are figured at a well-defined height
996 A. Patrut et al.
at bh of 42.7 m
2
. The formal diameter at bh calculated from
the cbh value in circular approximation is 7.70 m, while the
much more accurate functional dbh derived from the cross-
sectional area at bh is of 7.37 m. The smaller stem II has the
height of 15.8 m, a cbh value of 18.34 m, a footprint of
24.0 m
2
, and the cross-sectional area at bh of 23.3 m
2
.In
this case, the formal dbh is 5.84 m, while the functional dbh
becomes 5.45 m.
The two stems are connected by a fused section, which
covers a shared cbh of 4.10 m and has a maximum height of
2.20 m. The trunk comprises two interleading cavities on either
side of the fused section, connected by a small opening/
doorway. The very large cavity inside stem I has a maximum
length of 4.60 m, a width of 4.81 m, and a height of 4.88 m. The
irregular cavity inside stem II has a maximum length of 1.67 m,
amaximumwidthof2.50m,andaheightof2.47m;italsohas
an elevated extension towards the north, with a length of
2.24 m. The basal surface of cavity inside stem I is 15.9 m
2
,
while the cavity inside stem II has the surface of 2.8 m
2
.
There is also an elevated cavity located inside stem I, at the
height of 5.80 m. This cavity with two entrances, which is
visited and used by birds as a night shelter, has the maximum
dimensions of ca. 2×2 ×1.5 m.
For hollow baobabs, the large cavities are located at ground
level or, more seldom, at a certain height above ground.
However, for the Platland tree, the level of cavities is at 0.78 m
below the current ground level, suggesting that the inside level
corresponds to the original ground level. The increase of the
ground level over the past centuries is very probably the result
of mud and sediment left behind by several flood episodes of a
creek located in the close proximity of the tree. One can state
that today, the trunk/base of the Platland tree is buried in the
soil up to the height of 0.78 m. After 1990, the new owners of
the Platland farm opened a pub in the very large cavity inside
stem I. Consequently, the tree has become heavily promoted
as the Sunland pubbaobab.
Formally, one can consider the Platland tree composed of
two sections: Platland I (stem I and the corresponding
branches) and Platland II (stem II and the corresponding
branches). The total wood volume of the Platland tree
above the present ground level was found to be 448.2 m
3
,
i.e., 273.1 m
3
below 5 m and 175.1 m
3
over 5 m. This total
volume of 448.2 m
3
above ground level consists of the
volume of Platland I, which is 330.2 m
3
, and the volume of
Platland II, which measures 118.0 m
3
. Nevertheless, the
overall wood volume of stems and branches should be
calculated above the cavities level, which is the initial
ground level. Thus, the overall wood volume of the
Platland tree becomes 501.2 m
3
, out of which 364.5 m
3
for stem I and 136.7 m
3
for stem II.
Cross-sections of the Platland tree at different heights are
displayed in Fig. 3. The measured and calculated charac-
teristic parameters of the Platland tree are summarized in
Table 1.
3.2 AMS results and calibrated ages
Fraction modern values and radiocarbon dates of the oldest
segment of each of the 10 samples collected from the
cavities and from the exterior, which were labeled by the
sample code/number followed by the additional index x, are
listed in Tables 2and 3. Radiocarbon dates and errors were
rounded to the nearest year.
For calibration, we used the general IntCal09 data set
(Reimer et al. 2009), rather than the SHCal04 data set for
the Southern Hemisphere (McCormack et al. 2004). Our
choice is justified by the fact that the SHCal04 curve does
not yet contain information for lower southern latitudes and
does not include results from Africa for the time frame
corresponding to our sample ages. The offset between
calibrated ages obtained when using the two calibration
data sets is of several decades.
Calibrated (cal) ages are also displayed in Tables 2and 3.
The 1-σprobability distribution was chosen to derive
calibrated age ranges. For three segments (1x,3x,7x), the
1-σdistribution is consistent with only one range of
calendar years (marked in italics), while for the other seven
segments (2x,4x,5x,6x,11x,12x,13x), the 1-σdistribution
corresponds to several ranges of calendar years. For these
segments, the confidence interval of one range (marked in
italics) is much greater than of the others; therefore, it was
selected as the cal AD range of the segment for the purpose
of this discussion.
Fig. 3 Cross-sectional areas of the trunk/stems of Platland tree at
different heights (ground level, 1 m, 2 m, 2.5 m, and 5 m)
Age determination of large live trees 997
For obtaining single calendar age values of segments, we
derived a mean calendar age of each segment from the 1-σ
range with the highest probability. Calendar ages of segments
represent the difference between AD 2010 and the mean value
of the selected 1-σrange, with the corresponding error.
Calendar ages and errors were rounded to the nearest 5 years.
Table 2 AMS radiocarbon dating results and calibrated calendar ages of the oldest segments of samples collected from the cavities
Segment code
[stem]
Depth
a
[height
b
]
(10
2
m)
Fraction modern
[error]
Radiocarbon date
[error]
(
14
C years BP)
Cal AD range(s)
1-σ
[confidence interval]
Segment age
[error]
(calendar years)
1x[I] 23 [148] 0.9401 [±0.0034] 496 [±27] 14151438 [68.2 %] 585 [±10]
2x[I] 21 [145] 0.9316 [±0.0036] 569 [±29] 13201350 [39.8 %] 675 [±15]
13911412 [28.4%]
3x[I] 25 [90] 0.9501 [±0.0034] 411 [±27] 14411485 [68.2%] 545 [±20]
4x[I] 48 [50] 0.9601 [±0.0022] 327 [±18] 15151529 [10.4%] 440 [±20]
15421599 [44.8%]
16181634 [13.0%]
5x[II] 45 [102] 0.9597 [±0.0033] 330 [±27] 14951529 [18.2%] 440 [±30]
15411602 [38.2%]
16161634 [11.8%]
6x[II] 21 [170] 0.8930 [±0.0029] 909 [±23] 10451095 [39.6%] 940 [±25]
11201142 [16.0%]
11471164 [12.6%]
7x[II] 23 [40] 0.9003 [±0.0030] 845 [±24] 11681221 [68.2%] 815 [±25]
a
Depth in the wood of the oldest dated segment (from the cavity wall)
b
Height above cavity level (which is 0.78 m below ground level)
Parameter (unit) Platland tree Platland I Platland II
Height (m) 18.9 18.9 15.8
Circumference at bh (m) 34.11 24.20 18.34
Formal diameter at bh (m) 10.86 7.70 5.84
Footprint (m
2
) 67.9 43.9 24.0
Basal functional diameter (m) 9.30 7.48 5.43
Cross-sectional area at 1 m (m
2
) 66.8 43.2 23.6
Cross-sectional area at bh (m) 66.0 42.7 23.3
Functional diameter at bh (m) 9.17 7.37 5.45
Cross-sectional area at 2 m (m
2
) 63.2 40.4 22.9
Cross-sectional area at 2.5 m (m
2
) 57.3 36.2 21.1
Cross-sectional area at 5 m (m
2
) 39.7 29.7 10.0
Wood volume below 5 m (m
3
) 273.1 186.8 86.3
Wood volume over 5 m (m
3
) 175.1 143.4 31.7
Total wood volume above ground level (m
3
) 448.2 330.2 118.0
Overall wood volume above cavities level (m
3
) 501.2 364.5 136.7
Cavity/cavities area (m
2
) 18.7 15.9 2.8
Table 1 Measured and calculated
main parameters of the
Platland tree
998 A. Patrut et al.
3.3 Dating results of samples collected from the cavities
The segments of samples collected from the cavities of Platland
tree, which correspond to a depth in the wood up to 1520 cm,
consisted exclusively of new growth layers triggered by
successive fires. The dating results revealed six major fire
events that affected the cavities of the Platland tree, which were
dated around AD 1550, 1650, 1780, 1900, 1955, and 1990 (as
established by using the general IntCal04 or IntCal09
calibration); however, this investigation did not enable to
determine the age of the two stems (Patrut et al. 2010a).
Here, we present dating results of the oldest segment of
each of the seven cavity samples, labeled by an additional
index x. For a given sample, the oldest segment corresponds
to depths in the wood from 21 to 48 cm. The AMS results
and calibrated ages are listed in Table 2. The results are in
good agreement with the original positions of the respective
segments/samples in the two stems, showing that these
segments consist of the original old wood. The sequence of
segment ages demonstrates that the trunk of Platland tree
comprises two stems which fused partially some time ago.
The radiocarbon date of the oldest segment 2xoriginat-
ing from the cavity inside stem I was of 569± 29 BP (before
present, i.e., before AD 1950), which corresponds to a
calibrated age of 675±15 years. However, the oldest dated
segment 6xoriginates from the cavity inside stem II; its
radiocarbon date was of 909±23 BP, corresponding to a
calibrated age of 940±25 years.
The radiocarbon dates of the deepest segments collected
from the two cavities toward the fusion/common area, i.e.,
4xand 5x, were 327±18 and 330±27 BP, respectively. These
values correspond to calibrated ages of 440 ±20 and 440±
30 years. The practically identical values indicate that the
two stems of Platland tree fused partially at least 440 years
ago. Consequently, one can consider that the stems of
Platland tree fused ca. 450 years ago, around AD 1560.
3.4 Dating results of samples collected from the exterior
The dating results and calibrated ages of the deepest and
oldest segments of the three samples collected from the
exterior of stems are shown in Table 3. The two deepest
segments (45 and 51 cm) originating from stem I, i.e., 11x
and 12x, at different heights above ground (1.34 and
2.75 m), were radiocarbon dated to 49±27 and 122±25 BP.
The corresponding calibrated ages are 120± 25 and 150±
25 years.
The deepest segment 13x(20 cm) originating from stem
II, at a height of 1.20 m above ground, had a radiocarbon
date of 170±22 BP, with a corresponding calibrated age of
250±25 years.
3.5 Growth rates of the stems
Calibrated ages and positions of segments 11xand 12x,
which originate from samples collected from the exterior of
stem I, were used to derive the mean radial increase. Thus,
stem I had grown by 3.75×10
3
m year
1
over the past ca.
120 years to the height of 1.34 m, and by 3.40×
10
3
m year
1
over the past ca. 150 years to the height of
Table 3 AMS radiocarbon dating results and calibrated calendar ages of the oldest segments of samples collected from the exterior
Segment code
[stem]
Depth
a
[height
b
]
(10
2
m)
Fraction modern
[error]
Radiocarbon date
[error]
(
14
C years BP)
Cal AD range(s)
1-σ
[confidence interval]
Segment age
[error]
(calendar years)
11x[I] 45 [134] 0.9939 [±0.0034] 49 [±27] 17061720 [12.1 %] 120 [±25]
18191833 [10.4%]
18621915 [45.7%]
12x[I] 51 [275] 0.9849 [±0.0031] 122 [±25] 16851707 [12.1%] 150 [±25]
17191732 [7.1%]
18081826 [9.2%]
18331885 [31.5%]
19131928 [8.2%]
13x[II] 20 [120] 0.9791 [±0.0028] 170 [±22] 16691682 [11.6%] 250 [±25]
17361781 [40.1%]
17991805 [5.5%]
19311945 [11.0%]
a
Depth in the wood of the oldest dated segment (from the bark)
b
Height above ground level
Age determination of large live trees 999
2.75 m. Such high values indicate that the very large stem I
is still growing very fast.
However, as reported elsewhere (Patrut et al. 2010b), the
mean radial increase expresses only an apparent growth rate
of trunk/stems. Trees grow in three dimensions and their size
is accurately expressed by the wood volume of the trunk/
stems, which is in proportion to the cross-sectional areas at
different heights. Consequently, the area increase and volume
increase are much better estimates of the growth rate than the
radial increase. If one considers in this respect the dating
results and positions of all six samples/segments collected
from the cavity and the exterior of stem I, one can state that
stem I accelerated its growth over the past ca. 150 years.
This result corresponds to our previous research on African
baobabs (Patrut et al. 2010b), as well to other research done
on giant tree species (Sillett et al.2010).
The calibrated age and position of segment 13x, which
originates from the sample collected from the exterior of
stem II, shows that this stem had grown by only 0.80 ×
10
3
m year
1
over the past ca. 250 years to the height of
1.20 m. This low value demonstrates that the smaller and
older stem II slowed down its growth considerably and that
it could be close to the final stage of the African baobab's
life cycle, when trees almost stop growing.
3.6 Ages of the stems
The oldest segments 2xand 6xfrom the cavities inside stem
I and stem II consist of the original old wood, which
corresponds to the respective positions in the stems. The
extrapolation of their calibrated ages to the presumptive
center/pith of each stem enabled us for determining the ages
of the two stems of Platland tree.
The segments 2xand 6xoriginate from heights of 1.45
and 1.70 m above cavity level, corresponding to values of
0.67 and 0.92 m above ground. For extrapolation, we used
field measurements, as well a cross-section of the two
stems at 1 m, which is close to the segment heights
(see Fig. 4).
The cross-sections at ground level and at 1 m show that
both stems of the Platland tree have relatively symmetrical
transversal sections, with quasi-ellipsoidal shapes. In this
case, for determining the presumptive center/pith of each
stem, i.e., the symmetry center, it is sufficient using the axes
which touch the center of the fusion section.
Age of stem I In the cross-section of stem I, we displayed
the minor axis of the ellipse, from an external point Y to the
fusion point O, which is the conjugate diameter from SE to
NW. Its length is YO=7.40 m. The present center of stem I
can be approximated with the midpoint of the axis YO,
denoted as C
I
. In this case, the two minor semi-axes/minor
radii are YC
I
=C
I
O=3.70 m.
It is mandatory, however, to determine the presumptive
position of the original center/pith of stem I, labeled C
I(o)
,
which can be approximated by the midpoint of the conjugate
diameter at the fusion moment, that occurred ca. 450 years
ago. After fusion, stem I had no more room for growing in
direction NW. Therefore, the original center C
I(o)
is shifted
toward NW relative to the present center C
I
. Therefore, we
calculated the linear increase in radius of stem I over the past
450 years, in direction SE. The age of segment 11xindicates
that stem I had grown toward SE by 0.45 m over the past ca.
120 years. In a very conservative estimate, if we consider
that this relatively large mean radial increase was constant
over the past 450 years, the radial increase toward SE over
this period was of ca. 1.70 m. In this case, the corresponding
axis/diameterofstemIwasof7.401.70= 5.70 m at the
fusion time, with the two semi-axis/radii, including C
I(o)
O,
of 2.85 m. Thus, the distance between the present center C
I
and the original center C
I(o)
becomes C
I
C
I(o)
=0.85 m.
The point 2x, which represents the intercept with the YO
axis of the virtual annual ring corresponding to the
position of segment 2x, is located at 3.75 m from the
external point Y and at 0.80 m from the original center
C
I(o)
,i.e.,Y2x=3.75 m and 2xC
I(o)
=0.80 m.
In order to determine the age of stem I, one should
add to the age of the oldest segment 2x(675± 25 years)
the time needed by stem I for growing from 0 to a radius
of 0.80 m. The growth rate of African baobabs, especially
during their early life stage, is very different. However, if
we consider that the stem I of Platland tree had grown fast
and it is still fast growing, then, based on its current
dimensions, sample ages and also our previous research
(Patrutetal.2010b), one can estimate that the time needed
tostemIforreachingaradiusof0.80mwasofca.
75 years. All these approximations sum to a maximum
Fig. 4 Cross-section of the two stems (at 1 m above ground) showing
the accurate positions of the oldest dated segments from each cavity
(2x,6x), along with the present center (C
I
,C
II
) and the original center
(C
I(o)
,C
II(o)
) of each stem
1000 A. Patrut et al.
error of ±75 years for the final age of stem I, including the
age error of segment 2x. Hence, the calculated final age of
stem I is 750±75 years. One can state that it started
growing around AD 1260.
Age of stem II In this case, we showed in the cross-section
of stem II the major axis of the ellipse, from an external
point Z to the fusion point O. This is also the transverse
diameter from NW to SE, with a length ZO =6.44 m. The
present center of stem II can be approximated by the
midpoint of the axis ZO, marked as C
II
. The two major
semi-axes/major radii are ZC
II
=C
II
O=3.22 m.
The original center/pith of stem II, labeled C
II(o)
, can be
approximated by the midpoint of the transverse diameter at
the fusion moment. After fusion, stem II had no more room
for growing in direction SE. Consequently, the original
center C
II(o)
is shifted toward SE relative to the present
center C
II
. For calculating the increase in radius of stem II
over the past 450 years toward NW, we used the age of
sample 13x, which indicates a growth of 0.20 m over the
past 250 years. As stated, this low value indicates that the
growth of stem II slowed down considerably over this time
frame. If one considers that the mean radial increase was
around twice faster from the fusion moment up to 250 years
ago, the linear increase toward NW over the past 450 years
was of ca. 0.52 m. Thus, the corresponding axis/diameter of
stem II was of 6.440.52=5.92 m at the fusion time, with the
two semi-axis/radii, including C
II(o)
O of 2.96 m. The
distance between the present center C
II
and the original
center C
II(o)
becomes C
II
C
II(o)
=0.26 m. The segment 6x
was practically positioned on the axis ZO, at 2.02 m from
the fusion point O and at 0.94 m from the original center
C
II(o)
,i.e.,O6x=2.02 m and 6xC
II(o)
=0.94 m.
For determining the age of the stem II, one should add to
the age of the oldest segment 6x(940±25 years) the time
needed to stem II for growing from 0 to a radius of 0.94 m.
If we consider that the stem II of Platland tree has grown
much slower than stem I, its smaller dimensions, the older
sample ages and also our previous research, we can
estimate that the time needed to stem II for reaching a
radius of 0.94 m was of ca. 120 years. All approximations
are within the final error of ± 75 years. The calculated final
age of stem II becomes 1,060 ±75 years, indicating that it
started growing around AD 950.
4 Discussion
4.1 The size of Platland tree
The Platland tree is listed in the South African National
Register of Big Trees and is included in the South African
List of Champion Trees (Esterhuyse et al. 2001; Depart-
ment of Water Affairs and Forestry 2008). The only
accurate parameter of the true size of a tree is the wood
volume. The overall wood volume of Platland tree
(501.2 m
3
) is considerably larger than that of the Sagole
tree (414.1 m
3
), which is generally considered to be the
biggest baobab (Van Pelt, unpublished results). Therefore,
according to the volume values reported here, the Platland
tree becomes the largest known African baobab.
4.2 The relation sizeage in the case of Platland tree's stems
Commonly, one considers that the life span/longevity of a
tree specimen, in our case of an African baobab, depends
on several factors: (1) its genetic potential; (2) the
environment (including mean annual rainfall, altitude, mean
annual temperature, number of rainy seasons per year,
number of frosty days per year, nature of the soil, slope of
the land, availability to underground water sources, etc.);
(3) the number and severity of dangerous events and
disease episodes during its life cycle (fire episodes, fungi
attack, insects, baobab disease, elephant damage, human
damage, drought periods, flood, frost episodes, etc.).
Theoretically, individuals having all these factors iden-
tical should grow over time at the same rate. Consequently,
under identical conditions, the biggest/largest trees may
also be the oldest. Such considerations justify the common
fallacy about trees that size is in direct proportion to their
age. Certain baobab researchers noted, however, consider-
able size differences between individuals of identical age,
which were attributed to site differences. Moreover,
important size differences between specimens growing on
the same site were reported; these dissimilarities were
considered to be mainly of genetic origin (Breitenbach
1985; Wickens and Lowe 2008).
Our study on the Platland tree demonstrates, once again,
how questionable the sizeage relation is and the large
errors it can generate. According to complete measurements
and dating results, the very large stem I is considerably
younger than the smaller stem II (overall wood volume
364.5 vs. 136.7 m
3
; age 750 vs. 1,060 years). A preliminary
genetic research (Catana and Patrut, unpublished results)
suggested that the two stems of Platland tree possess
identical DNA and belong to a single individual. The two
stems have also grown on the same site. In this case, we
need an explanation for the unexpected finding that a stem
which is almost three times bigger is, however, over
300 years younger than the smaller stem of the same tree.
Researchers of tall and large tree species around the
world learned from their field experience that the largest
specimens are usually not also the oldest. Typically, the
largest specimens are those which had grown very fast
when they were young and, eventually, continued their
Age determination of large live trees 1001
rapid growth (Hartesveldt et al. 1975). The research
reported here demonstrates that such statements might be
also valid for the African baobab. Our research on
radiocarbon dating of baobabs (Patrut et al. 2010c), as well
dating results presented by other researchers (Swart 1963;
Woodborne et al. 2010) show that very large specimens are
not necessarily among the oldest trees and that medium-
sized individuals can also be very old. If one considers that
the largest baobabs are those which grew very fast over
their first ca. 100 years of life and maintained their rapid
growth, we may have an explanation for our results on the
two stems of Platland tree. In this case, stem I had probably
grown much faster and is also considerably bigger, as the
climate conditions in the area over its first century of life
(ca. AD 12601360) were probably much more favorable
for baobabs than over the first century of stem II (ca. AD
9501050).
4.3 The Platland tree system
According to dating results, the present trunk of the
Platland tree comprises two stems of different ages.
Therefore, morphologically, it can be considered a double
tree. On the other hand, according to the preliminary
genetic analysis, the Platland tree is a single individual.
Both stems sprouted very probably from the same
rootstock at different times and, therefore, they have
identical DNA.
However, in the case of multi-stemmed and multi-
generation baobabs, such as the Platland tree, it is a difficult
to state whether they are single or multiple trees. They
should be rather considered tree systems, with a complex
development over a long life cycle. Over time, stems might
die and collapse, while new stems can sprout at any
moment from the roots or from the other broken or
unbroken stems.
Based on the dating results, stem II of Platland tree had
grown over 300 years without being disturbed by the
presence of another stem. Nevertheless, it has an important
lean toward NW (up to 40°) and the cross-sections show an
obvious miss in its ellipsoidal shape in the present fusion
area. These aspects suggest that stem II could have been
pushed constantly toward NW after it started growing,
possibly by a larger and older stem 0, located approximate-
ly on the site of stem I. In this hypothetical scenario, stem
0 died and collapsed at a certain moment and was
replacedby the present stem I, which might have
emerged from its remains. However, it is improbable that
stem I would still comprise somewhere old wood traces
originating from stem 0. If this scenario had happened,
then the multi-stemmed and multi-generation Platland tree
system should be much older than the age we derived from
radiocarbon dating.
Acknowledgements This work was fully funded by the Romanian
Authority CNCSIS-UEFISCDI under grant PN II-IDEI 2354, Nr.
1092. AMS radiocarbon dating at the NOSAMS Facility is supported
by the U.S. National Science Foundation under Cooperative Agree-
ment OCE-0753487. We would like to thank Heather and Doug van
Heerden, the owners of Sunland Nursery, for granting permission for
on-site investigation and also for sampling the Platland tree.
References
Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates.
Radiocarbon 51:337360
von Breitenbach F (1985) Aantekeninge oor die groeitempo van
aangeplante kremeteartbome (Adansonia digitata) en opmerkinge
ten opsigte van lewenstyd, groeifases en genetiese variasie van
die spesie. J Dendrology 5:121
Department of Water Affairs and Forestry (South Africa) (2008) List
of champion trees. Available at http://www2.dwaf.gov.za
Esterhuyse N, von Breitenbach J, Sőhnge H (2001) Remarkable trees
of South Africa. Briza, Pretoria, pp 155161
Hartesveldt RJ, Harvey HT, Shellhammer HS (1975) The giant
sequoias of the Sierra Nevada. National Park Service,
Washington, pp 5759
Martínez-Ramos M, Alvarez-Buylla ER (1998) How old are tropical
rain forest trees? Trends in Plant Science 3:400405
McCormack FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG,
Reimer PJ (2004) SHCal04 Southern Hemisphere calibration, 0
11.0 cal kyr BP. Radiocarbon 46:10871092
Olsson IU (1986) Radiometric Methods. In: Berglund B (ed)
Handbook of Holocene palaeoecolgy and palaeohydrology.
Wiley, Chichester, pp 273312
Patrut A, von Reden K, Lowy DA, Alberts AH, Pohlman JW, Wittmann
R, Gerlach D, Xu L, Mitchell CS (2007) Radiocarbon dating of a
very large African baobab. Tree Physiol 27:15691574
Patrut A, Mayne DH, von Reden KF, Lowy DA, Van Pelt R,
McNichol AP, Roberts ML, Margineanu D (2010a) Fire history
of a giant African baobab evidenced by radiocarbon dating.
Radiocarbon 52:717726
Patrut A, Mayne DH, von Reden KF, Lowy DA, Venter S, McNichol AP,
Roberts ML, Margineanu D (2010b) Age and growth rate dynamics
of an old African baobab determined by radiocarbon dating.
Radiocarbon 52:727734
Patrut A, von Reden KF, Lowy DA, Mayne DH, Elder KE, Roberts
ML, McNichol AP (2010c) Comparative AMS radiocarbon
dating of pretreated versus non-pretreated tropical wood samples.
Nucl Instr Methods B 268:910913
Poussart PM, Mynemi SCB, Lanzirotti A (2006) Tropical dendro-
chemistry: a novel approach to estimate age and growth from
ringless trees. Geophys Res Lett 33:L17711
Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG,
Bronk RC, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes
PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA,
Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW,
Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J,
Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age
calibration curves, 050,000 years cal BP. Radiocarbon 51:11111150
Roberts ML, Burton JR, Elder KL, Longworth BE, McIntyre CP, von
Reden KF, Han BX, Rosenheim BE, Jenkins WJ, Galutschek E,
McNichol AP (2010) A high-performance
14
C accelerator mass
spectrometry system. Radiocarbon 52:228235
Sillett SC, Van Pelt R, Koch GW, Ambrose AR, Carroll AL, Antoine
ME, Mifsud BF (2010) Increasing wood production through old
age in tall trees. For Ecol Manag 259:976994
1002 A. Patrut et al.
Sofer Z (1980) Preparation of carbon dioxide for stable carbon isotope
analysis of petroleum fractions. Anal Chem 52:13891391
Swart ER (1963) Age of the baobab tree. Nature 198:708709
Vogel JS, Southon JR, Nelson DE, Brown TA (1984) Performance of
catalytically condensed carbon for use in accelerator mass
spectrometry. Nucl Instr Methods B 5:289293
von Reden KF, Schneider RJ, Cohen GJ, Jones GA (1994) Performance
characteristics of the 3MV Tandetron AMS system at the National
Ocean Sciences AMS Facility. Nucl Instr Methods B 92:711
Wickens GE, Lowe P (2008) The baobabs: pachycauls of Africa,
Madagascar and Australia. Springer, Dordrecht, pp 141142
Woodborne S, Hall G, Basson S, Zambatis G, Zambatis N (2010) The death
of a giant: on the age of baobabs. Savanna Network Meeting, Skukuza
Worbes M, Junk WJ (1999) How old are tropical trees? The
persistence of a myth. IAWA J 20:255260
Worbes M (2002) One hundred years of tree-ring research in the
tropics: a brief history and an outlook to future challenges.
Dendrochronologia 20:217231
Age determination of large live trees 1003
... m and an overall wood volume V = 300 m 3 . In terms of circumference, Sir Howard baobab ranks fifth in the world, after Holboom, Sagole big tree, Makuri Lê boom and Dorslandboom [13]. Its trunk consists of 9 stems, out of which 5 are common (ordinary) stems and 4 are false stems. ...
... Our long-term research has revealed that all big baobabs are multi-stemmed. This feature of baobabs is the result of their ability to produce new stems periodically, such as other tree species generate branches [13,19,31]. It is obvious that the four historic baobabs, all with circumferences over 24 m, consist or consisted of several fused stems, i.e., 7 stems for Ombalantu, 4+ stems for Okahao, 12 stems for Amadhila and 9 stems for Sir Howard. ...
... In this new structure, named by us ring-shaped structure (RSS), the stems define at ground level a circle or an ellipse creating an empty space between them. The RSS includes two subtypes, i.e., the open RSS and the closed RSS [11,13]. ...
Article
Full-text available
The Omusati region belongs to historic Ovamboland, an area of northern Namibia populated by tribes of the Ovambo group. Four very large African baobabs of Omusati played an important role in historic events of the area, such as the tribal wars and the Namibian War of Independence. The four historic baobabs are the Ombalantu baobab (8 stems; circumference 24.50 m), Okahao baobab (4+ stems; around 25 m), Amadhila baobab (12 stems; 25.35 m) and Sir Howard baobab (9 stems; 31.60 m). Two historic baobabs collapsed totally or partially. The stems of the Amadhila baobab toppled and died in 2021, while 3 stems of the Okahao baobab collapsed a long time ago, but are still alive. Our research aimed to determine the architecture and age of these baobabs. Three baobabs (Ombalantu, Amadhila, Sir Howard) exhibit a closed ring-shaped structure, with a false cavity inside. One baobab (Okahao) had an open ring-shaped structure, before its collapse. Several wood cores were extracted from the baobabs and investigated by radiocarbon dating. The dating results indicate ages of 770 ± 50 years for the Ombalantu baobab, 650 ± 50 years for the Okahao baobab, 1100 ± 50 years for the Amadhila baobab and 750 ± 50 years for the Sir Howard baobab.
... They cautioned, however, that the use of GBH measurements to estimate the age of baobabs can be misleading because the growth rates are not uniform over time and vary in relation to local ecological conditions. According to Patrut et al. (2011), "the only accurate method for age determination is radiocarbon dating." However, girth-age correlation does provide a basis for age-range estimates that can be combined with the results of radiocarbon dating. ...
... The baobab is renowned for its longevity and many attempts have been made over the past 300 years to determine the age of Africa's biggest baobab trees with estimates ranging from several centuries (Wilson 1988) to several thousand years (Adanson 1757, 1759, 1763; Livingstone 1857; Esterhuyse et al. 2001;Palgrave and Palgrave 2002;van Wyk and Gericke 2000). The girth of Africa's ancient baobabs with a radiocarbon age range of (Patrut et al. 2007(Patrut et al. , 2010(Patrut et al. , 2011(Patrut et al. , 2013(Patrut et al. , 2017(Patrut et al. , 2018(Patrut et al. , 2019Woodbourne et al. 2015). Patrut (2014) reported that they found the "highest density of huge baobabs in the world" in the area of outapi town in the ogvamboland region of Namibia. ...
Article
A Historically Contextualized Account of the Baobab Trees (Adansonia digitataL.) of Tobago. A common explanation for the baobab’s (Adansonia digitata) global dispersal is its value as a landscape feature: a tree of “parks and gardens” in places such as Florida and Hawaii, grown for its aesthetic value as a curiosity and ornamental, and for its practical value as a shade tree. While this is no doubt true, it is not the whole story. The history and culture of the baobabs of Brazil and the Caribbean cannot be understood solely within the narrow framework of merely a landscape feature. Based on a field survey done in May 2011 that was informed by a literature review, newspaper articles, interviews, and a radio appeal for information, this study was able to document the distribution of 12 African baobab trees in Tobago, and to identify the cultural status of the species as a fruit tree of Tobago’s traditional home garden food forest. In Tobago, the baobab is called Guinea tamarind, a name that alludes to the fact that the fruits of the baobab and tamarind (Tamarindus indica L.) are strikingly similar in taste. The results of this study also shed light on the links between the name Guinea tamarind and spread of the baobab in the Eastern Caribbean, including the timing of origin of the species in Tobago. Un compte rendu historique des Baobabs (Adansonia digitataL.) du Tobago. Une explication ordinaire de l’actuelle dispersion globale du Baobab est sa valeur dans l’agencement de jardins. En bref, un arbre de “parcs et jardins” dans des lieux tels que la Floride et Hawaï, élevé pour sa valeur esthétique comme objet de curiosité et ornemental, et pour sa valeur en tant qu’ arbre ombrageux. Bien que cela soit tout à fait vrai, ce n’en est pas la seule raison. L’histoire et la culture des baobabs du Brésil et des Caraïbes ne peut pas être comprise seulement dans le contexte étroit d’arbre de pépiniériste. Basée sur une étude faite sur le terrain en mai 2011 inspirée par une critique litéraire, articles de journaux, interviews, et une demande radiophonique de renseignements, cette étude a pu documenter la distribution de douze Baobabs au Tobago, et d’identifier le statut culturel des espèces comme principalement des arbres fruitiers traditionnels de la permaculture. Au Tobago, on appelle le baobab le tamarind de Guinée, nom qui fait allusion au fait que les fruits du baobab et du tamarind (Tamarindus indica L.) sont de goûts remarquablement similaires. Le résultat de cette étude clarifie aussi les liens entre le tamarind de Guinée et la propagation des baobabs dans les Caraïbes orientales, y compris la chronologie de l’origine des espèces au Tobago.
... The main result of radiocarbon investigation of a tiny wood sample is a radiocarbon date, which must be calibrated, to produce one or several age ranges of calendar years. We developed a method by which one can derive from the calibrated age range(s) a single age value of the dated wood sample, with a calculated error (Patrut et al., 2011). ...
... Sample ages and errors were rounded to the nearest 5 yr. This approach for selecting calibrated age ranges and single values for sample ages was used in all our previous publications on AMS radiocarbon investigation of superlative angiosperm trees, mainly baobabs (Patrut et al., 2007(Patrut et al., , 2010(Patrut et al., , 2011(Patrut et al., , 2015a(Patrut et al., , 2015b(Patrut et al., , 2017a(Patrut et al., , 2017b(Patrut et al., , 2018. ...
Article
The article discloses the AMS (accelerator mass spectrometry) radiocarbon dating results of the historic Big Tree at Victoria Falls, Zimbabwe. The research aimed to determine the age, growth and architecture of this renowned African baobab. The superlative baobab is composed of five main stems, three young stems and one false stem. It exhibits an open ring-shaped structure, an architecture that allows baobabs to reach large sizes and old ages. Several wood samples extracted from four stems were dated by radiocarbon. The oldest sample had a radiocarbon date of 978 ± 14 BP, corresponding to a calibrated age of 955 ± 20 calendar years. By this value, the Big Tree at Victoria Falls is 1150 ± 50 years old. We found that the eight common stems belong to three generations, which are 1000-1100, 600-700 and 200-250 years old, respectively. The false stem is 550 years old. The stems belonging to the oldest generation stopped growing over 100 years ago.
... This research relies on an approach, which does not only enable the investigation of dead or fallen trees, but also allows to investigate live, standing specimens. The original methodology consists of AMS (accelerator mass spectrometry) radiocarbon dating of tiny wood samples extracted from inner cavities, incisions in the trunk, fractured stems and from the exterior of the trunk/stems of monumental baobabs [9][10][11][12][13][14][15][16]. ...
... Sample ages and errors were rounded to the nearest 5 yr. We used this approach for selecting calibrated age ranges and single values for sample/segment ages in our previous articles on AMS radiocarbon dating of large angiosperms, especially baobabs [9][10][11][12][13][14][15][16]20]. ...
Article
Full-text available
Over the past years, our research on baobabs mainly focused on the largest Malagasy species, namely the Reniala or Grandidier baobab (Adansonia grandidieri Baill.). The biggest A. grandidieri are located in the Morombe area, especially in the so-called Andombiry Forest. This giant forest of Reniala hosts well over 6000 mature individuals, out of which more than 30 have very large sizes, i.e., circumferences over 20 m. We investigated, measured and dated by AMS radiocarbon the largest specimens. We found that all large Grandidier baobabs are multi-stemmed. They mostly exhibit a closed ring-shaped structure, with a false cavity inside. In this architecture, which enables Grandidier baobabs to reach very large sizes, the stems that build the ring typically have similar ages. Here we present the AMS radiocarbon investigation of two large baobabs, A 215 (girth 21.50 m) and A 257 (girth 25.70 m). According to dating results, the baobab A 215 has an age of only 375 years. It consists of four fused stems and has a closed ring-shaped structure. The baobab A 257 has the second largest trunk of all known live Reniala trees. It also exhibits a closed ring-shaped structure, with five fused stems around a false cavity, which has an opening toward the exterior. The dating results indicate that A 257 is around 900 years old.
... For this reason traditional techniques such as dendrochronology cannot be used to age boabs. AMS radiocarbon dating of parts of the inner cavity of some of the largest African baobabs has been undertaken, showing that some of the oldest trees are in excess of 1,500 years old (Patrut et al. 2011;Patrut et al. 2015), however, it remains to be seen how this compares with Australian boabs. ...
Article
Full-text available
This paper discusses the Australian boab tree and its potential for research as living historical archaeology. Boab trees play an important role in the economy, culture, and cosmology of Indigenous people in northwest Australia and continue to hold a powerful presence in the Kimberley region today. Working with Nyikina and Mangala Traditional Owners we have undertaken to document examples of this iconic tree and its cultural and historical associations, particularly in the form of carvings and inscriptions embedded in the bark. Focusing on four individual trees located in the Kimberley region of northwest Australia, we propose that the modification of boab trees, as a practice undertaken by both Indigenous and non-Indigenous people, offers important insights into the everyday lives and historic events that shaped this cultural landscape.
... There are also factors influencing decay, etc. [31][32][33]. Studies using the keywords "tree" and "cavitation" refer to hollow tree formation and influencing factors [12,34,35]. By exploring the keywords, scholars were mainly concerned with the mechanisms of hollow rot formation in forest stands and its prevention and management. ...
Article
Full-text available
As one of the most serious health issues facing trees, the occurrence of decay and hollowing not only reduces the stability and quality of living trees but also leads to the deterioration of their eco-physiological functions, which creates great challenges to the conservation and sustainable management of forest resources. In recent years, the study of tree decay and hollow rot have attracted more and more attention from scholars at home and abroad. The relevant research results have a great significance for the prevention and control of affected living trees and the conservation and sustainable management of endangered species. However, there is a lack of systematic literature review and an insufficient understanding of research hotspots and trends in this field. This paper selects literature retrieved from the CNKI and Web of Science core databases as data sources, the number of publications, research topics, research status, hot spots, and trends, as well as the main research countries, institutions, and co-cited authors in the field of tree decay are visualized by using bibliometrics software CiteSpace (V.5.8.R3), and the current international research hotspots and development trends in this field were systematically summarized. The results showed that the number of papers in this field at home and abroad showed rapid growth in general, and the number of Chinese papers showed a slow growth after 2009. The number of papers published in English by Chinese authors was more than the number of papers published in Chinese in the field. From 2002 to 2021, the research hotspots in this field are constantly changing. Cluster analysis shows that the main themes of the relevant research are as follows: “Eastern Canada” tree species, “hydraulic vulnerability segmentation”, “dead wood management”, and “hydraulic safety”. The advantages and disadvantages of hollow/dead wood on forest ecosystems were explored from different perspectives, providing a theoretical basis and scientific support for the forest health and sustainable management. The United States dominates the research in this field, while China is a relatively late comer but is catching up fast, and the Chinese Academy of Sciences is the most prolific publisher on this topic in China. The influence of Chinese research in this field on relevant international publications is gradually increasing. In short, the research in this field is still in the phase of rapid development, and both the breadth and depth of quantitative research are increasing. How to accurately diagnose and quantify the internal decay of tree trunks and its relationship with tree death and forest decline under the interference and pressure of climate change and human activities is still a hot and difficult issue in this field.
... Vieira et al. (2005), used the bomb spike to determine ages of tropical trees from the Brazilian Amazon without clear tree-ring structures, inferring tree growth rates and their consequences to carbon cycle modeling of forest biomass turnover. Radiocarbon dating and dendrochronology techniques have also been applied to see if African baobab trees, which have hollow inner cavities, could be dated using size-age relationships (Patrut et al. 2011) and if monumental olive trees in Spain (Camarero et al. 2021) and Israel (Bernabei 2015) were as old as purported by local populations. Olive trees are frequently encountered in key contexts in the ancient Mediterranean and Near East and have been the focus of much recent study (Ehrlich et al. 2018(Ehrlich et al. , 2021 to aid with use in the dating of archaeological contexts (e.g., Friedrich et al. 2006Friedrich et al. , 2014Cherubini et al. 2013). ...
Article
Full-text available
Both dendrochronology and radiocarbon ( ¹⁴ C) dating have their roots back in the early to mid-1900s. Although they were independently developed, they began to intertwine in the 1950s when the founder of dendrochronology, A. E. Douglass, provided dated wood samples for Willard Libby to test his emerging ¹⁴ C methods. Since this early connection, absolutely dated tree-rings have been key to calibration of the Holocene portion of the ¹⁴ C timescale. In turn, ¹⁴ C dating of non-calendar-dated tree-rings has served to place those samples more precisely in time, advance development of long tree-ring chronologies, and bring higher resolution to earlier portions of the ¹⁴ C calibration curve. Together these methods continue to shape and improve chronological frameworks across the globe, answering questions in archaeology, history, paleoclimatology, geochronology, and ocean, atmosphere, and solar sciences.
... In the last 10 years several baobab studies have been conducted in western and southern Africa on different aspects, such as morphological diversity (e.g. Cuní Sanchez et al. 2010Sanchez et al. , 2011a, genetic characterisation (Assogbadjo et al. 2006;Kyndt et al. 2009), population stability/vitality (Schumann et al. 2010(Schumann et al. , 2012Venter and Witkowski 2013a), nutritional value (Osman 2004;Chadare et al. 2009), germination (Danthu et al. 1995Razanameharizaka et al. 2006), age determination (Patrut et al. 2007(Patrut et al. , 2011(Patrut et al. , 2013, ecophysiology (De Smedt et al. 2012), diseases (Cruywagen et al. 2010) and socio-economy (De Caluwé 2011;Venter and Witkowski 2013c). However, peer-reviewed publications on baobabs in East Africa, particularly Sudan and Kenya remain scarce (North et al. 2014). ...
Article
Full-text available
An inventory of flora in Um Dom Island (Khartoum State),
Article
Full-text available
Found only in a restricted area of north-west Australia, the Australian boab ( Adansonia gregorii ) is recognisable by its massive, bottle-shaped trunk, and is an economically important species for Indigenous Australians, with the pith, seeds and young roots all eaten. Many of these trees are also culturally significant and are sometimes carved with images and symbols. The authors discuss the history of research into carved boabs in Australia, and present a recent survey to locate and record these trees in the remote Tanami Desert. Their results provide insight into the archaeological and anthropological significance of dendroglyphs in this region and add to a growing corpus of information on culturally modified trees globally.
Article
Full-text available
The African baobab (Adansonia digitata L.), also referred to as the “Tree of Life”, is a majestic, long-lived and multipurpose tree of sub-Saharan Africa. Internationally, a growing demand for baobab products in the food, pharmaceutical and cosmetics industries has been observed. Considering this, there is a need for scientific information on the genetics and breeding of A. digitata, including cytogenetics, genetic diversity and reproductive biology. The objectives of our cytogenetic research were to determine the genome size, chromosome number, and organization of ribosomal DNA (45S and 5SrDNA) of A. digitata. Flow cytometry analysis revealed a 2C-DNA value of 3.8 ± 0.6 pg (1Cx monoploid genome size 919.1 ± 62.9 Mbp). Using our improved chromosome preparation technique, we were able to unequivocally count the chromosomes resulting in 2n = 4x = 168, a revised chromosome number for A. digitata. Fluorescent in situ hybridization (FISH) analysis revealed two massively large variants of 45S rDNA and their corresponding nucleolus organizer regions (NOR). The NOR variants were about two to four times larger than the main body of their respective chromosomes. To our knowledge, this is the first report of this phenomenon in a plant species. Furthermore, we found that FISH analysis using the Arabidopsis-type telomere repeat sequence probe clarified and confirmed the new chromosome number and characterized the 45S rDNA structural organization.
Article
Full-text available
If radiocarbon measurements are to be used at all for chronological purposes, we have to use statistical meth-ods for calibration. The most widely used method of calibration can be seen as a simple application of Bayesian statistics, which uses both the information from the new measurement and information from the 14 C calibration curve. In most dating applications, however, we have larger numbers of 14 C measurements and we wish to relate those to events in the past. Baye-sian statistics provides a coherent framework in which such analysis can be performed and is becoming a core element in many 14 C dating projects. This article gives an overview of the main model components used in chronological analysis, their mathematical formulation, and examples of how such analyses can be performed using the latest version of the OxCal soft-ware (v4). Many such models can be put together, in a modular fashion, from simple elements, with defined constraints and groupings. In other cases, the commonly used "uniform phase" models might not be appropriate, and ramped, exponential, or normal distributions of events might be more useful. When considering analyses of these kinds, it is useful to be able run sim-ulations on synthetic data. Methods for performing such tests are discussed here along with other methods of diagnosing pos-sible problems with statistical models of this kind.
Article
If radiocarbon measurements are to be used at all for chronological purposes, we have to use statistical methods for calibration. The most widely used method of calibration can be seen as a simple application of Bayesian statistics, which uses both the information from the new measurement and information from the 14 C calibration curve. In most dating applications, however, we have larger numbers of 14 C measurements and we wish to relate those to events in the past. Bayesian statistics provides a coherent framework in which such analysis can be performed and is becoming a core element in many 14 C dating projects. This article gives an overview of the main model components used in chronological analysis, their mathematical formulation, and examples of how such analyses can be performed using the latest version of the OxCal software (v4). Many such models can be put together, in a modular fashion, from simple elements, with defined constraints and groupings. In other cases, the commonly used “uniform phase” models might not be appropriate, and ramped, exponential, or normal distributions of events might be more useful. When considering analyses of these kinds, it is useful to be able run simulations on synthetic data. Methods for performing such tests are discussed here along with other methods of diagnosing possible problems with statistical models of this kind.
Book
First and only fully comprehensive account of all eight species of Adansonia Contains much new information Highly interesting for scientists, academics and laypeople This is the only comprehensive account of all eight species in the genus Adansonia. It describes the historical background from the late Roman period to the present. It covers the extraordinary variety of economic uses of baobabs, famous trees, folk traditions and mythology, art associations, life cycle, natural history, cultivation, conservation, distribution and ecology, and phytogeography. There are also appendices on vernacular names, gazetteer, economics, nutrition and forest mensuration. This book fills a gap in the botanical literature. It deals with a genus that has fascinated and intrigued scientists and lay persons for centuries. It will appeal to scientists and academics as well as tropical horticulturalists, conservationists and general interest readers. It includes all the available scientific information about each of the eight species, and contains a good deal of original research on the history, ethnobotany and biology of the genus. There is even a chapter devoted to areas where further research is required. © 2008 Springer Science + Business Media, B.V. All rights reserved.
Article
Although tropical forests play an active role in the global carbon cycle and climate, their growth history remains poorly characterized compared to other ecosystems on the planet. Trees are prime candidates for the extraction of paleoclimate archives as they can be probed sub-annually, are widely distributed and can live for over 1400 years. However, dendrochronological techniques have found limited applications in the tropics because trees often lack visible growth rings. Alternative methods exist (dendrometry, radio- and stable isotopes), but the derived records are either of short-duration, lack seasonal resolution or are prohibitively labor intensive to produce. Here, we show the first X-ray microprobe synchrotron record of calcium (Ca) from a ringless Miliusa velutina tree from Thailand and use it to estimate the tree's age and growth history. The Ca age model agrees within {le}2 years of bomb-radiocarbon age estimates and confirms that the cycles are seasonal. The amplitude of the Ca annual cycle is correlated significantly with growth and annual Ca maxima correlate with the amount of dry season rainfall. Synchrotron measurements are fast and producing sufficient numbers of replicated multi-century tropical dendrochemical climate records now seems analytically feasible.
Article
SummaryTree-ring analysis in the tropics exists since more than one hundred years. In more than 20 tropical countries and numerous tree species the existence of annual tree-rings is doubtless proven. Rhythmic growth is induced by short drought periods or long lasting inundation, the influence of the photoperiod is questionable. Climatological analyses of tree-ring chronologies show the influence of El Niño on tree growth. Tree-ring based age determinations give maximum ages of not more than 600 years for broad leaf trees in tropical lowlands. Increment estimations by ring-width measurements give reliable results for sustainable management systems in tropical forests.
Article
How long forest trees can sustain wood production with increasing age remains an open question, primarily because whole-crown structure and growth cannot be readily measured from the ground or on felled trees. We climbed and directly measured crown structures and growth rates of 43 un-suppressed individuals (site trees) of the two tallest species – Eucalyptus regnans and Sequoia sempervirens – representing a wide range of tree sizes and ages. In both species, ground-level measurements of annual growth, including height, ring width, and basal area increment, exhibited the oft-reported trend of decreasing growth (or no change in growth) with age, yet wood production of the entire main trunk and whole crown both increased with size and age up to and including the largest and oldest trees we measured. The balance between structural metrics of whole-crown respiratory demands (cambium area, inner bark volume, sapwood volume, and heartwood deposition area) and photosynthetic capacity (leaf area and green bark area) was statistically independent of size but not age. After accounting for the effect of size, trees with lower potential respiratory demands grew more than trees with higher potential respiratory demands per unit photosynthetic area. The strongest determinant of tree energy balance was the ratio of aboveground cambium area to leaf area. Among the site trees we examined, over 85% of the variation in annual wood production was explained by variation in size, and the proportion of total aboveground wood production in appendages (branches, limbs, and reiterated trunks) increased linearly with size. With increasing age in both species, the proportion of annual wood production converted to heartwood increased in main trunks and appendages. The oldest tree we measured produced more heartwood in its main trunk over 651 years (351 m3) than contained in any tree we measured <1500 years old. The two tallest tree species achieve similar stature despite divergent growth dynamics and ecologies. At one extreme, E. regnans attains great size quickly but dies relatively young because trees are susceptible to fire and fungi. At the other extreme, S. sempervirens attains great size more slowly but has a long lifespan because trees resist fire and prioritize investment in decay-resistant heartwood. Increasing wood production as trees age is a mechanism underlying the maintenance of biomass accumulation during forest development and the carbon-sink capacity of old-growth forests.