Controlling surface plasmon excitation of pair arrays of metallic nanocylinders

Applied Physics A (Impact Factor: 1.7). 11/2007; 89(2):391-395. DOI: 10.1007/s00339-007-4123-5


Surface plasmon excitation of pair arrays of silver nanocylinders is studied using finite-difference time-domain simulations.
Strong local fields are generated around the nanocylinders due to excitation of localized surface plasmon and electromagnetic
fields are confined effectively in the gaps between the nanocylinders. Surface plasmon resonance and local-field enhancement
of two-pair arrays can be controlled by changing the illumination direction of the incident light due to induced asymmetric
polarization charges. Complex resonant modes could be excited with increasing number of silver nanocylinder pairs. Selective
local-field enhancement is observed in the gaps of the pairs by changing the interpair distance of four-pair arrays.

1 Follower
4 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the nanofabrication of patterned silver particle arrays using electron-beam lithography and the evaluation of their optical properties using backscattering and fluorescence spectroscopy. The silver particles varied in size from 100 to 250 nm and were in the shape of circles, squares, and triangles. Three inter-particle separations, 40, 65, and 90 nm as measured from the side of one particle to the side of the next particle, were used. We observed distinctive patterns of backscattering and fluorescence intensity depending on the particle size, inter-particle spacing, and excitation/emission wavelength used. Our approach allows for a study of the correlation between the backscattering intensities and fluorescence enhancement of silver particle arrays, which can be used to optimize the arrays for multi-fluorophore configuration for advanced sensing designs.
    Full-text · Article · Aug 2008 · Applied Spectroscopy
  • [Show abstract] [Hide abstract]
    ABSTRACT: Local field surface plasmon excitation of pair arrays of silver nanospheres was studied using three-dimensional finite-difference time-domain method. The near-field enhancement was associated with the radius of nanosphere and the incident wavelength, the highest of which always appeared in the penultimate gaps, regardless of the number of the pairs. The surface plasmon resonance could be controlled and tuned by radius of nanosphere and incident wavelength.
    No preview · Article · Oct 2009 · Optics Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, the surface plasmon resonance (SPR) wavelength of arrangement-dependent gold liner nanochain, square arranged nanoarray and curved nanochain are theoretically studied. Dipolar electrostatic and electrodynamics is concerned. For the liner chains, with increase number of the sphere, the plasmon peak wavelength varies non-monotonically in p-polarization, whereas it varies monotonically in s-polarization. For the square arranged array, it has greater resonance wavelength variations, and resonance wavelength can change from red shift to blue shift simply by changing the distance. The behavior of resonance wavelength for curved chain is similar to that of liner chain, and curved chain can be considered as a mixture of several short liner chains. The real part of additional field factor affects the resonance wavelength, and the real electrodynamics’ part of additional field factor causes non-monotonic shift of resonance wavelength. According to these results, controlling the resonance wavelength by changing the shape of nanoarray is attainable.
    Preview · Article · Oct 2011 · The European Physical Journal D
Show more