ArticlePDF Available

Facial Symmetry and the Perception of Beauty


Abstract and Figures

Evolutionary, as well as cultural, pressures may contribute to our perceptions of facial attractiveness. Biologists predict that facial symmetry should be attractive, because it may signal mate quality. We tested the prediction that facial symmetry is attractive by manipulating the symmetry of individual faces and observing the effect on attractiveness, and by examining whether natural variations in symmetry (between faces) correlated with perceived attractiveness. Attractiveness increased when we increased symmetry, and decreased when we reduced symmetry, in individual faces (Experiment 1), and natural variations in symmetry correlated significantly with attractiveness (Experiments 1 and 1A). Perfectly symmetric versions, made by blending the normal and mirror images of each face, were preferred to less symmetric versions of the same faces (even when those versions were also blends) (Experiments 1 and 2). Similar results were found when subjects judged the faces on appeal as a potential life partner, suggesting that facial symmetry may affect human mate choice. We conclude that facial symmetry is attractive and discuss the possibility that this preference for symmetry may be biologically based.
Content may be subject to copyright.
Psychonomic Bulletin & Review
1998, 5 (4), 659-669
The question of what makes a face attractive, and
whether our preferences come from culture or biology,
has fascinated scholars for centuries. Variation in the
ideals of beauty across societies and historical periods
suggests that standards of beauty are set by cultural con-
vention. Recent evidence challenges this view, however,
with infants as young as 2 months of age preferring to
look at faces that adults find attractive (Langlois et al.,
1987), and people from different cultures showing con-
siderable agreement about which faces are attractive (Cun-
ningham, Roberts, Wu, Barbee, & Druen, 1995; Jones &
Hill, 1993; see Langlois & Roggman, 1990, for a review).
These findings raise the possibility that some standards
of beauty may be set by nature rather than culture. Con-
sistent with this view, specific preferences have been iden-
tified that appear to be part of our biological rather than
our social heritage (Langlois & Roggman, 1990; Langlois,
Roggman, & Musselman, 1994; Perrett, May, & Yoshi-
kawa, 1994; Rhodes & Tremewan, 1996). For example,
average facial configurations are attractive (Langlois &
Roggman, 1990; Langlois et al., 1994; Rhodes & Treme-
wan, 1996).1Such a preference would be adaptive if sta-
bilizing selection operates on facial traits (Symons, 1979),
or if averageness is associated with resistance to patho-
gens, as some have suggested (Gangestad & Buss, 1993;
Thornhill & Gangestad, 1993).2
Evolutionary biologists have proposed that a prefer-
ence for symmetry would also be adaptive because sym-
metry is a signal of health and genetic quality (Palmer &
Strobeck, 1986; Parsons, 1990; Thornhill & Møller, 1997;
Watson & Thornhill, 1994). Only high-quality individu-
als can maintain symmetric development in the face of
environmental and genetic stresses. Symmetric bodies are
certainly attractive to humans and many other animals
(Brooks & Pomiankowski, 1994; Concar, 1995; Møller &
Pomiankowski, 1993; Thornhill & Gangestad, 1994; Wat-
son & Thornhill, 1994), but what about symmetric faces?
Biologists suggest that facial symmetry should be at-
tractive because it may signal mate quality (Ridley, 1992;
Swaddle & Cuthill, 1995; Watson & Thornhill, 1994).
High levels of facial asymmetry in individuals with chro-
mosomal abnormalities (e.g., Down’s syndrome and Tri-
somy 14; for a review, see Thornhill & Møller, 1997) are
consistent with this view, as is recent evidence that facial
symmetry levels correlate with emotional and psycholog-
ical health (Shackelford & Larsen, 1997). In this paper,
we investigate whether people can detect subtle differences
in facial symmetry and whether these differences are as-
sociated with differences in perceived attractiveness.
Recently, Kowner (1996) has reported that faces with
normal levels of asymmetry are more attractive than per-
fectly symmetric versions of the same faces.3Similar re-
sults have been reported by Langlois et al. (1994) and Sam-
659 Copyright 1998 Psychonomic Society, Inc.
This research was supported by grants from the Department of Psy-
chology, University of Canterbury, the Australian Research Council,
and the University of Western Australia. We thank Graham Byatt, Ian
McLean, Johanna Roberts, and Leslie Zebrowitz for stimulating dis-
cussions about this work, and Rotem Kowner, Nicola Bruno, Randy
Larsen, Leslie Zebrowitz, and an anonymous reviewer for helpful com-
ments on an earlier version of the manuscript. We also thank Graham
Byatt for assistance with stimulus construction, Linda Jeffery for as-
sistance with the figures, and Alison Clark and Catherine Hickford for
assistance with data collection and statistical analysis in Experi-
ment 1A. Correspondence should be addressed to G. Rhodes, Depart-
ment of Psychology, University of Western Australia, Nedlands, Perth,
WA 6907, Australia (e-mail:
Facial symmetry and the perception of beauty
University of Western Australia, Nedlands, Perth, Western Australia
and University of Canterbury, Christchurch, New Zealand
University of Canterbury, Christchurch, New Zealand
Evolutionary, as well as cultural, pressures may contribute to our perceptions of facial attractiveness.
Biologists predict that facial symmetry should be attractive, because it may signal mate quality. We
tested the prediction that facial symmetry is attractive by manipulating the symmetry of individual faces
and observing the effect on attractiveness, and by examining whether natural variations in symmetry
(between faces) correlated with perceived attractiveness. Attractiveness increased when we increased
symmetry, and decreased when we reduced symmetry, in individual faces (Experiment 1), and natural
variations in symmetry correlated significantly with attractiveness (Experiments 1 and 1A). Perfectly
symmetric versions, made by blending the normal and mirror images of each face, were preferred to
less symmetric versions of the same faces (even when those versions were also blends) (Experiments
1 and 2). Similar results were found when subjects judged the faces on appeal as a potential life part-
ner, suggesting that facial symmetry may affect human mate choice. We conclude that facial symmetry
is attractive and discuss the possibility that this preference for symmetry may be biologically based.
uels, Butterworth, Roberts, Graupner, and Hole (1994).
Together, these studies suggest that symmetry is not at-
tractive in faces. Other results, however, suggest that fa-
cial symmetry is attractive. In particular, natural varia-
tions in symmetry appear to covary with attractiveness
(Grammer & Thornhill, 1994; Jones & Hill, 1993, for
some ethnic groups; Zebrowitz, Voinescu, & Collins,
1996; but see Jones & Hill, 1993, for other ethnic groups;
Langlois et al., 1994).
How can these two conflicting sets of results be recon-
ciled? One possibility is that symmetry is attractive within
the normal range of variation, but that perfect symmetry
is not preferred. To understand why this might be so we
need to distinguish between two kinds of asymmetry in
faces: fluctuating and directional asymmetries. Fluctu-
ating asymmetries are randomly distributed (with re-
spect to the direction of the asymmetry) across individ-
uals in a population, so that there is no consistent left–
right bias in the population as whole. These asymmetries
result from environmental or genetic stresses, and so
may be reliable indicators of mate quality. Unlike fluc-
tuating asymmetries, directional asymmetries have a
consistent bias (to the left or right) across a population,
are not produced by stresses during development, and
are not potential indicators of mate quality. Directional
asymmetries in faces include systematic biases for the
left side of face to be larger (Previc, 1991) and more ex-
pressive (Borod, 1993) than the right. Because of these
directional asymmetries, a face will be somewhat asym-
metric in the absence of any stresses during development;
that is, perfect symmetry will not be the norm. There-
fore, it is possible that symmetry is attractive within the
naturally occurring range of symmetry levels because
variations within that range primarily reflect fluctuating
asymmetries, but that perfect symmetry is unattractive
because it is abnormal.
There is, however, another possible resolution of the
two sets of results. The studies reporting that perfect
symmetry is unattractive have compared normal faces
with perfectly symmetric chimeras, constructed by re-
flecting each half of the face about the vertical midline
(yielding two chimeras for each face). However, these
chimeras may not be appropriate for assessing the at-
tractiveness of perfect symmetry in faces because they
can contain structural abnormalities that make them look
strange. Part of the problem stems from the directional
size asymmetry in faces, which means that for many
faces, one chimera will be wider, and the other narrower,
than a normal face (i.e., the chimeras may have width–
height aspect ratios outside the normal range). Features
in the center of the face may also be abnormal in
chimeras. For example, if the nose bends to one side of
the face, then one chimera will have an abnormally wide
and the other an abnormally narrow nose. An asymmet-
rically positioned mouth will generate similar distortions
in the chimeras. Slight deviations from frontal views in
the original photographs will compound these problems
and introduce new abnormalities (e.g., the eyes may be-
come abnormally narrow-set or widely spaced in the chi-
meras if there is any rotation around the main axis of the
head). Given that attractiveness decreases with distortion
from a prototypical facial configuration (see, e.g., Rhodes
& Tremewan, 1996), these abnormalities are likely to
make the chimeras unattractive, thus offsetting any pref-
erence for symmetry.
An alternative way to construct perfectly symmetric
faces that does not introduce structural abnormalities is to
blend the normal and mirror images of each face. This
technique results in more natural looking symmetric faces
that might well be considered attractive. We therefore de-
cided to reassess the attractiveness of perfect symmetry
using this technique to make perfectly symmetric faces.
We also investigated whether the attractiveness of individ-
ual faces could be manipulated by varying their level of
symmetry across a wider range of symmetry levels than is
normally found in faces. This manipulation provides a
strong test of how the level of symmetry influences facial
attractiveness. It also tests Kowner’s (1996) claim that ob-
servers are not tuned to perceive the low degree of asym-
metry present in normal faces. If she is correct, observers
should be unable to distinguish normal (asymmetric) faces
from perfectly symmetric versions of the same faces.
Langlois and her colleagues (1994) used a similar tech-
nique to create symmetric versions of individual faces
when they blended the forward and mirror images of 16
slightly different shots of each face to make a symmetric
32-image version of each face. However, they did not use
these images to assess the attractiveness of symmetry.
Rather, they compared these same-face composites with
a composite made from 32 different individuals in a suc-
cessful attempt to show that the attractiveness of com-
posite or average faces was not simply the result of their
symmetry or an artifact of combining multiple images.
In Experiment 1, we varied the level of symmetry in
individual faces and examined the effect on attractive-
ness. There were four versions of each face (Figure 1).
One of these was a perfectly symmetric version created
by blending the normal and mirror images of the face.
The others were (1) a high-symmetry version, created by
reducing the differences between the original face and
its perfectly symmetric version by 50%,(2) the original
face showing a normal level of symmetry, and (3) a low-
symmetry version, created by increasing the differences
between the original face and its perfectly symmetric ver-
sion by 50% (see below for details).
Subjects rated all versions of all the faces on attrac-
tiveness. If a preference for symmetry is part of our evolu-
tionary heritage, as conjectured, then a preference for
symmetry should ultimately influence mate choice. There-
fore, we also asked subjects to rate opposite-sex faces on
appeal as a potential life partner. The order of attractive-
ness and mate-choice ratings was counterbalanced across
subjects. Finally, we asked subjects to rate all versions
of all the faces on symmetry level to determine whether
or not they were sensitive to different levels of symme-
try in faces.
. Sixty-four university students (32 males, 32 females) re-
ceived $20 each for participating.
. Digitized black-and-white photographs of 48 young adult
faces (24 males, 24 females) were used. All were frontal views, with
neutral expressions, taken with symmetric lighting. Blemishes, ear-
rings, clothing, and stray pieces of hair were removed using the cloning
stamp tool in Photoshop. To correct for any slight deviations from ver-
ticality in the images, the best-fitting line (found by eye) through the
midpoints of the lines joining the inner eye corners, the outermost edges
of nose, and the outer corners of mouth was aligned to vertical. The mid-
point between the eyes was centered on the screen before a face was
manipulated. A fixed set of 120 landmark points (a subset of the 169
points used in Rhodes & Tremewan, 1996) outlining the shape and po-
sition of the internal features and face outline was located on each face.
Perfectly symmetric versions were created using Gryphon’s Morph
software to average the normal and mirror images of each face. This
procedure first averages the locations of the points and then averages
the gray-level values in corresponding regions of the face (for details,
see Beale & Keil, 1995). To make high- and low-symmetry versions of
a face, corresponding points are found (by the program) on the original
face and its perfectly symmetric version, and all distances between the
corresponding points are reduced (to create a high-symmetry version)
or increased (to make a low-symmetry version) by 50%. The gray lev-
els from the original face are then mapped onto the new configuration.
An oval mask hid most of the neck and the top of the head (Figure 1).
The resulting face images measured approximately 8 12 cm and had
a resolution of 106 pixels per inch. One version of each face was as-
signed to each of four booklets, with booklets balanced for sex and sym-
metry level. Additional male-only and female-only booklets were cre-
ated for use in the mate appeal ratings.
. Each subject rated the attractiveness (1 not at all at-
tractive, 10 very attractive) and symmetry (1 not at all symmetric,
10 perfectly symmetric) of all four versions of all 48 faces (different
versions in different booklets, as described above) and rated all four ver-
sions of all 24 opposite-sex faces for mate appeal (“How appealing is
this person as a life partner?” 1 not at all appealing, 10 very ap-
pealing). Order of attractiveness and mate appeal ratings was counter-
balanced with order of booklets. Symmetry ratings were always made
last so that attention was not drawn to symmetry before the attractiveness
and mate appeal ratings were made. Subjects were tested individually.
Results and Discussion
Reliability for attractiveness, mate appeal, and sym-
metry ratings was assessed separately for male and fe-
male subjects and faces. All ratings were highly reliable,
with Cronbach alpha’s ranging from .92 to .98. Three-
way analyses of variance (ANOVAs) were carried out on
the mean attractiveness and symmetry ratings, with sex
Figure 1. Low-, normal-, high-, and perfect-symmetry versions for three faces from Experiment 1.
of subject as a between-subjects factor and sex of face
and symmetry level as repeated measures factors. A two-
way ANOVA was carried out on the mean mate appeal
ratings, with sex of subject as a between-subjects factor
and symmetry level as a repeated measures factor. For
each analysis, planned ttests were carried out to test for
differences between symmetry levels.
Attractiveness ratings
. There was a significant main
effect of symmetry level [F(3,186) 95.43, p< .0001],
qualified by an interaction between symmetry level and
sex of face [F(3,186) 5.00, p< .003; Figure 2, top]. In-
spection of Figure 2 shows that despite the interaction be-
tween symmetry level and sex of face, symmetry had qual-
itatively similar effects on the attractiveness of male and
female faces. Simple tests of main effects showed that the
effect of symmetry was significant for both male
[F(3,186) 53.63, p< .0001] and female [F(3,186)
88.89, p< .0001] faces. Perfect symmetry was signifi-
cantly more attractive, and low symmetry signif icantly less
attractive, than normal symmetry in both cases (all ps<
.001), but ratings of normal and high symmetry did not dif-
fer significantly for either male or female faces. None of
the sex differences at the different symmetry levels were
significant by simple tests of main effects (all Fs < 2.52).
Mate appeal ratings (opposite-sex faces only)
. As
for attractiveness, there was a significant main effect of
symmetry level [F(3,186) 59.74, p< .0001], which was
qualified by an interaction with sex of subject [F(3,186)
6.41, p< .002; Figure 2, bottom]. Simple tests of main
effects showed significant effects of symmetry level for
both male [F(3,186) 45.87, p< .0001] and female
[F(3,186) 20.28, p< .0001] subjects, but males found
perfectly symmetric faces more appealing as potential
life partners than did females [F(1,62) 4.10, p< .05].
The appeal of perfect symmetry was stronger for males
than females, but males and females did not differ on any
of the other symmetry levels (all Fs < 1.99).4 This sex
difference is consistent with evidence that physical ap-
pearance plays a larger role in the mate choices of males
than of females (Buss, 1987; Buss & Schmitt, 1993). We
note, however, that parental investment theory (Trivers,
1972) predicts the opposite sex difference. On that ac-
count, females should be more attuned to potential sig-
nals of mate quality than males because they make a
greater parental investment than males.
Symmetry ratings
. There was a significant main ef-
fect of symmetry level [F(3,186) 429.54, p< .0001].
Therefore, subjects were sensitive to the differences in
symmetry levels within faces produced by our distortions,
even though these differences were quite subtle (due to the
approximate bilateral symmetry of faces). Symmetry level
interacted with sex of face [F(3,186) 16.80, p< .0001].
Simple tests of main effects showed that the effect of
symmetry was significant for both male [F(3,186)
373.04, p< .0001] and female [F(3,186) 429.87, p<
.0001] faces, with symmetry ratings increasing signifi-
cantly from one symmetry level to the next in both cases
(male Ms3.8, 5.3, 6.0, and 8.3; female Ms4.1, 5.3,
5.8, and 8.3 for low, normal, high, and perfect symmetry,
respectively; all ps < .01). There was a marginal interac-
tion between symmetry and sex of subject [F(3,186)
2.25, p< .09], with a wider range of ratings for males
(3.8–8.4) than for females (4.0–8.2).
. Mean ratings were calculated for each
face for each rating scale. Table 1 shows Pearson product–
moment correlations between mean ratings of symmetry
and attractiveness, symmetry and mate appeal, and attrac-
tiveness and mate appeal for the normal (undistorted)
versions of the faces as well as for all versions (low, nor-
Figure 2. Mean attractiveness ratings (top) as a function of
symmetry level and sex of face in Experiment 1. Mean mate ap-
peal ratings (bottom) as a function of symmetry level and sex of
subject in Experiment 1. SE bars are shown.
mal, high, and perfect symmetry versions). In addition to
overall correlations for all subjects and faces, correla-
tions are also shown for opposite-sex ratings, which are
more directly relevant to assessing the role of symmetry
in mate choice.
For all faces (male and female) and ratings by all the
subjects, all the correlations were significant except for
that between mate appeal and symmetry in the normal
faces, which was only marginally significant. These re-
sults clearly show that facial symmetry is attractive, and
they corroborate our evidence for the attractiveness of
symmetry obtained by direct manipulation of facial sym-
metry. Ratings of attractiveness and mate appeal were
highly correlated, suggesting that ratings of attractive-
ness may have been based primarily on an assessment of
sexual attractiveness, rather than other aspects of attrac-
tiveness, such as cuteness.
For opposite-sex ratings when all versions of the faces
were considered, symmetry was again positively corre-
lated with attractiveness and mate appeal. When only
normal faces were considered, the correlations were sim-
ilar, but failed to reach significance with the smaller num-
ber of faces. The preference for symmetry appeared to
be stronger for males rating female faces than for females
rating male faces.
The effect of symmetry on attractiveness did not de-
pend on a face’s initial attractiveness. The increase in at-
tractiveness from the normal to the perfectly symmetric
version of each face was uncorrelated with initial attrac-
tiveness (r.02, df 46, n.s.). The corresponding cor-
relation for mate appeal was .01 (n.s.). The scatterplots
showed no hint of curvilinear relations between initial at-
tractiveness or mate appeal and the enhancing effect of in-
creased symmetry. These results do not support Langlois
et al.’s (1994) conjecture that only exceptionally un-
attractive faces are improved by an increase in symmetry.
They found that only very unattractive faces increased in
attractiveness when made perfectly symmetric, but this re-
sult may reflect the use of perfectly symmetric chimeras.
A normal face would have to be exceptionally unattractive
to be rated less attractive than such strange looking images.
Our results indicate that facial symmetry is attractive.
They should not, however, be taken to mean that sym-
metry is the only determinant of facial attractiveness. If
it were, then perfectly symmetric faces would all have
been judged equally attractive, and they were not. Mean
ratings (averaged across subjects) for the perfectly sym-
metric images ranged from 5.5 to 7.9 (means for the nor-
mal faces ranged from 2.8 to 8.0), and these judgments
were highly consistent, with male and female subjects’
ratings correlating .91 (df 46, p< .001). Nor do these
ratings indicate that symmetry is strikingly beautiful.
Nevertheless, they do show that people are sensitive to
different levels of symmetry in faces, and they generally
find symmetry attractive.
In Experiment 1, each subject rated the faces on attrac-
tiveness, mate appeal, and symmetry, raising the possibil-
ity that the correlations reported above were inflated by
carryover effects from one rating scale to another.5Given
that subjects rated a large number of images on each scale
(blocked by scale), subjects would be unlikely to remem-
ber exactly how they had rated any particular image on an
earlier scale. Nevertheless, there may be a more general
carryover effect from thinking about a face’s attractiveness
(or mate appeal) before rating its symmetry, which could
inflate the correlations between symmetry and attractive-
ness (or mate appeal). In Experiment 1A, therefore, we
tested additional subjects to determine whether significant
correlations between symmetry and attractiveness, and
symmetry and mate appeal, would still be found when dif-
ferent subjects rated the faces on each scale.
. One hundred and twenty-eight university students (64 males,
64 females) each received either $5 or course credit for participating.
Of these, 64 (32 males, 32 females) rated the faces on symmetry, 32
(16 males, 16 females) on attractiveness, and 32 (16 males, 16 females)
on mate appeal. Fewer subjects rated attractiveness and mate appeal be-
cause their data could be combined with the data from subjects in Ex-
periment 1 who had rated those scales first.
Tab l e 1
Pearson Product–Moment Correlations Between Mean Ratings of Symmetry and Attractiveness,
Symmetry and Mate Appeal, and Attractiveness and Mate Appeal in Experiments 1 and 1A
Experiment 1 Subjects Experiment 1A Subjects
All Male Female All Male Female
(All Faces) (Female Faces) (Male Faces) (All Faces) (Female Faces) (Male Faces)
Normal faces df 46 df 22 df 22 df 46 df 22 df 22
Symmetry and attractiveness .33† .36* .29 .29† .41† .11
Symmetry and mate appeal .26* .35* .21 .13 .42† .10
Attractiveness and mate appeal .96§ .99§ .93§ .85§ .93§ .77§
All versions df 190 df 94 df 94 df 190 df 94 df 94
Symmetry and attractiveness .36§ .37§ .27‡ .38§ .43§ .30‡
Symmetry and mate appeal .27§ .32‡ .22† .24§ .33§ .15
Attractiveness and mate appeal .95§ .98§ .93§ .88§ .93§ .85§
Note—Separate correlations are shown for normal (undistorted) faces and all versions (low, normal, high, and perfect
symmetry) of faces. Only opposite-sex faces were rated for mate appeal. *p< .10. p< .05. p< .01. §p< .001.
. The procedure was identical to that of Experiment 1 ex-
cept that each subject rated the faces on only one rating scale.
Results and Discussion
All ratings were highly reliable, with Cronbach alphas
ranging from 0.93 to 0.99. Mean symmetry, attractive-
ness, and mate appeal ratings were calculated for each
image using ratings from separate groups of subjects.
The symmetry ratings were calculated using the data
from the new group of subjects only because no subjects
in Experiment 1 had rated symmetry first. Attractiveness
and mate appeal ratings were calculated by combining the
data from the new subjects with data from those subjects
in Experiment 1 who had rated that scale first.
Table 1 shows that the correlations between symmetry
and attractiveness and between symmetry and mate ap-
peal were very similar to those obtained in Experiment 1.
Of these 12 correlations (see Table 1, rows 2, 3, 6, and
7), 6 increased from Experiment 1 to Experiment 1A,
and 6 decreased, suggesting that the use of the same sub-
jects to make all the ratings did not consistently inflate
the correlations. Most importantly, we replicated the sig-
nificant correlations between symmetry and attractive-
ness for normal (undistorted) versions of the faces and
for all versions of the faces. We also replicated the cor-
relation between symmetry and mate appeal for all ver-
sions of the faces, but not the marginal correlation for
normal faces found in Experiment 1. The correlations be-
tween attractiveness and mate appeal were high, but con-
sistently lower than in Experiment 1.
As in Experiment 1, males appeared to have a stronger
preference for symmetry in female faces than females had
for symmetry in male faces. Males showed significant cor-
relations between symmetry and attractiveness, and sym-
metry and mate choice, when rating normal female faces
(cf. marginal correlations in Experiment 1). For females,
neither correlation was significant for normal faces in ei-
ther experiment, and the correlation between symmetry
and mate appeal, which was significant for ratings of all
versions of the faces in Experiment 1, was not significant.
As in Experiment 1, we found no support for the notion
that symmetry enhances only unattractive faces. The dif-
ference in attractiveness between normal and perfectly
symmetric versions of faces was uncorrelated with ini-
tial attractiveness (r.20, df 46, n.s.), and the corre-
sponding correlation for mate appeal was .10 (n.s.). The
scatterplots showed no sign of curvilinear relationships.
Taken together, the correlations obtained in Experi-
ments 1 and 1A suggest that higher levels of symmetry
enhance the attractiveness and mate appeal of a face. These
effects are seen most clearly when an extended range of
symmetry levels is used (all versions), but are still appar-
ent when only the normal faces are considered. The
opposite-sex ratings indicate that males and females
both find symmetry attractive in opposite sex faces, but
that the preference may be stronger for males than fe-
males. Only males showed replicable correlations be-
tween symmetry and mate appeal.
In Experiment 1, we created perfectly symmetric faces
by blending each face with its mirror image. This tech-
nique has the advantage of creating natural-looking sym-
metric faces. However, blends themselves may be more
attractive than normal faces, because they are more av-
erage (Langlois & Roggman, 1990), because they have
smoother skin texture (Benson & Perrett, 1992), or both.
Therefore, our perfectly symmetric versions of faces
could have been attractive because they were blends rather
than because they were symmetric.
Two points argue against the interpretation of our re-
sults as solely due to blending artifacts. First, our per-
fectly symmetric faces were created by blending two face
images, and two-face blends were not more attractive
than the original faces in Langlois and Roggman’s (1990)
study. Sixteen faces had to be entered into the compos-
ites before they were more attractive than the original
faces. Second, blending artifacts cannot explain the full
pattern of our results because reducing the symmetry of
normal faces decreased attractiveness, and neither the
normal- nor low-symmetry versions were blends.
Nevertheless, in Experiment 2 we attempted to rule out
a blending account of our results by comparing the at-
tractiveness of faces at three symmetry levels (normal,
high, and perfect), all of which were blends (see Figure 3
and below for details). On each trial, subjects were shown
two versions of the same face at different levels of sym-
metry and were asked to choose the more attractive one.6
Three kinds of pairs were presented for each face: the
normal- and high-symmetry versions, the high- and
perfect-symmetry versions, and the normal- and perfect-
symmetry versions of that face. In each case, subjects
should select the more symmetric version in the pair if
symmetry is attractive, and given that all the images were
blends, any such symmetry preference would be unlikely
to result simply from a blending artifact. Alternatively, if
the preference for perfectly symmetric faces in Experi-
ment 1 was due solely to a blending artifact, we should
find no preference for perfectly symmetric images in this
study. In addition to choosing the more attractive face in
each pair, subjects were also asked to choose the face
with more appeal as a potential life partner (mate appeal)
(for opposite-sex faces only).
In computer graphics, a distinction is made between
two aspects of an image that can be manipulated inde-
pendently, namely “shape” and “texture” information.
Shape information refers to the spatial layout of land-
mark points or features in an image, and texture informa-
tion refers to variations in the pattern of light and dark
(or colors) across an image. Asymmetries can also be
classified as asymmetries in shape or texture. An exam-
ple of a shape asymmetry would be a difference in the
position of the eyes. An example of a textural asymmetry
would be a difference in brightness (or color) between
corresponding regions on the two sides of a face (e.g.,
one pale eye and one dark eye). Blending the forward and
mirror versions of a face results in an image with perfect
bilateral symmetry of both shape and texture. The ma-
nipulation used to produce the high- and low-symmetry
images in Experiment 1 (warping each face halfway to-
ward, or away from, its perfectly symmetric configura-
tion), however, altered only shape symmetry. Reducing
shape symmetry reduced attractiveness, but increasing
shape symmetry did not increase attractiveness. In Ex-
periment 2, we investigated whether attractiveness (and
mate appeal) would increase if both texture and shape
symmetry were increased in the high-symmetry versions.
Kowner (1996) has hypothesized that people are not
sensitive to the subtle asymmetries present in normal faces.
If she is correct, subjects should be unable to discrimi-
nate any symmetry differences between the two images in
each pair. To test this claim, we also asked people to choose
the more symmetric face from each pair of images.
. Sixty university students (30 males, 30 females) received
$10 each for participating.
. New normal versions of each face were created by blending
(50:50) the low- and high-symmetry versions from Experiment 1 (Fig-
ure 3, left). High-symmetry versions (Figure 3, middle) were created by
blending the forward and mirror images of each face in a 25:75 ratio
(see Experiment 1 for general details of the blending process). If one
considers a continuum of images with the normal face on the left, the
mirror image on the right, and the perfectly symmetric image lying mid-
way in between, then this 25:75 blend morphs the normal face halfway
toward its perfectly symmetric version. In this way, we can create a
high-symmetry version of each face in which both shape and textural
symmetry have been increased by 50%. Perfect-symmetry versions
were those used in Experiment 1 (Figure 3, right). These images were
displayed in the same oval masks as in Experiment 1.
Three pairings were created for each face, one consisting of the normal-
and high-symmetry versions, one consisting of the high- and perfect-
symmetry versions, and the other consisting of the normal- and perfect-
symmetry versions. Each of the three face pairs for a face was assigned
to a different booklet, with booklets balanced for sex of face, type of
pair, and left–right arrangement of faces in the pairs (less symmetric
face on left or right). Additional male-only and female-only booklets
were created for use in the mate appeal ratings.
. Each subject made forced choices on attractiveness,
mate appeal (opposite-sex faces only), and symmetry for all the face
pairs in all the booklets, with trials blocked by rating scale. Order of at-
tractiveness and mate appeal choices was counterbalanced with order of
booklets. Symmetry choices were always made last so that attention
would not be drawn to symmetry before the attractiveness and mate ap-
peal judgments were made. Note that symmetry judgments were in-
cluded to determine whether subjects could accurately detect the dif-
ferences in symmetry introduced by our manipulations, and not to
determine whether symmetry correlated with attractiveness (or mate
appeal). Therefore, we did not obtain the symmetry and attractiveness
(and mate appeal) judgments from independent groups of subjects.7
Figure 3. Normal-, high-, and perfect-symmetry versions for three faces from Experiment 2.
Results and Discussion
The dependent variable for each rating scale was a
symmetry preference score, calculated as the proportion
of trials on which the more symmetric member of each
pair was chosen.8A score greater than .50 indicates a pref-
erence for the more symmetric members of the pairs.
Separate three-way ANOVAs were carried out on the mean
symmetry preference scores for attractiveness and sym-
metry choices, with sex of subject as a between-subjects
factor and sex of face and pair type as repeated measures
factors. The levels of pair type were normal-high, high-
perfect, and normal-perfect. A two-way ANOVA was car-
ried out on the mean symmetry preference scores
for mate appeal choices, with sex of subject as a between-
subjects factor and pair type as a repeated measures factor.
Planned ttests were carried out to test whether symmetry
preferences were significantly greater than .50. Tukey
tests were used for other, unplanned comparisons.
. For all three pair types, there was a
significant preference for the more symmetric face in the
pair (i.e., mean preference scores were significantly
greater than .50; all ts > 11.18, ps < .001). Therefore, when
choosing between two versions of the same face, subjects
consistently preferred the more symmetric one. There
was a significant main effect of pair type [F(2,116)
77.89, p< .0001; Figure 4]. Not surprisingly, the strong-
est symmetry preference was for the pairs with the great-
est symmetry difference, namely the normal-perfect
pairs (M.77). The next highest preference was for
normal-high pairs (M.73), followed by high-perfect
pairs (M.61, all ps < .05, Tukey tests). There was a
marginal interaction between pair type and sex of subject
[F(2,116) 2.39, p< .10]. Males had stronger symme-
try preferences than females for normal-high (M.76,
males; M.71, females) and high-perfect (M.63,
males; M.58, females) pairs, but not for normal-perfect
(M.77, males; M.77, females) pairs. These results
confirm the attractiveness of facial symmetry and dem-
onstrate that it is not a blending artifact.
Mate appeal
. The results were very similar to those
obtained for attractiveness choices. For all three pair types,
there was a significant preference for the more symmetric
member of the pair (all ts > 9.90, ps < .001). There was
a significant main effect of pair type [F(2,116) 75.60,
p< .0001; Figure 4], with the highest symmetry prefer-
ence for normal-perfect pairs (M.77), followed by
normal-high pairs (M.73), followed by high-perfect
pairs (M.60, all ps < .01, Tukey tests). There was also
a significant main effect of sex of subject [F(1,58) 9.84,
p< .003], with males (M.75) showing a stronger over-
all preference for symmetry than females (M.65).
. In this task, a symmetry preference repre-
sents accurate performance (i.e., the most symmetric face
was chosen as more symmetric). For all three pair types,
performance was significantly better than chance (all
ps < .001). There was a significant main effect of pair
type [F(2,116) 83.03, p< .0001], with best perfor-
mance on normal-perfect pairs (M.94), followed by
normal-high pairs (M.88), followed by high-perfect
pairs (M.81, all ps < .01, Tukey tests). The greater sen-
sitivity to the symmetry difference in normal-high than in
high-perfect pairs may be a perceptual learning effect re-
sulting from more experience at discriminating variations
in symmetry close to normal levels. This ordering of sen-
sitivity to symmetry differences in the three types of pairs
matches, and may account for, differences in the strength
of the symmetry preference for the three types of pair in
the attractiveness judgments (Figure 4). The main effect
of pair type was qualified by a significant interaction
with sex of face [F(1,58) 4.74, p< .02]. The pattern of
accuracy found for the three pair types (see above) did
not differ for male and female faces (see above), but accu-
racy was higher for male than for female faces in the nor-
mal-high and normal-perfect pairs. There was a signifi-
cant main effect of sex of face [F(1,58) 51.58, p<
.0001], which was qualified by an interaction with sex of
subject [F(1,58) 4.59, p< .04]. Symmetry was judged
more accurately in male (M.90) than in female faces
(M.85), and this difference was greater for male (M
.91, male faces; M.86, female faces) than for female
subjects (M.88, male faces; M.85, female faces).
We have shown that the attractiveness of individual faces can be in-
creased by increasing the bilateral symmetry of those faces, that attrac-
tiveness is reduced when symmetry levels are decreased, and that per-
fectly symmetric faces, although not strikingly beautiful, are preferred
to faces with lower levels of symmetry. Because faces are approxi-
mately bilaterally symmetric, our manipulation of symmetry did not
dramatically alter the faces (see Figures 1 and 3). Nevertheless people
1.0 Attractiveness
Mate Appeal
Type of Comparison
Symmetry Preference
Figure 4. Mean symmetry preference as a function of type of
comparison (pair type) in Experiment 2. Choice pairs were al-
ways versions of the same face. Symmetry preference values
greater than 0.5 indicate a bias to select the more symmetric
member of each pair. SE bars are shown. NH, choices between
normal- and high-symmetry versions; HP, choices between high-
and perfect-symmetry versions; NP, choices between normal-
and perfect-symmetry versions.
were sensitive to the rather subtle differences in symmetry that resulted,
and preferred higher levels of symmetry.
We also found that attractiveness was associated with natural varia-
tions in symmetry between different faces (for both undistorted faces
and sets of images covering an extended range of symmetry levels).
These results corroborate our experimental evidence for the attractive-
ness of facial symmetry, described above. In addition, they replicate ear-
lier positive correlations between symmetry and attractiveness (Gram-
mer & Thornhill, 1994; Jones & Hill, 1993; Zebrowitz et al., 1996).
They are also consistent with a recent report that symmetry differences
between identical twins correlate positively with differences in attrac-
tiveness (Mealey & Townsend, 1998).
Both male and female subjects found symmetry attractive in opposite-
sex faces, but the preference appeared to be stronger for males. This sex
difference is consistent with the finding that physical appearance plays
a larger role in the mate choices of males than females (Buss, 1987;
Buss & Schmitt, 1993). It is less consistent with parental investment
theory (Trivers, 1972), which predicts greater female sensitivity to sig-
nals of mate quality (assuming that symmetry is a signal of mate qual-
ity) because their reproductive investment is greater than that of males.
We also note that Grammer and Thornhill (1994) found very similar
correlations between facial symmetry and attractiveness of opposite-
sex faces for males and females, and suggest that the sex difference
found in our experiments be viewed with caution.
Kowner (1996) and others (Langlois et al., 1994; Samuels et al.,
1994) have reported that perfect symmetry in faces is unattractive. We
suggest that their results may reflect the use of perfectly symmetric
chimeras, which introduce structural abnormalities (see introduction)
and are therefore likely to be unattractive. Our results indicate that when
these abnormalities are avoided, by blending normal and mirror images
of faces, the resulting perfectly symmetric images are more attractive
than the original faces. Moreover, this result did not appear to be an ar-
tifact of the attractiveness of blends per se because perfectly symmetric
blends were preferred to other, less symmetric, blends.
Since we began these studies, Swaddle and Cuthill (1995) have re-
ported that symmetry is unattractive, using a similar symmetry manip-
ulation to ours. We suspect that their result is due to differences in fa-
cial expression that covaried with symmetry level in their study.
Expression was not controlled, and the sample face shown in their paper
had a small, asymmetric smile, which disappeared as symmetry in-
creased. Smiles are attractive (see, e.g., Cunningham et al., 1995), so if
this sample face is typical, then Swaddle and Cuthill’s faces would have
become less attractive as symmetry increased and they lost their smiles.
Symmetric smiles may also be unnatural (Kowner, 1996), which could
restrict the appeal of perfect symmetry for smiling faces. We are cur-
rently investigating the effects of expression on the attractiveness of
symmetry. Another feature of Swaddle and Cuthill’s stimuli that could
have minimized the appeal of symmetry is that only the internal fea-
tures of faces were shown, thereby eliminating cues to mate quality pro-
vided by the jaw and chin. Development of this part of the face is
strongly influenced by sex hormones, which stress the immune system
(Thornhill & Gangestad, 1996), and symmetry in that region may there-
fore provide a powerful cue to mate quality. Our results show that when
emotional expression is carefully controlled (and neutral), and the
whole face is visible, symmetry is attractive. Similar results have re-
cently been obtained by Perrett and his colleagues (Perrett, Burt, Lee,
Rowland, & Edwards, 1998).
The hypothesis that facial symmetry is attractive was derived from
evolutionary theory. We therefore collected mate appeal ratings, as well
as attractiveness ratings, to gain preliminary information about whether
symmetry might influence human mate choice. The mate appeal results
were similar to those described above for attractiveness, with more sym-
metric images being rated as more appealing as a potential life partner
than less symmetric images. The sex difference found for attractiveness
was even greater for mate appeal ratings, with only males showing
replicable correlations between symmetry and mate appeal. More di-
rect measures of the impact of facial symmetry on reproductive behav-
ior will be needed to determine whether facial symmetry (like bodily
symmetry, Thornhill & Gangestad, 1994) influences mate choice, but
the present results suggest that it may do so.
In the introduction, we noted that the presence of directional asym-
metries in faces means that some degree of asymmetry is normal, and
that not all facial asymmetries would indicate a poor-quality mate. It
was not, therefore, obvious that perfect facial symmetry would be at-
tractive (or even that it should be considered optimal in a system tuned
to detect fluctuating asymmetries). Does our finding that people prefer
perfectly symmetric faces to less symmetric versions mean that perfect
symmetry is attractive despite its abnormality? We suspect not, because
directional asymmetries in resting faces appear to be very small, which
means that perfect symmetry is not abnormal in the sense of deviating
markedly from the population mean. Rhodes, Sumich, and Byatt (in
press) found that the average female face (made by averaging female
faces together to eliminate fluctuating, but not directional, asymme-
tries) and its perfectly symmetric counterpart were perceived as equally
symmetric. The male average was considered less symmetric than its
perfectly symmetric counterpart, but still appeared more symmetric
than any individual male face. Therefore, directional asymmetries in
faces (especially female faces) appear to be very small, so most facial
asymmetries would be fluctuating asymmetries, which could potentially
signal mate quality. It is an open question whether the slight degree of
asymmetry present in the average male face (due to directional asym-
metries) would be more attractive than perfect symmetry. Future stud-
ies using a finer grained manipulation of symmetr y levels than that used
in the present experiments would be needed to answer this question.
If facial symmetry is a standard of beauty set by nature rather than
culture, then how might a preference for symmetry have evolved? In the
introduction, we raised the possibility that facial symmetry, like sym-
metry in other morphological traits (for an extensive review, see Thorn-
hill & Møller, 1997), may be a reliable signal of health and genetic qual-
ity. If it is, individuals who prefer to mate with symmetric individuals
would have higher fitness, on average, than those without a preference
for symmetric mates, and the symmetry preference would be selected
for. This possibility receives preliminary support from Shackelford and
Larsen’s (1997) results, described above.
There are, however, other ways that a symmetry preference could
evolve. Given that symmetry is heritable (Møller & Thornhill, 1997),
the offspring of individuals who chose symmetric mates would tend to
be symmetric and therefore popular as mates (as long as the preference
for symmetry was also heritable). This sort of feed-forward mechanism
can maintain preferences in a population (Fisher, 1915, 1930). A prefer-
ence for facial symmetry could also be a by-product of some general
sensitivity to symmetric patterns that has evolved for reasons that have
nothing to do with assessing mate quality.9For example, sensitivity to
symmetry could have evolved because it is useful in form perception
generally. Support for this “perceptual bias” hypothesis comes from
simulation studies showing that symmetry preferences evolve when
connectionist networks are trained to recognize patterns (Enquist &
Arak, 1994; Johnstone, 1994) and from evidence that symmetric pat-
terns generally are attractive (Corballis & Beale, 1976). Note that neither
the feed-forward mechanism nor the perceptual bias account requires
that symmetry signals mate quality or that a symmetry preference is
specific for faces (or bodies) for such a preference to evolve.
Our results are consistent with the notion that symmetry is a standard
of beauty set by nature, but they do not allow us to rule out an alterna-
tive, culturally based account. Cross-cultural and developmental stud-
ies are potentially informative. Evidence of cross-cultural agreement on
the attractiveness of facial symmetry would support the biological view,
as would evidence of early emergence of the preference (so that there is
little opportunity for cultural shaping) or emergence at puberty (trig-
gered by the sex hormones that motivate the search for a mate). Addi-
tional studies are also needed to replicate and extend Shackelford and
Larsen’s (1997) initial evidence for an association between facial sym-
metry and health.
Several commentators have suggested that a preference for symmetry
may underlie our preference for averageness because average faces are
more symmetric than other faces (see Langlois et al., 1994, for a review).
Our finding that symmetry is attractive adds plausibility to this conjec-
ture, which was advanced in the absence of good evidence that symme-
try is indeed attractive. Nevertheless, we think it unlikely that a preference
for symmetry will completely account for the attractiveness of average-
ness. Langlois and her colleagues (1994) have shown that a blend of a
large number of different faces is more attractive than perfectly symmet-
ric versions of individual faces like those used here. This result suggests
that an average facial configuration, obtained by blending many different
faces, is more attractive than perfect symmetry. We are currently investi-
gating the precise relationship between preferences for symmetry and av-
erageness. Our results suggest that symmetry and averageness make in-
dependent contributions to attractiveness (Rhodes et al., in press).
In the last decade, scholars from a variety of disciplines have become
interested in the evolution of the mind (e.g., Barkow, Cosmides, &
Tooby, 1992; Corballis, 1991; Dennett, 1995; Pinker, 1994, 1997). A clear
consensus has emerged that evolutionary forces have shaped our per-
ceptual, communicative, and reasoning systems. The perception of facial
attractiveness seems especially likely to be under selection pressure, given
the importance of facial attractiveness in human mate choice (Buss &
Schmitt, 1993). Our results lend preliminary support to this view.
Barkow, J. H., Cosmides, L., & Tooby, J. (1992). The adapted mind:
Evolutionary psychology and the generation of culture. New York:
Oxford University Press.
Beale, J. M., & Keil, F. C. (1995). Categorical effects in the percep-
tion of faces. Cognition, 57, 217-239.
Benson, P., & Perrett, D. (1992, February 22). Face to face with the
perfect image. New Scientist, No. 1809, 32-35.
Borod, J. C. (1993). Cerebral mechanisms underlying facial, prosodic,
and lexical emotional expression: A review of neuropsychological
studies and methodological issues. Neuropsychology, 7, 445-463.
Brooks, M., & Pomiankowski, A. (1994). Symmetry is in the eye of
the beholder. Trends in Ecology & Evolution, 9, 201-202.
Buss, D. M. (1987). Sex differences in human mate selection criteria:
An evolutionary perspective. In C. Crawford, M. Smith, & D. Krebs
(Eds.), Sociobiology and psychology: Ideas, issues and applications
(pp. 335-351). Hillsdale, NJ: Erlbaum.
Buss, D. M., & Schmitt, D. P. (1993). Sexual strategies theory: An evo-
lutionary perspective on human mating. Psychological Review, 100,
Concar, D. (1995). Sex and the symmetrical body. New Scientist, 146,
Corballis, M. C. (1991). The lop-sided ape. New York: Oxford Uni-
versity Press.
Corballis, M. C., & Beale, I. L. (1976). The psychology of left and
right. Hillsdale, NJ: Erlbaum.
Cronin, H. (1991). The ant and the peacock: Altruism and sexual selec-
tion from Darwin to today. Cambridge: Cambridge University Press.
Cunningham, M. R., Roberts, A. R., Wu, C.-H., Barbee, A. P., &
Druen, P. B. (1995). “Their ideas of beauty are, on the whole, the same
as ours”: Consistency and variability in the cross-cultural perception
of female physical attractiveness. Journal of Personality & Social
Psychology, 68, 261-279.
Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the
meanings of life. New York: Simon & Shuster.
Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Na-
ture, 372, 169-172.
Fisher, R. A. (1915). The evolution of sexual preference. Eugenics Re-
view, 7, 184-192.
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford:
Clarendon Press.
Gangestad, S. W., & Buss, D. M. (1993). Pathogen prevalence and
human mate preferences. Ethology & Sociobiology, 14, 89-96.
Grammer, K., & Thornhill, R. (1994). Human (Homo sapiens) facial
attractiveness and sexual selection: The role of symmetry and avera-
geness. Journal of Comparative Psychology, 108, 233-242.
Johnstone, R. A. (1994). Female preference for symmetrical males as
a by-product of selection for mate recognition. Nature, 372, 172-175.
Jones, D., & Hill, K. (1993). Criteria of facial attractiveness in five
populations. Human Nature, 4, 271-296.
Kowner, R. (1996). Facial asymmetry and attractiveness judgment in
developmental perspective. Journal of Experimental Psychology:
Human Perception & Performance, 22, 662-675.
Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only
average. Psychological Science, 1, 115-121.
Langlois, J. H., Roggman, L. A., Casey, R. J., Ritter, J. M., Rieser-
Danner, L. A., & Jenkins, V. Y. (1987). Infant preferences for at-
tractive faces: Rudiments of a stereotype? Developmental Psychology,
23, 363-369.
Langlois, J. H., Roggman, L. A., & Musselman, L. (1994). What is
average and what is not average about attractive faces? Psychological
Science, 5, 214-220.
Mealey, L., & Townsend, G. C. (1998). The role of fluctuating asym-
metry on judgments of physical attractiveness: A monozygotic co-
twin comparison. In J. Kieser & L. Mealey (Eds.). Dento-facial vari-
ation in perspective. Singapore: World Scientif ic Publishing.
Møller, A. P., & Pomiankowski, A. (1993). Fluctuating asymmetry
and sexual selection. Genetica, 89, 267-279.
Møller, A. P., & Thornhill, R. (1997). A meta-analysis of the heri-
tability of developmental stability. Journal of Evolutionary Biology,
10, 1-16.
Palmer, A. R., & Strobeck, C. A. (1986). Fluctuating asymmetry:
Measurement, analysis, pattern. Annual Review of Ecology & System-
atics, 17, 391-421.
Parsons, P. A. (1990). Fluctuating asymmetry: An epigenetic measure
of stress. Biological Review, 65, 131-145.
Perrett, D. I., Burt, D. M., Lee, K. J., Rowland, D. A., & Edwards,
R. E. (1998). Fluctuating asymmetry in human faces: Symmetry is
beautiful. Unpublished manuscript.
Perrett, D. I., May, K. A., & Yoshikawa, S. (1994). Facial shape and
judgements of female attractiveness. Nature, 368, 239-242.
Pinker, S. (1994). The language instinct: The new science of language
and mind. London: Penguin.
Pinker, S. (1997). How the mind works. New York: Norton.
Previc, F. H. (1991). A general theory concerning the prenatal origins of
cerebral lateralization in humans. Psychological Review, 98, 299-334.
Rhodes, G. (1996). Superportraits: Caricatures and recognition. Hove,
U.K.: Psychology Press.
Rhodes, G., Sumich, A., & Byatt, G. (in press). Are average facial
configurations only attractive because of their symmetry? Psycho-
logical Science.
Rhodes, G., & Tremewan, T. (1996). Averageness, exaggeration, and
facial attractiveness. Psychological Science, 7, 105-110.
Ridley, M. (1992). Swallows and scorpionflies f ind symmetry is beau-
tiful. Science, 257, 327-328.
Samuels, C. A., Butterworth, G., Roberts, T., Graupner, L., &
Hole, G. (1994). Facial aesthetics: Babies prefer attractiveness to
symmetry. Perception, 23, 823-831.
Shackelford, T. K., & Larsen, R. J. (1997). Facial asymmetry as an
indicator of psychological, emotional, and physiological distress. Jour-
nal of Personality & Social Psychology, 72, 456-466.
Swaddle, J. P., & Cuthill, I. C. (1995). Asymmetr y and human facial
attractiveness: Symmetry may not always be beautiful. Proceedings
of the Royal Society of London: Series B, 261, 111-116.
Symons, D. (1979). The evolution of human sexuality. Oxford: Oxford
University Press.
Thornhill, R., & Gangestad, S. W. (1993). Human facial beauty.
Human Nature, 4, 237-269.
Thornhill, R., & Gangestad, S. W. (1994). Human fluctuating asym-
metry and sexual behavior. Psychological Science, 5, 297-302.
Thornhill, R., & Gangestad, S. W. (1996). The evolution of human
sexuality. Trends in Ecology & Evolution, 11, 98-102.
Thornhill, R., & Møller, A. P. (1997). Developmental stability, dis-
ease and medicine. Biological Reviews, 72, 497-548.
Trivers, R. L. (1972). Parental investment and sexual selection. In
B. Campbell (Ed.), Sexual selection and the descent of man: 1871–
1971 (pp. 136-179). Chicago: Aldine.
Watson, P. M., & Thornhill, R. (1994). Fluctuating asymmetry and
sexual selection. Trends in Ecology & Evolution, 9, 21-25.
Zebrowitz, L. A., Voinescu, L., & Collins, M. A. (1996). Wide-
eyed and crooked-faced—Determinants of perceived and real honesty
across the lifespan. Personality & Social Psychology Bulletin, 22,
1. Here and elsewhere, the claim that a particular characteristic is at-
tractive should be interpreted in the relative sense of attractiveness vary-
ing with the level of that characteristic, rather than in an absolute sense.
2. Although average faces are attractive, they may not be the most at-
tractive faces. For example, the most attractive female faces appear to
differ systematically from average in some respects, having relatively
large eyes, high cheekbones, small jaws and chins, and short nose-to-
mouth distances (Perrett et al., 1994). Exaggerating these deviations
from averageness increases attractiveness further. For some traits, then,
extreme values may be preferred to average values (see Cronin, 1991,
and Rhodes, 1996, for discussions of the possible adaptive value of pref-
erences for certain extreme traits).
3. This preference for asymmetric faces was found for the faces of
children and young adults, but not for elderly adults. Symmetric ver-
sions were preferred for elderly faces, apparently because they looked
4. A follow-up analysis of opposite-sex attractiveness ratings showed
the same interaction [F(3,186) 4.54, p< .005], with the same pattern
of means, although the sex difference for perfectly symmetric images
(or at any other symmetry level) was not significant by a simple test of
main effects.
5. Note that the attractiveness and mate appeal ratings could not have
been influenced by making symmetry ratings because symmetry was
always rated last, so the results of the ANOVAs on those variables can-
not have been affected by making symmetry ratings.
6. This forced-choice procedure follows that used in other studies in-
vestigating facial attractiveness. For example, Kowner (1996) required
subjects to make forced choices between natural and perfectly sym-
metric versions of faces, and Perrett et al. (1994) asked subjects to make
forced choices between even more similar pairs of images (composites
that differed in the number and selection of component images).
7. It is possible that making attractiveness and mate appeal judgments
for opposite- (but not same-) sex faces contributes to any similarities
found for these two tasks. However, comparison of the correlations be-
tween attractiveness and mate appeal in Experiments 1 (same raters)
and 1A (independent raters) suggests that the contribution of any such
carryover effects would be quite small.
8. Note that separate proportions (symmetry scores) were calculated
for each subject for each cell of the design, so that an ANOVA on such
proportions is quite proper.
9. Note that more than one kind of selection pressure can operate on
a given trait or preference (see Rhodes, 1996, for further discussion).
(Manuscript received October 10, 1996;
revision accepted for publication January 14, 1998.)
... The neural response to symmetry has been studied in the last 20 years [5][6][7][8]. Symmetry may be important in sexual attraction [9][10][11], and in art and aesthetics [12]. Visual symmetry is a cue for image segmentation [13]. ...
... Symmetrical patterns are noticeable signals, partly because they look the same from various viewpoints [224,225]. Like many animals, humans are attracted to symmetrical faces [9,11] and bodies [226]. ...
Full-text available
This review of symmetry perception has six parts. Psychophysical studies have investigated symmetry perception for over 100 years (part 1). Neuroscientific studies on symmetry perception have accumulated in the last 20 years. Functional MRI and EEG experiments have conclusively shown that regular visual arrangements, such as reflectional symmetry, Glass patterns, and the 17 wallpaper groups all activate the extrastriate visual cortex. This activation generates an event-related potential (ERP) called sustained posterior negativity (SPN). SPN amplitude scales with the degree of regularity in the display, and the SPN is generated whether participants attend to symmetry or not (part 2). It is likely that some forms of symmetry are detected automatically, unconsciously, and pre-attentively (part 3). It might be that the brain is hardwired to detect reflectional symmetry (part 4), and this could contribute to its aesthetic appeal (part 5). Visual symmetry and fractal geometry are prominent in hallucinations induced by the psychedelic drug N,N-dimethyltryptamine (DMT), and visual flicker (part 6). Integrating what we know about symmetry processing with features of induced hallucinations is a new frontier in neuroscience. We propose that the extrastriate cortex can generate aesthetically fascinating symmetrical representations spontaneously, in the absence of external symmetrical stimuli.
... Ha sido sobradamente estudiada la relación entre atractivo y simetría facial (Rhodes, et al., 1998;Perrett, et al., 1999), resultando siempre reconocida la ausencia de simetría como más desagradable. Asimismo, un estudio centrado en las asimetrías faciales (Kowner, 1996) concluye que es en los parpados y la zona ocular donde las variaciones que afectan al óvalo facial se perciben como más antinaturales. ...
Full-text available
El neural correlates of consciousness (NCC) identifica los procesos neuronales mínimos que deben producirse para que un estímulo sea percibido de forma consciente. En numerosas ocasiones, los estímulos percibidos no alcanzan a completar los procesos del NCC. Así cabe discriminar entre aquellos estímulos subliminales, que no alcanzan la consciencia, y aquellos supraliminales, que sí lo hacen. En el medio cinematográfico se han desarrollado diferentes estrategias que persiguen desencadenar procesos neuronales de bajo nivel sin superar el umbral de lo supraliminal. Su diseño persigue impactar en el espectador, presentando una naturaleza netamente diferenciada en razón de los motivos por los que los estímulos no ingresan en la consciencia. La principal distinción cabe establecerla entre aquellas basadas en una exposición del estímulo que resulta insuficiente, de aquellas otras donde el estímulo se procesa como un elemento integrado o subsumido dentro de un todo más amplio al que sí accede la consciencia del individuo. Este artículo propone una aproximación al dominio subliminal cinematográfico desde una perspectiva analítica aplicada a un caso de estudio paradigmático como es El Exorcista (1973), gracias al uso programático que dentro de ese film se desarrolla en torno al umbral donde cabe situar el territorio de lo subliminal.
... Other studies stress the importance of familiarity with the given stimuli 74,75 , providing an explanation that is relatively independent of facial cues regarding biological quality. It has been suggested that facial symmetry is an indicator of biological quality [76][77][78] . Fluctuating asymmetry (random deviation from bilateral symmetry) is considered to be a measure of an organism's relative developmental instability and is known to increase under environmental and genetic stress 77,[79][80][81] . ...
Full-text available
Attractiveness is a proposed universal cue to overall biological quality. Nonetheless, local raters and raters of the same ethnicity may be more accurate in assessing the cues for attractiveness than distant and unfamiliar raters. Shared ethnicity and shared environment may both affect rating accuracy: our aim was to compare their relative influence. Therefore, we photographed young Vietnamese participants (N = 93, 33 women) from Hanoi, Vietnam. The photographs were rated by Czechs, Asian Vietnamese, and Czech Vietnamese (raters of Vietnamese origin who lived in Czechia for all or most of their life). Using geometric morphometrics, we measured facial shape cues to biological quality: averageness, asymmetry, and sexual dimorphism. We expected that Vietnamese raters residing in Czechia and Vietnam would agree on perceived attractiveness and use shape-related facial cues to biological quality better than Czech European raters, who are less familiar with East Asians. Surprisingly, mixed-effect models and post hoc comparisons identified no major cross-group differences in attributed attractiveness and path analyses revealed that the three groups based their rating on shape-related characteristics in a similar way. However, despite the considerable cross-cultural agreement regarding perceived attractiveness, Czech European raters associated attractiveness with facial shape averageness significantly more than Vietnamese raters.
... Another Gestalt cue strongly affecting numerosity perception is symmetry. Symmetry is of special interest in the visual domain, manly for its biological relevance [41][42][43] prompting figure-ground segregation [44][45][46][47][48] . As for the connectedness illusion, symmetric dot patterns are usually perceived as less numerous compared to random patterns 22,49 . ...
Full-text available
Symmetry is an important and strong cue we rely on to organize the visual world. Although it is at the basis of objects segmentation in a visual scene, it can sometimes bias our perception. When asked to discriminate numerical quantities between symmetric and asymmetric arrays, individuals tend to underestimate the number of items in the symmetric stimuli. The reason for this underestimation is currently unknown. In this study we investigated whether the symmetry-induced numerosity underestimation depends on perceptual grouping mechanisms by depriving attentional resources. Twenty-six adults judged the numerosity of dot arrays arranged symmetrically or randomly, while ignoring a visual distractor (single task) or while simultaneously judging its color and orientation (dual-task). Diverting attention to the concurrent color–orientation conjunction task halved the symmetry-induced numerosity underestimation. Taken together these results showed that the bias in numerosity perception of symmetric arrays depends—at least partially—on attentional resources and suggested that it might originate from the recruitment of attentional dependent incremental grouping mechanisms.
... Previous studies that investigated facial attractiveness identified several factors associated with perceived attractiveness. These include sexual dimorphism (Perrett et al., 1998;Rhodes et al., 2000), symmetry (Perrett et al., 1999;Rhodes et al., 1998;Scheib et al., 1999) and averageness (Langlois & Roggman, 1990;Thornhill & Gangestad, 1993). All of these factors could be considered unchangeable. ...
Full-text available
Facial attractiveness is the concept that has been widely explored in previous studies. The findings suggest that some of the factors that affect aesthetical judgment of faces include symmetry, averageness, and facial expressions. The role of facial expressions is not fully established, but it seems that faces with the facial expression of happiness are rated higher (at least female faces). The aim of our study is to explore whether the presence of facial expressions has a different effect on the aesthetic judgment of female and male faces. Unlike previous studies, in which this was not explicitly controlled, we only considered facial expressions that were correctly recognized at 90% or more. A total of 61 respondents participated in this study. They evaluated female and male faces with the expressions of happiness, anger, sadness, or neutral on several scales: Beautiful, Pleasant, Attractive, and Harmonious. Overall, female faces were rated as more attractive, beautiful, and pleasant, but not harmonious. In addition, faces with the expressions of anger and sadness were rated lower on each scale compared to neutral and happy faces, and sad male faces were rated lower compared to sad female faces. One of the possible explanations for such a result could be the role of the social context in which the society discourages the display of certain emotions, particularly for men. Sad men are seen as weak and weak man are not attractive (because this does not fit into their gender role).
... The first influencing factor is the occlusion effect. Research has shown that asymmetric facial contours and distorted facial features often reduce facial attractiveness (Rhodes et al., 1998(Rhodes et al., , 1999Scheib et al., 1999;Little and Jones, 2003). Similarly, acne and scars can also lessen facial attractiveness (Jaeger et al., 2018). ...
Full-text available
The pandemic has made wearing masks commonplace, prompting researchers to investigate their effects on interpersonal perception. Findings indicate masks obstruct face identification and expression recognition, with lower face cues being most affected. When judging attractiveness, masks can enhance the appeal of less attractive faces, but reduce the appeal of more attractive faces. Trust and speech perception outcomes are inconclusive. Future studies could focus on individual differences in how masks influence our perception of others.
... 1999;Rhodes & Zebrowitz, 2002;Thornhill & Gangestad, 1999;Perrett et al., 1999)。Rhodes(2006)被评价为更有吸引力(Rhodes et al., 1998;Rhodes, 2006) 。 第 三 种 是 面 孔 性 别 特 征(Rhodes, 2006; Koehler et al., 2004; Keating, 1985)。也就是说, 具 ...
Full-text available
A novel machine learning framework that is able to consistently detect, localize, and measure the severity of human congenital cleft lip anomalies is introduced. The ultimate goal is to fill an important clinical void: to provide an objective and clinically feasible method of gauging baseline facial deformity and the change obtained through reconstructive surgical intervention. The proposed method first employs the StyleGAN2 generative adversarial network with model adaptation to produce a normalized transformation of 125 faces, and then uses a pixel-wise subtraction approach to assess the difference between all baseline images and their normalized counterparts (a proxy for severity of deformity). The pipeline of the proposed framework consists of the following steps: image preprocessing, face normalization, color transformation, heat-map generation, morphological erosion, and abnormality scoring. Heatmaps that finely discern anatomic anomalies visually corroborate the generated scores. The proposed framework is validated through computer simulations as well as by comparison of machine-generated versus human ratings of facial images. The anomaly scores yielded by the proposed computer model correlate closely with human ratings, with a calculated Pearson's r score of 0.89. The proposed pixel-wise measurement technique is shown to more closely mirror human ratings of cleft faces than two other existing, state-of-the-art image quality metrics (Learned Perceptual Image Patch Similarity and Structural Similarity Index). The proposed model may represent a new standard for objective, automated, and real-time clinical measurement of faces affected by congenital cleft deformity.
Aesthetic labour in the runway modelling industry refers to the practice of recruitment of models-workers on the basis of desired corporeal and facial dispositions. Aesthetic labour theory foregrounds embodiment, which situates the value of physical appearance and aesthetic norms in the workplace context showcasing how the models-workers get recruited and stratified based on their looks. The study employs an explanatory sequential mixed-method design to investigate aesthetic norms including the desired corporeal and facial dispositions that are expected from models-workers in the runway modelling industry. The study included two phases, a quantitative phase and a qualitative phase. The main objective of the first, quantitative research phase, was to investigate the aesthetic norms among 609 international runway models who were recruited to perform in designer exclusive fashion shows during seven consecutive annual fashion week seasons from 2013 to 2020 in New York, Paris, London and/or Milan. The main objective of the second qualitative research phase was to qualify aesthetic norms through a visual content analysis, and in-depth exploration of 40 unretouched professional modelling snapshots (photographs of face and body) for the top new model talents in the 2019–20 fashion season. Model photos were extracted from the popular industry website, The rationale for collecting both quantitative and qualitative data was to form a robust and comprehensive assessment of aesthetic norms in the runway modelling industry. The same level of comprehensiveness would not be obtained by using either type of data individually. This article advances academic research on aesthetic labour in the fashion and modelling industry by showcasing why appearance-based recruitment in this sector represents the practice of occupational segregation that creates social inequalities and negatively impacts the labour market.
Full-text available
The consistency of physical attractiveness ratings across cultural groups was examined. In Study 1, recently arrived native Asian and Hispanic students and White Americans rated the attractiveness of Asian, Hispanic, Black, and White photographed women. The mean correlation between groups in attractiveness ratings was r = .93. Asians, Hispanics, and Whites were equally influenced by many facial features, but Asians were less influenced by some sexual maturity and expressive features. In Study 2, Taiwanese attractiveness ratings correlated with prior Asian, Hispanic, and American ratings, mean r = .91. Supporting Study 1, the Taiwanese also were less positively influenced by certain sexual maturity and expressive features. Exposure to Western media did not influence attractiveness ratings in either study. In Study 3, Black and White American men rated the attractiveness of Black female facial photos and body types. Mean facial attractiveness ratings were highly correlated ( r = .94), but as predicted Blacks and Whites varied in judging bodies. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Two studies, one with 2- to 3-month-olds and one with 6- to 8-month-olds, were conducted to examine infant preferences for attractive faces. A standard visual preference technique was used in which infants were shown pairs of color slides of the faces of adult women previously rated by other adults for attractiveness. The results showed that both the older and younger infants looked longer at attractive faces when the faces were presented in contrasting pairs of attractiveness (attractive/unattractive). When the faces were presented in pairs of similar levels of attractiveness (attractive/attractive vs. unattractive/unattractive) the older but not the younger infants looked longer at attractive faces. The results challenge the commonly held assumption that standards of attractiveness are learned through gradual exposure to the current cultural standard of beauty and are merely "in the eye of the beholder.".
Langlois and her colleagues reported in this journal that composite faces are more attractive than the component faces used to create them, and conjectured that averageness is attractive (Langlois & Roggman, 1990; Langlois, Roggman, & Musselman, 1994). However, extremes may also be attractive (Perrett, May, & Yoshikawa, 1994). We investigated the effect of averageness (proximity to a norm or average face) on attractiveness using a computerized caricature generator to vary averageness. Attractiveness increased with averageness (Experiment 1) and was negatively correlated with distinctiveness, a subjective measure of the converse of averageness (Experiments 1 and 2). Extremes (caricatures) were not attractive. Line-drawing composites, which avoid some of the problems associated with gray-level composites, were significantly more attractive and less distinctive (more average) than individual faces (Experiment 2). These results support the claim that averageness is attractive.