ArticlePDF Available

Cross-species amplification of microsatellites in crocodilians: Assessment and applications for the future

Authors:

Abstract and Figures

Microsatellite DNA loci have emerged as the dominant genetic tool for addressing questions associated with genetic diversity in many wildlife species, including crocodilians. Despite their usefulness, their isolation and development can be costly, as well as labour intensive, limiting their wider use in many crocodilian species. In this study, we investigate the cross-species amplification success of 82 existing microsatellites previously isolated for the saltwater crocodile (Crocodylus porosus) in 18 non-target crocodilian species; Alligator sinensis, Caiman crocodylus, Caiman latirostris, Caiman yacare, Melanosuchus niger, Paleosuchus palpebrosus, Crocodylus acutus, Mecistops cataphractus, Crocodylus intermedius, Crocodylus johnstoni, Crocodylus mindorensis, Crocodylus moreletii, Crocodylus niloticus, Crocodylus novaeguineae, Crocodylus palustis, Crocodylus rhombifer, Crocodylus siamensis, and Osteolaemus tetraspis. Our results show a high level of microsatellites cross-amplification making available polymorphic markers for a range of crocodilian species previously lacking informative genetic markers.
Content may be subject to copyright.
SHORT COMMUNICATION
Cross-species amplification of microsatellites in crocodilians:
assessment and applications for the future
Lee G. Miles ÆStacey L. Lance ÆSally R. Isberg Æ
Chris Moran ÆTravis C. Glenn
Received: 14 April 2008 / Accepted: 18 April 2008 / Published online: 8 May 2008
ÓSpringer Science+Business Media B.V. 2008
Microsatellite DNA loci have emerged as the dominant
genetic tool for addressing questions associated with genetic
diversity in many wildlife species, including crocodilians.
Despite their usefulness, their isolation and development can
be costly, as well as labour intensive, limiting their wider use
in many crocodilian species. In this study, we investigate the
cross-species amplification success of 82 existing micro-
satellites previously isolated for the saltwater crocodile
(Crocodylus porosus) in 18 non-target crocodilian species;
Alligator sinensis,Caiman crocodylus,Caiman latirostris,
Caiman yacare,Melanosuchus niger,Paleosuchus palpe-
brosus,Crocodylus acutus,Mecistops cataphractus,
Crocodylus intermedius,Crocodylus johnstoni,Crocodylus
mindorensis,Crocodylus moreletii,Crocodylus niloticus,
Crocodylus novaeguineae,Crocodylus palustis,Crocodylus
rhombifer,Crocodylus siamensis, and Osteolaemus tetra-
spis. Our results show a high level of microsatellites cross-
amplification making available polymorphic markers for a
range of crocodilian species previously lacking informative
genetic markers.
Keywords Crocodile Crocodilian Microsatellites
Cross-species amplification
Introduction
Microsatellite DNA loci (short tandem repeats) have
emerged as one of the most popular and powerful choices
of molecular markers for researchers addressing questions
of genetic diversity. They are ubiquitous in most eukaryote
genomes (Moran 1993) and provide hyper-variable
sequence tagged single locus markers capable of providing
relatively contemporary estimates of migration and relat-
edness among individuals (Selkoe and Toonen 2006; Miles
et al. unpublished data). For these reasons, microsatellites
have been widely used for population studies in a variety of
wildlife species (Wilson et al. 2004). In crocodilians,
microsatellites have been used to assess genetic diversity,
mating behaviour, hybridisation, as well as dispersal sys-
tems, in a variety of species (Glenn et al. 1996,1998;
Fitzsimmons et al. 2001; Dever et al. 2002; Davis et al.
2002; Dessauer et al. 2002; Verdade et al. 2002; Isberg
et al. 2004,2006). Despite this, informative microsatellite
markers still do not exist for many crocodilian species
(Glenn et al. 1998).
Crocodilians are an ancient lineage of reptiles comprising
nine genera and 23 species. These include alligators, caiman,
crocodiles, false crocodiles, and gharials. Crocodilians are
also the sole surviving reptilian archosaurs, a group of
diapsids that include dinosaurs and other ancient reptiles.
Despite a long and impressive history, the past century has
seen crocodilians face overwhelming threats from human
habitation. Fortunately today, many crocodilians are
recovering from the human exploitations that occurred
during the first half of the 20th century. These exploitations
L. G. Miles (&)S. R. Isberg C. Moran
Faculty of Veterinary Science, University of Sydney, Room 513,
RMC Gunn Building, Sydney, NSW 2006, Australia
e-mail: l.miles@usyd.edu.au
S. L. Lance T. C. Glenn
Savannah River Ecology Laboratory, University of Georgia,
P.O. Drawer E, Aiken, SC 29802, USA
S. R. Isberg
Porosus Pty Ltd, PO Box 86, Palmerston, NT 0831, Australia
T. C. Glenn
Department of Environmental Health Science, University
of Georgia, Athens, GA 30602, USA
123
Conserv Genet (2009) 10:935–954
DOI 10.1007/s10592-008-9601-6
impacted crocodilian numbers and inevitably the genetic
structure and diversity within these populations (Davis et al.
2002). Although recovery programs have bolstered croco-
dilian numbers, 17 of the 23 species are still listed as CITES
Appendix I in various regions, and the pressures of illegal
hunting, habitat fragmentation and human encroachment
continue to loom for a range of vulnerable crocodilians. In
addition to previous threats, the elimination of spatial and
temporal boundaries through modern anthropogenic pres-
sures has facilitated hybridization in crocodiles by bringing
together crocodilian species that would otherwise not breed
due to a lack of opportunity (Fitzsimmons et al. 2002). This
has been identified in several Crocodylus species such as
Crocodylus rhombifer,Crocodylus moreletti,Crocodylus
siamensis and Crocodylus porosus (Ramos et al. 1994;
Fitzsimmons et al. 2002; Ray et al. 2004). Problems such as
these exemplify the need for further polymorphic markers to
assist in population studies to assess the vulnerability status
of some species. Genetic studies provide information perti-
nent to the development of management plans by identifying
conservation units for many threatened and endangered
species. However, these studies hinge on the development
and availability of genetic tools to address the contemporary
issues facing wildlife species. We aim to address this
shortfall in molecular resources for some crocodilians.
Microsatellites have been isolated for a variety of dif-
ferent species including Alligator mississipiensis (Glenn
et al. 1998), Caiman latirostris (Zucoloto et al. 2002),
Crocodylus moreletii (Dever and Densmore 2001), Croc-
odylus johnstoni and Crocodylus porosus (Fitzsimmons
et al. 2001; Miles et al. unpublished data). To date, most of
the microsatellites cited in the literature were originally
developed from either the American alligator (Alligator
mississipiensis) or the saltwater crocodile (Crocodylus
porosus), and later cross-amplified in other closely related
non-target species for wider application. Although cross-
species amplification has been successfully employed
among closely related crocodilians (Dever et al. 2002;
Fitzsimmons et al. 2002; Zucoloto et al. 2006), most
examples have been within Alligatoridae family, with few
polymorphic markers for true Crocodylid members. Glenn
et al. (1996) noted that microsatellites isolated from the
American alligator were significantly less likely to amplify
orthologous loci from distantly related species such as
those in the Crocodylidae family. This is not surprising
given the divergence time of alligators and crocodiles,
which is estimated to be 140 MYA (Janke et al. 2005).
Thus, a major limiting factor currently affecting the
broader application of microsatellites in crocodilian
research, especially for ‘‘true crocodiles’’, is the lack of
suitable universal primers capable of amplifying homolo-
gous loci in a large range of species. Since the isolation and
development of microsatellites is both labour intensive and
costly, we have prospected the utility of a large set of novel
microsatellites recently isolated from Crocodylus porosus
for genetic mapping purposes (Miles et al. unpublished
data), in a range of non-target crocodilians. In addition to
the cost, the reported low levels of repetitive sequence in
non-avian reptiles reported by Shedlock et al. (2007) could
potentially limit the rapid isolation and development of
microsatellites in other crocodilian species, and make the
task more expensive.
Therefore, the practical benefits of cross-species
amplification in wildlife such as birds and non-avian rep-
tiles are arguably greater than that of mammalian species.
Indeed, cross-species amplification has proved sufficiently
successful in such a wide range of species (Moore et al.
1991) that evolutionary genetic studies have been con-
ducted based solely on cross-amplified microsatellites
(Primmer et al. 2005). With this in mind, we are optimistic
that the evaluation of these Crocodylus porosus microsat-
ellites will generate multiple markers useful for future
research in a variety of crocodilians currently lacking
informative genetic resources. In this communication, we
present an assessment of the microsatellite cross-species
amplification, as well as speculate on their future value to
crocodilian researchers.
Methods
Two hundred and fifty three novel microsatellites were
developed by Miles et al. (unpublished data) for the
purpose of constructing the first crocodilian (Crocodylus
porosus) genetic-linkage map. From the framework map,
82 microsatellites were selected for whole genome scans
based on their relatively even map distribution and high
polymorphic content in the Crocodylus porosus mapping
resource. Fortuitously, these criteria are highly desirable
for genetic markers employed in population and evolu-
tionary genetic studies, and thus the suite of 82
microsatellites was retained for cross-species amplification.
The markers chosen were those displaying the highest
levels of polymorphism in Crocodylus porosus, as it has
been commonly observed that a negative relationship exists
between cross-species amplification/polymorphism success
and the evolutionary distance from the source species
(Glenn et al. 1996; Primmer et al. 2005). This was pref-
erable in order to retain high polymorphic content for
microsatellites in the respective crocodilian species.
The species included in this scan were the Chinese alligator
(Alligator sinensis), spectacled caiman (Caiman crocodylus),
broad-snouted caiman (Caiman latirostris), Jacare
´caiman
(Caiman yacare), black caiman (Melanosuchus niger),
Cuvier’s dwarf caiman (Paleosuchus palpebrosus), American
crocodile (Crocodylus acutus), slender-snouted crocodile
936 Conserv Genet (2009) 10:935–954
123
Table 1 Summary of locus amplification success in Crocodilians
Locus Crocodylus
Crocodilidae Alligatoridae
C.ac C.pal C.sia C.mor M.cat C.nil O.tet C.min C.rho C.nov C.jo C.int C.cro C.lat M.nig P.pal C.ya A.sin
CpDi06 ++ + + + + + + + + ++ + + + + ++
CpDi10 ++ + + + + + + + + ++ + - - + -+
CpDi11 ++ + + + + + + + + ++ - - - - --
CpDi13 ++ + + + + + + + - ++ ± + + + ±+
CpDi21 +- + + + + - + ± - -+ - - - - --
CpDi24 ++ + + + + ± + + + ++ + + + + ++
CpDi28 ++ + + + + ± + + + ++ + - - - --
CpDi29 ++ + + + + ± + + + ++ + + + ± ++
CpDi41 ++ + + + + ± + + + ++ + + + + ±-
CpDi42 ++ + + + + ± + + + ++ - - - - ++
CpF509 ++ + + + + ± + + + ++ + + - + -+
CpP106 ++ + + + + ± + + + ++ ± - - - --
CpP114 ++ + + + + ± + + + ++ - - - - --
CpP116 ++ + + + + ± + + + ++ ± ± - + -+
CpP121 ++ + + + + ± + + + ++ - - - + -±
CpP205 ++ + + + + ± + + + ++ ± - - - --
CpP218 ++ + + + + ± + + + -+ + + + + +±
CpP302 ++ + + + + ± + + + ++ - - - - --
CpP305 ++ + + + + ± + + + ++ - - + - +-
CpP307 ++ + + + + ± - ± - ++ + ± + - --
CpP309 ++ + + + + ± + + + ++ - - + + --
CpP314 ++ + + + + ± + + + ++ + + ± + ±+
CpP405 ++ + + + + ± + + + ++ + + + ± ++
CpP610 ++ + + + + - + + + ++ + + + + ++
CpP706 ++ + + + + ± + + + ++ + ± ± + ++
CpP722 ++ + + + + - + + + ++ + - ± - --
CpP801 ++ + + + + - + + + ++ - - - - -+
CpP803 +- + - + - - + ± - -+ - - - - --
CpP815 ++ + + + + - + + + ++ - - - - --
CpP903 ++ + + + + + + + + ++ + + - + ++
CpP906 ++ - ± + + - - + + -+ - - - - --
CpP914 ++ + + + + + + + + ++ + + + + ++
CpP1303 ++ + + + + + + + + ++ - - - - --
Conserv Genet (2009) 10:935–954 937
123
Table 1 continued
Locus Crocodylus
Crocodilidae Alligatoridae
C.ac C.pal C.sia C.mor M.cat C.nil O.tet C.min C.rho C.nov C.jo C.int C.cro C.lat M.nig P.pal C.ya A.sin
CpP1401 ++ ++ + +++ + + +++ ++ +++
CpP1404 ++ ++ + +++ - + ++± -- ---
CpP1409 ++ ++ + +-+ + + ++- -- ---
CpP1416 ++ ++ + +++ + + ++- -- ---
CpP1603 ++ ++ + +++ + + ++± -- ---
CpP1610 +- ++ + +++ + + +++ ++ -+-
CpP1708 ++ ++ + +++ + + +++ ++ +++
CpP2201 +- ++ + +++ + + ++± -- ±--
CpP2206 ++ ++ + +++ + + +++ ±+ ±
CpP2504 ++ ++ - +-+ + + ++- -- ±--
CpP2514 ++ ++ + +++ + + ++- -- ---
CpP2516 ++ ++ + +++ + + +++ +± +
CpP2704 ++ ++ + +++ + + ++± -- --±
CpP2706 ++ ++ + +++ + + ++- +- ±-+
CpP2815 ++ ++ + +++ + + +++ -± ±±+
CpP2902 -- ++ + +++ + + ±±+ ±+ -++
CpP3004 ++ ++ + +++ + + +++ -- ---
CpP3211 ++ ++ + +++ + + ++- -- ---
CpP3215 -- -- - --- - - --+ -- ---
CpP3216 ++ ++ + +++ + + ++± +- ---
CpP3217 -- -- - --- - - --- -- ---
CpP3220 ++ ++ + +++ + + +++ ±± ±--
CpP3303 ++ ++ + +++ + + ++- ++ +-+
CpP3309 ++ ++ + +++ + + +++ ++ +++
CpP3313 ++ ++ + +++ + + +++ -- ---
CpP3314 ++ ++ + +++ + + +++ ++ +++
CpP3601 ++ ++ + +++ + + ++- -- ±-+
CpP3603 ++ ++ + +++ + - ++- -- ---
CpP4004 ++ ++ + +++ + + +++ +± ±--
CpP4006 ++ ++ + +++ + + ++± -- ±--
CpP4010 ++ ++ + +++ + + ++± -- ---
CpP4013 ++ ++ + +++ + + +++ ++ -++
CpP4116 ++ ++ + +±+ + + ++- -- ---
938 Conserv Genet (2009) 10:935–954
123
(Mecistops cataphractus), Orinoco crocodile (Crocodylus
intermedius), Australian freshwater crocodile (Crocodylus
johnstoni), Philippine crocodile (Crocodylus mindorensis),
Morelet’s crocodile (Crocodylus moreletii), Nile crocodile
(Crocodylus niloticus), New Guinea Crocodile (Crocodylus
novaeguineae), mugger (Crocodylus palustis), Cuban croco-
dile (Crocodylus rhombifer), Siamese crocodile (Crocodylus
siamensis) and African dwarf crocodile (Osteolaemus tetra-
spis). Species and sample numbers are provided in Tables 13.
The microsatellites were amplified according to the
respective conditions previously described for Crocodylus
porosus (Miles et al. unpublished data). No further opti-
misation of these primers was attempted, so it is likely that
some primers here could be further optimized for various
crocodilian species.
The limited number of samples that were available for
many of the species included in this investigation compli-
cated the generation of allele frequency statistics.
Although, CERVUS version 3.0 (Kalinowski et al. 2007)
was used to efficiently estimate the number of alleles per
locus (k), statistics such as observed heterozygosity (H
obs
)
and Polymorphic Information Content (PIC) for each locus
were not generated due to low sample number.
Results and discussion
We attempted to amplify 82 microsatellite loci in 70
individuals across 18 species of crocodilians. The intention
of this scan was not to exhaustively evaluate each micro-
satellite for each and every crocodilian, but to present
strong evidence for specific microsatellite cross-amplifi-
cation, and provide preliminary information pertaining to
the utility of the microsatellites where possible. The suc-
cess of locus amplifications for the crocodilians included in
this study are summarised in Table 1. Allele numbers and
ranges, along with the DNA sample numbers are presented
in Table 2for Crocodilidae species, and in Table 3for
Alligatoridae species.
The success of heterologous microsatellite amplification
observed in this study ranged widely with an average
amplification success of 90% among Crocodilidae species
(ranging from 56% to 96%), an average of 35% amplifi-
cation success among Caiman species (ranging from 27%
to 47%) and 41% amplification success for the Chinese
Alligator (Alligator sinensis). To be more conservative,
these values were calculated with consideration for
ambiguous amplifications, which to avoid over estimating
success rates, was taken to be negative. It was evident that
the success of cross-amplification was highly correlated
with the evolutionary distance of the crocodilian of interest
to the microsatellite source species, with the highest levels
of amplification observed in Crocodylid species. These
Table 1 continued
Locus Crocodylus
Crocodilidae Alligatoridae
C.ac C.pal C.sia C.mor M.cat C.nil O.tet C.min C.rho C.nov C.jo C.int C.cro C.lat M.nig P.pal C.ya A.sin
CpP4208 +- + + + + + + - - +- - - - - --
CpP4301 ++ + + + + + + + + ++ + + + ± -+
CpP4304 ++ + + + + + + + + ++ - - - - --
CpP4308 ++ + + + + + + + + ++ + - ± - ±+
CpP4311 ++ + + + + + + + + ++ + + + - ++
Species key: C.ac, Crocodylus acutus; C.pal, Crocodylus palustris; C.sia, Crocodylus siamensis; C.mor, Crocodylus moreletii; M.cat, Mecistops cataphractus; C.nil, Crocodylus niloticus; O.tet,
Osteolaemus tetraspis; C.min, Crocodylus mindorensis; C.rho, Crocodylus rhombifer; C.nov, Crocodylus novaeguineae; C.jo, Crocodylus johnstoni; C.int, Crocodylus intermedius; C.cro,
Caiman crocodylus; C.lat, Caiman latirostris; M.nig, Melanosuchus niger; P.pal, Paleosuchus palpebrosus; C.ya, Caiman yacare; A.sin, Alligator sinensis
Score key: +, Good amplification; -, No amplification; ±Ambiguous
Conserv Genet (2009) 10:935–954 939
123
Table 2 Microsatellite locus information, including sample size (N), observed number of alleles (K) and allele ranges for Crocodildae spp.
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi06
EU593279
(AC)
20
236–274 6 8 245 1 1 234–259 5 8 239 1 3 241–255 6 8 236-274 8 8
CpDi10
EU593283
(AC)
13
(CT)
16
251–253 2 8 247 1 1 251–261 4 8 251–253 2 3 247–255 3 8 249–255 2 8
CpDi11
EU593284
(AC)
18
172 1 8 174 1 1 173–190 6 8 174 1 3 183–187 3 8 178–184 4 8
CpDi13
EU593286
(AC)
18
361–374 3 8 359 1 1 320–386 7 8 347–363 2 3 347–374 3 8 364–374 5 8
CpDi21
EU593290
(AC)
18
171–178 2 8 N/A – 1 169–174 2 8 166–169 2 3 163–182 5 8 163–190 6 8
CpDi24
EU593293
(AC)
19
134–136 2 8 142 1 1 120–169 4 8 152–155 2 3 120–150 5 8 136–155 8 8
CpDi28
EU593295
(AC)
22
131–137 4 8 120 1 1 120–131 4 8 131–135 2 3 126–129 3 8 118–152 5 8
CpDi29
EU593296
(AC)
14
247–249 2 8 254–256 2 1 243–249 4 8 241–252 2 3 234–262 5 8 249–164 6 8
CpDi41
EU593301
(AC)
19
187 1 8 183 1 1 185–189 2 8 187 1 3 185–189 2 8 187–189 2 8
CpDi42
EU593302
(AC)
11
115–138 4 8 133 1 1 135–168 7 8 122–133 2 3 101–102 2 8 117–138 8 8
CpF509
EU593315
(AC)
14
324–328 3 8 317 1 1 312–335 5 8 307–312 3 3 317–356 7 8 313–324 5 8
CpP106
EU593323
(ATAG)
9
252–260 3 8 240 1 1 240–244 2 8 264–268 2 3 231 1 8 256–260 2 8
CpP114
EU593329
(AGAT)
7
189 1 8 189 1 1 181–185 2 8 189–194 2 3 200–213 2 8 187–201 2 8
CpP116
EU593331
(AGAT)
9
267–273 3 8 269 1 1 269 1 8 273–282 2 3 257–262 2 8 269–278 2 8
CpP121
EU593333
(AGAT)
5
163–171 2 8 159 1 1 171–187 5 8 163–175 3 3 163–183 5 8 151–159 2 8
CpP205
EU593338
(AGAT)
8
329 1 8 334 1 1 325–345 4 8 329 1 3 321–349 4 8 325–338 3 8
940 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP218
EU593346
(ACCC)
5
181–185 2 8 170 1 1 170 1 8 185–193 3 3 172 1 8 170–197 7 8
CpP302
EU593350
(AC)
17
193–211 5 8 191 1 1 191–196 5 8 203–216 3 3 165–173 3 8 173–224 9 8
CpP305
EU593352
(AC)
16
204–213 4 8 192 1 1 186–221 9 8 196–229 3 3 188–234 6 8 180–242 13 8
CpP307
EU593353
(ACTC)
13
342–373 5 8 319 1 1 382–416 4 8 370–392 2 3 315–331 4 8 310–378 8 8
CpP309
EU593354
(AAAC)
28
214–231 4 8 212 1 1 207–222 3 8 214–219 2 3 226–228 2 8 224–294 8 8
CpP314
EU593357
(AGAT)
11
261–267 3 8 248 1 1 225–263 4 8 260–278 4 3 235–275 4 8 248–275 6 8
CpP405
EU593361
(AAAG)
15
191 1 8 191 1 1 191–195 2 8 191 1 3 179 1 8 187–195 3 8
CpP610
EU593371
(ACAG)
21
225–250 4 8 242–256 2 1 254 1 8 227 1 3 231–233 2 8 227–228 2 8
CpP706
EU593375
(ACAG)
15
86–93 2 8 86 1 1 86 1 8 86 1 3 89–101 3 8 86–101 2 8
CpP722
EU593381
(ACAG)
13
(AG)
14
147–182 4 8 131 1 1 133–138 5 8 139 1 3 N/A 0 8 123–198 4 8
CpP801
EU593382
(AGAT)
15
164–176 4 8 156–160 2 1 137–153 3 8 179–192 3 3 N/A 0 8 160–188 7 8
CpP804
EU593383
(AGAT)
7
190–198 3 8 N/A – 1 177 1 8 N/A – 3 N/A 0 8 N/A 8
CpP815
EU593390
(AGAT)
14
230 1 8 239 1 1 236–257 5 8 235–239 2 3 N/A 0 8 233–243 3 8
CpP903
EU593391
(ACT)
13
230 1 8 226 1 1 226 1 8 230 1 3 217–226 2 8 226–230 2 8
CpP906
EU593392
(ACAG)
16
281–325 2 8 322 1 1 N/A – 8 293 1 3 N/A 0 8 281–316 2 8
CpP914
EU593395
(AGAT)
9
255–263 2 8 279 1 1 267–275 2 8 267–275 2 3 215–267 5 8 255–267 4 8
Conserv Genet (2009) 10:935–954 941
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP1303
EU593414
(AAAC)
5
235 1 8 235 1 1 235 1 8 235 1 3 235–243 2 8 235 1 8
CpP1401
EU593419
(AGAT)
6
170 1 8 174 1 1 170–178 2 8 170 1 3 174–191 5 8 170 1 8
CpP1404
EU593421
(AGAT)
10
294–307 3 8 311–322 2 1 268–290 6 8 277 1 3 264–284 4 8 179–311 4 8
CpP1409
EU593425
(AGAT)
17
235–264 2 8 259–267 2 1 236–264 7 8 271–289 2 3 255–277 3 8 251–279 9 8
CpP1416
EU593429
(ACAT)
6
186–192 2 8 203–205 2 1 203–209 6 8 200 1 3 190–199 2 8 179–192 4 8
CpP1603
EU593433
(AGAT)
8
304–312 2 8 308 1 1 312 1 8 312 1 3 310 1 8 307–320 4 8
CpP1610
EU593437
(AGAT)
5
300–304 2 8 N/A – 1 288–296 2 8 296–304 3 3 288–304 4 8 299–307 5 8
CpP2201
EU593442
(ACAG)
5
224 1 8 N/A – 1 224–240 5 8 220 1 3 214–216 2 8 220–226 4 8
CpP2206
EU593445
(AAAG)
14
235 1 8 243 1 1 239–243 2 8 235 1 3 239–262 4 8 235–243 3 8
CpP2504
EU593451
(AGAT)
9
332–379 4 8 342 2 1 319–366 6 8 308 1 3 N/A 0 8 327–368 8 8
CpP2514
EU593456
(AGAT)
6
181 1 8 158 1 1 171 1 8 172 1 3 181–196 4 8 171–175 3 8
CpP2516
EU593457
(AAC)
9
290–293 2 8 290 1 1 296–299 2 8 293–306 3 3 291–294 2 8 290–296 3 8
CpP2704
EU593458
(AGAT)
12
140 1 8 148 1 1 140–145 2 8 135 1 3 140–145 2 8 140 1 8
CpP2706
EU593460
(AAAC)
7
330 1 8 330 1 1 334 1 8 330 1 3 332 1 8 330–338 3 8
CpP2815
EU593465
(ATC)
8
164 1 8 163 1 1 163 1 8 163 1 3 157 1 8 154–163 2 8
CpP2902
EU593468
(ATC)
9
N/A – 8 N/A – 1 386 1 8 380–389 2 3 377 1 8 380–395 3 8
942 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP3004
EU593474
(AGAT)
11
(ACCT)
6
126–130 2 8 146 1 1 130–138 2 8 146–162 2 3 126–166 6 8 126–154 6 8
CpP3211
EU593479
(AAAC)
5
314 1 8 323 1 1 321 1 8 314 1 3 310 1 8 310–315 3 8
CpP3215
EU593482
(AGAT)
7
N/A – 8 N/A – 1 N/A – 8 N/A – 3 N/A 0 8 N/A 8
CpP3216
EU593483
(ACAG)
5
140 1 8 140 1 1 140 1 8 140 1 3 140 1 8 140 1 8
CpP3217
EU593484
(AAAC)
6
N/A – 8 N/A – 1 N/A – 8 N/A – 3 N/A 0 8 N/A 8
CpP3220
EU593486
(AAAC)
25
117 1 8 127 1 1 123 1 8 117 1 3 123 1 8 117 1 8
CpP3303
EU593488
(AACC)
11
363 1 8 363 1 1 355–375 2 8 375 1 3 363 1 8 367–383 5 8
CpP3309
EU593490
(AGAT)
14
160–164 2 8 189 1 1 164 1 8 160 1 3 172–193 3 8 153–172 4 8
CpP3313
EU593491
(AGAT)
6
365 1 8 365 1 1 369–385 3 8 390–402 2 3 369–385 4 8 365–374 3 8
CpP3314
EU593492
(AGAT)
10
312–324 3 8 312 1 1 300–304 2 8 308–332 4 3 300–304 2 8 304–308 2 8
CpP3601
EU593503
(AAC)
12
162–167 3 8 165 1 1 167–173 3 8 161 1 3 162–164 2 8 161–167 3 8
CpP3603
EU593504
(AGAT)
5
376–380 2 8 364 1 1 376–392 3 8 376–380 2 3 359 1 8 368–372 2 8
CpP4004
EU593510
(AGAT)
10
395–419 5 8 407 1 1 400–416 3 8 399–403 2 3 374–390 4 8 382–403 4 8
CpP4006
EU593511
(AGAT)
11
95–103 3 8 103 1 1 99–103 2 8 103–107 2 3 95 1 8 91–120 6 8
CpP4010
EU593513
(ACAT)
9
200–209 4 8 206 1 1 200 1 8 210 1 3 196–200 2 8 202–206 3 8
CpP4013
EU593514
(AAAG)
9
(AAAG)
5
360–361 2 8 361 1 1 361 1 8 361–362 2 3 361–372 3 8 361–364 3 8
Conserv Genet (2009) 10:935–954 943
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP4116
EU593518
(AGAT)
12
209–226 4 8 218–226 2 1 214–230 2 8 214–226 3 3 199–205 3 8 205–222 4 8
CpP4208
EU593520
(AGAT)
14
N/A – 8 N/A – 1 160 1 8 160 1 3 188–228 6 8 N/A 8
CpP4301
EU593522
(ACT)
10
352–355 2 8 340 1 1 355–382 6 8 355–358 2 3 340 1 8 340 1 8
CpP4304
EU593524
(AAC)
7
125 1 8 131 1 1 119 1 8 134 1 3 122–134 2 8 125–137 3 8
cpP4308
EU593525
(ATC)
8
105–120 3 8 102 1 1 102–111 3 8 117 1 3 98 1 8 108–127 6 8
CpP4311
EU593526
(AGAT)
11
198–227 5 8 211–215 2 1 207–215 3 8 198 1 3 203–207 2 8 203–239 9 8
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi06
EU593279
(AC)
20
230–236 2 8 261–266 2 1 226–245 2 3 255 1 1 247 1 2 288–293 2 2
CpDi10
EU593283
(AC)
13
(CT)
16
253–268 6 8 257 1 1 251 1 3 253 1 1 247 1 2 259 1 2
CpDi11
EU593284
(AC)
18
172–203 7 8 183 1 1 172 1 3 174 1 1 184 1 2 172 1 2
CpDi13
EU593286
(AC)
18
342–374 4 8 361–363 2 1 363–372 2 3 N/A – 1 359 1 2 361–374 2 2
CpDi21
EU593290
(AC)
18
163–174 2 8 180–184 2 1 169–171 2 3 N/A – 1 N/A – 2 169 1 2
CpDi24
EU593293
(AC)
19
101–145 6 8 142 1 1 146–148 2 3 146–152 2 1 144 1 2 152 1 2
CpDi28
EU593295
(AC)
22
109–131 4 8 126 1 1 120–135 2 3 141–143 2 1 126 1 2 141–145 2 2
CpDi29
EU593296
(AC)
14
244–246 2 8 249 1 1 247 1 3 269–270 2 1 247 1 2 243 1 2
CpDi41
EU593301
(AC)
19
189–195 2 8 187 1 1 187 1 3 185 1 1 185 1 2 187 1 2
944 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi42
EU593302
(AC)
11
96–117 4 8 126 1 1 113 1 3 115 1 1 107 1 2 111 1 2
CpF509
EU593315
(AC)
14
301 1 8 320 1 1 320 1 3 324 1 1 307 1 2 313 1 2
CpP106
EU593323
(ATAG)
9
244–247 2 8 247–256 2 1 244 1 3 244 1 1 247 1 2 244 1 2
CpP114
EU593329
(AGAT)
7
194–198 3 8 181 1 1 194–195 2 3 189 1 1 201 1 2 209–211 2 2
CpP116
EU593331
(AGAT)
9
259–280 3 8 261 1 1 273 1 3 261 1 1 273 1 2 269 1 2
CpP121
EU593333
(AGAT)
5
159–173 5 8 163 1 1 159 1 3 171 1 1 171 1 2 163 1 2
CpP205
EU593338
(AGAT)
8
321–349 6 8 317 1 1 317 1 3 317 1 1 309 1 2 325 1 2
CpP218
EU593346
(ACCC)
5
172 1 8 173 1 1 177–181 2 3 185 1 1 N/A – 2 201–205 2 2
CpP302
EU593350
(AC)
17
183–205 7 8 187 1 1 209–220 3 3 181 1 1 203–207 3 2 199–218 3 2
CpP305
EU593352
(AC)
16
165 1 8 199–201 2 1 233 1 3 176 1 1 188–197 2 2 194–197 3 2
CpP307
EU593353
(ACTC)
13
312–315 2 8 N/A – 1 333 1 3 N/A – 1 322 1 2 333–342 2 2
CpP309
EU593354
(AAAC)
28
226 1 8 219 1 1 214–224 2 3 214–219 2 1 209 1 2 219 1 2
CpP314
EU593357
(AGAT)
11
240–242 2 8 257 1 1 246 1 3 263–265 2 1 232 1 2 255–263 3 2
CpP405
EU593361
(AAAG)
15
179 1 8 195 1 1 191 1 3 195 1 1 191 1 2 191 1 2
CpP610
EU593371
(ACAG)
21
225–259 5 8 268 1 1 242–264 2 3 256 1 1 254 1 2 227 1 2
CpP706
EU593375
(ACAG)
15
86 1 8 86–89 2 1 86 1 3 86 1 1 86–89 2 2 86–93 2 2
CpP722
EU593381
(ACAG)
13
(AG)
14
127–129 2 8 131 1 1 149–161 2 3 127–135 2 1 141 1 2 145 1 2
Conserv Genet (2009) 10:935–954 945
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP801
EU593382
(AGAT)
15
N/A – 8 160–180 2 1 164–176 2 3 160 1 1 176–192 2 2 180–188 3 2
CpP804
EU593383
(AGAT)
7
N/A – 8 177 1 1 194 1 3 N/A – 1 N/A – 2 190 1 2
CpP815
EU593390
(AGAT)
14
N/A – 8 235 1 1 235–242 2 3 235 1 1 242 1 2 226–235 2 2
CpP903
EU593391
(ACT)
13
226 1 8 226 1 1 230 1 3 226 1 1 226 1 2 230 1 2
CpP906
EU593392
(ACAG)
16
N/A – 8 N/A 0 1 281 1 3 322 1 1 N/A – 2 281 1 2
CpP914
EU593395
(AGAT)
9
267–287 6 8 259 1 1 255 1 3 270 1 1 270 1 2 255 1 2
CpP1303
EU593414
(AAAC)
5
243 1 8 235 1 1 235 1 3 235 1 1 235 1 2 235 1 2
CpP1401
EU593419
(AGAT)
6
166–191 6 8 170 1 1 170 1 3 178–182 2 1 170 1 2 170 – 2
CpP1404
EU593421
(AGAT)
10
268–296 5 8 298 1 1 N/A – 3 N/A – 1 288 1 2 284 1 2
CpP1409
EU593425
(AGAT)
17
226–259 3 8 264 1 1 253–264 2 3 261 1 1 226 1 2 247–253 3 2
CpP1416
EU593429
(ACAT)
6
186–190 2 8 196 1 1 186 1 3 188 1 1 200 1 2 192 1 2
CpP1603
EU593433
(AGAT)
8
302–323 3 8 320 1 1 315 1 3 312–315 2 1 315 1 2 312 1 2
CpP1610
EU593437
(AGAT)
5
300–312 5 8 296–304 2 1 304 1 3 300 1 1 288 1 2 296–310 2 2
CpP2201
EU593442
(ACAG)
5
218–228 5 8 220 1 1 220–222 2 3 224 1 1 224 1 2 220 1 2
CpP2206
EU593445
(AAAG)
14
235–248 3 8 235 1 1 239 1 3 235 1 1 243 1 2 239 1 2
CpP2504
EU593451
(AGAT)
9
N/A – 8 352 1 1 351–375 3 3 351–360 2 1 349 1 2 347–351 2 2
CpP2514
EU593456
(AGAT)
6
187–203 6 8 184 1 1 172 1 3 184 1 1 183 1 2 178 1 2
946 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP2516
EU593457
(AAC)
9
287–299 5 8 287 1 1 293–299 2 3 287 1 1 285–291 2 2 293 1 2
CpP2704
EU593458
(AGAT)
12
140–145 2 8 140 1 1 140 1 3 140 1 1 145 1 2 145 1 2
CpP2706
EU593460
(AAAC)
7
324–332 2 8 334 1 1 330 1 3 334 1 1 330 1 2 330 1 2
CpP2815
EU593465
(ATC)
8
157–159 2 8 167 1 1 163 1 3 167 1 1 161 1 2 163 1 2
CpP2902
EU593468
(ATC)
9
377 1 8 386 1 1 380 1 3 389 1 1 386 1 2 386 1 2
CpP3004
EU593474
(AGAT)
11
(ACCT)
6
109–146 4 8 142 1 1 130 1 3 122–126 2 1 122 1 2 122 1 2
CpP3211
EU593479
(AAAC)
5
310–311 2 8 314 1 1 314 1 3 314 1 1 315 1 2 314 1 2
CpP3215
EU593482
(AGAT)
7
N/A – 8 N/A 0 1 N/A – 3 N/A – 1 N/A – 2 N/A – 2
CpP3216
EU593483
(ACAG)
5
140 1 8 140 1 1 140 1 3 140 1 1 140 1 2 140–185 4 2
CpP3217
EU593484
(AAAC)
6
N/A – 8 N/A 0 1 N/A – 3 N/A – 1 N/A – 2 N/A – 2
CpP3220
EU593486
(AAAC)
25
125–129 2 8 136 1 1 117 1 3 131 1 1 140 1 2 117 1 2
CpP3303
EU593488
(AACC)
11
379–394 4 8 363 1 1 355–363 2 3 371 1 1 379 1 2 367 1 2
CpP3309
EU593490
(AGAT)
14
148–189 6 8 168 1 1 160 1 3 168 1 1 164 1 2 164 1 2
CpP3313
EU593491
(AGAT)
6
385–397 4 8 374 1 1 365–369 2 3 365 1 1 365 1 2 374–381 2 2
CpP3314
EU593492
(AGAT)
10
288–297 2 8 300 1 1 321–324 2 3 312 1 1 316 1 2 304 1 2
CpP3601
EU593503
(AAC)
12
154–162 4 8 155–162 2 1 143–160 3 3 162 1 1 158 1 2 160 1 2
CpP3603
EU593504
(AGAT)
5
364–380 3 8 372 1 1 368 1 3 N/A – 1 368 1 2 376 1 2
Conserv Genet (2009) 10:935–954 947
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP4004
EU593510
(AGAT)
10
391–427 8 8 399–407 2 1 403 1 3 399 1 1 395 1 2 411 1 2
CpP4006
EU593511
(AGAT)
11
111–124 4 8 95 1 1 87 1 3 95 1 1 103 1 2 103 1 2
CpP4010
EU593513
(ACAT)
9
200–204 2 8 209 1 1 204 1 3 209–212 2 1 196 1 2 196 1 2
CpP4013
EU593514
(AAAG)
9
(AAAG)
5
355 1 8 361 1 1 361 1 3 364 1 1 364 1 2 361 1 2
CpP4116
EU593518
(AGAT)
12
203–209 2 8 214 1 1 222 2 3 205–209 2 1 218–222 2 2 209 1 2
CpP4208
EU593520
(AGAT)
14
208–233 8 8 168 1 1 N/A – 3 N/A – 1 168 1 2 N/A – 2
CpP4301
EU593522
(ACT)
10
337–349 2 8 349 1 1 355–364 3 3 355 1 1 352–361 2 2 355 1 2
CpP4304
EU593524
(AAC)
7
122–134 4 8 125 1 1 128–134 2 3 128 1 1 119 1 2 125 1 2
cpP4308
EU593525
(ATC)
8
114–124 4 8 130 1 1 114–120 2 3 98–117 2 1 108 1 2 124–130 2 2
CpP4311
EU593526
(AGAT)
11
203–247 8 8 203 1 1 207–219 3 3 198 1 1 219–223 2 2 198–203 2 2
948 Conserv Genet (2009) 10:935–954
123
Table 3 Microsatellite locus information, including sample size (N), observed number of alleles (K) and allele ranges for Alligatoridae spp.
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi06
EU593279
(AC)
20
222 1 3 226 1 2 222 1 3 222 1 2 222 1 4 222 1 3
CpDi10
EU593283
(AC)
13
(CT)
16
247–255 2 3 N/A – 2 N/A – 3 249 1 2 N/A – 4 251–278 2 3
CpDi11
EU593284
(AC)
18
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpDi13
EU593286
(AC)
18
370 1 3 370 1 2 370–374 2 3 370 1 2 374 1 4 363–374 2 3
CpDi21
EU593290
(AC)
18
171 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpDi24
EU593293
(AC)
19
111 1 3 111 1 2 113 1 3 111 1 2 111 1 4 111–190 3 3
CpDi28
EU593295
(AC)
22
126–128 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpDi29
EU593296
(AC)
14
246 1 3 246 1 2 246 1 3 243 1 2 246 1 4 239–246 2 3
CpDi41
EU593301
(AC)
19
179 1 3 185 1 2 177–185 2 3 187 1 2 182 1 4 N/A – 3
CpDi42
EU593302
(AC)
11
N/A – 3 N/A – 2 186 1 3 N/A – 2 95–136 2 4 87–98 2 3
CpF509
EU593315
(AC)
14
313–315 2 3 317 1 2 N/A – 3 319 1 2 N/A – 4 312 1 3
CpP106
EU593323
(ATAG)
9
244 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP114
EU593329
(AGAT)
7
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP116
EU593331
(AGAT)
9
254 1 3 266 1 2 N/A – 3 262 1 2 N/A – 4 261–271 2 3
CpP121
EU593333
(AGAT)
5
N/A – 3 N/A – 2 N/A – 3 183 1 2 N/A – 4 171 1 3
CpP205
EU593338
(AGAT)
8
317 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP218
EU593346
(ACCC)
5
168 1 3 168 1 2 168 1 3 172 1 2 168 1 4 168 1 3
Conserv Genet (2009) 10:935–954 949
123
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP302
EU593350
(AC)
17
N/A – 3 N/A – 2 204 1 3 N/A – 2 N/A – 4 N/A – 3
CpP305
EU593352
(AC)
16
N/A – 3 N/A – 2 178 1 3 N/A – 2 176 1 4 N/A – 3
CpP307
EU593353
(ACTC)
13
331 1 3 310–333 2 2 318–344 2 3 N/A – 2 N/A – 4 N/A – 3
CpP309
EU593354
(AAAC)
28
260 1 3 N/A – 2 221 1 3 213–221 2 2 N/A – 4 N/A – 3
CpP314
EU593357
(AGAT)
11
223–255 6 3 232–242 4 2 223 1 3 228 1 2 295 1 4 229–295 2 3
CpP405
EU593361
(AAAG)
15
188 1 3 184 1 2 184 1 3 N/A – 2 184 1 4 188–204 2 3
CpP610
EU593371
(ACAG)
21
220 1 3 225 1 2 225 1 3 231 1 2 220 1 4 220–225 2 3
CpP706
EU593375
(ACAG)
15
86–101 2 3 N/A – 2 N/A – 3 86 1 2 86 1 4 86 1 3
CpP722
EU593381
(ACAG)
13
(AG)
14
135–234 3 3 N/A – 2 219 1 3 N/A – 2 N/A – 4 N/A – 3
CpP801
EU593382
(AGAT)
15
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 132 1 3
CpP804
EU593383
(AGAT)
7
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP815
EU593390
(AGAT)
14
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP903
EU593391
(ACT)
13
226–231 4 3 230–233 2 2 N/A – 3 225 1 2 225–270 3 4 226–231 3 3
CpP906
EU593392
(ACAG)
16
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP914
EU593395
(AGAT)
9
246–249 2 3 249 1 2 251 1 3 246–253 3 2 246–251 3 4 242–249 2 3
CpP1303
EU593414
(AAAC)
5
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1401
EU593419
(AGAT)
6
155–163 2 3 155–163 2 2 155 1 3 155–160 2 2 155–163 2 4 155–163 5 3
950 Conserv Genet (2009) 10:935–954
123
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP1404
EU593421
(AGAT)
10
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1409
EU593425
(AGAT)
17
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1416
EU593429
(ACAT)
6
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1603
EU593433
(AGAT)
8
316–320 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1610
EU593437
(AGAT)
5
304–319 2 3 315–319 2 2 299–319 3 3 N/A – 2 319–327 3 4 N/A – 3
CpP2201
EU593442
(ACAG)
5
220 1 3 N/A – 2 N/A – 3 230 1 2 N/A – 4 N/A – 3
CpP2206
EU593445
(AAAG)
14
239–248 2 3 235 1 2 224–235 2 3 230–243 2 2 235 1 4 224 1 3
CpP2504
EU593451
(AGAT)
9
N/A – 3 N/A – 2 N/A – 3 349 1 2 N/A – 4 N/A – 3
CpP2514
EU593456
(AGAT)
6
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP2516
EU593457
(AAC)
9
284–287 2 3 286–296 3 2 289–291 2 3 280–298 3 2 293 1 4 282 1 3
CpP2704
EU593458
(AGAT)
12
140–145 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 140 1 3
CpP2706
EU593460
(AAAC)
7
N/A – 3 316 1 2 N/A – 3 328 1 2 N/A – 4 305–326 3 3
CpP2815
EU593465
(ATC)
8
157–166 3 3 N/A – 2 161 1 3 161 1 2 158 1 4 153–154 2 3
CpP2902
EU593468
(ATC)
9
386 1 3 386 1 2 386 1 3 N/A – 2 386 1 4 386–395 2 3
CpP3004
EU593474
(AGAT)
11
(ACCT)
6
148 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3211
EU593479
(AAAC)
5
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3215
EU593482
(AGAT)
7
385 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
Conserv Genet (2009) 10:935–954 951
123
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP3216
EU593483
(ACAG)
5
140 1 3 154 1 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3217
EU593484
(AAAC)
6
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3220
EU593486
(AAAC)
25
103–107 2 3 184 1 2 125 1 3 98 1 2 N/A – 4 N/A – 3
CpP3303
EU593488
(AACC)
11
N/A – 3 355 1 2 355 1 3 353–361 2 2 N/A – 4 367 1 3
CpP3309
EU593490
(AGAT)
14
190–210 5 3 157–161 2 2 177–185 3 3 185–190 3 2 159–200 5 4 155–202 3 3
CpP3313
EU593491
(AGAT)
6
369–377 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3314
EU593492
(AGAT)
10
303 1 3 303 1 2 307 1 3 298–323 3 2 303 1 4 303–305 2 3
CpP3601
EU593503
(AAC)
12
N/A – 3 N/A – 2 N/A – 3 156–162 2 2 N/A – 4 170–189 4 3
CpP3603
EU593504
(AGAT)
5
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A 3
CpP4004
EU593510
(AGAT)
10
357–411 3 3 355–436 2 2 382 1 3 399 1 2 N/A – 4 N/A – 3
CpP4006
EU593511
(AGAT)
11
95 1 3 N/A – 2 N/A – 3 107 1 2 N/A – 4 N/A – 3
CpP4010
EU593513
(ACAT)
9
200 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP4013
EU593514
(AAAG)
9
(AAAG)
5
352 1 3 353 1 2 353 1 3 N/A – 2 352 1 4 351–352 2 3
CpP4116
EU593518
(AGAT)
12
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP4208
EU593520
(AGAT)
14
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP4301
EU593522
(ACT)
10
337–340 2 3 337 1 2 273–335 3 3 358 1 2 N/A – 4 260–345 3 3
CpP4304
EU593524
(AAC)
7
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
952 Conserv Genet (2009) 10:935–954
123
findings support those found for cross-species amplification
within Caiman spp. (Zucoloto et al. 2002), as well as
within avian cross-species amplification studies (Primmer
et al. 1996,2005). Although less frequent heterologous
microsatellite amplification was observed in Alligatoridae
species, the new microsatellites presented here, together
with already existing genetic markers (Glenn et al. 1998;
Zucoloto et al. 2002,2006) provide an array of genetic
markers to support future research in Alligator and Caiman
species.
Allele numbers and ranges are presented in Table 2for
Crocodilidae species and Table 3for Alligatoridae species,
although these statistics are incomplete given the small
sample numbers available for some species. While several
loci were identified as being monomorphic, it would be
premature to assume that these loci are truly monomorphic,
due to low sample numbers. It is, however, recommended
that these microsatellites be considered and evaluated more
extensively for polymorphic information content in
respective target species. On the other hand, loci exhibiting
unique fixed alleles for different species present the
potential for their employment in species identification
kits, whereby suites of microsatellites could be used to
identify genetic profiles unique to specific species. This
could be a valuable tool for addressing problems associated
with hybridization (where morphological characteristics
are insufficient), as well as for regulation of illegal skin
trade and wildlife forensics.
By far the most valuable outcome of this investigation is
the observed high level of cross-amplification among true
crocodilians, providing many polymorphic microsatellites
for a range of Crocodylid species previously lacking
informative genetic markers. Once these markers are more
thoroughly characterised in specific populations, they will
help contribute to the evaluation of genetic diversity in a
wide range of crocodilians and help support conservation
and management efforts worldwide.
Acknowledgements This research was supported by Rural Indus-
tries Research and Development Corporation grant US-139A to the
University of Sydney. All research took place at the University of
Sydney, Australia, and the Savannah River Ecology Laboratory
(SREL), of the University of Georgia, USA. We thank Dr. Kent Vliet,
Dr. Robert Godshalk, Mitch Eaton and Matthew Shirley who kindly
provided us with many of the crocodilian DNA samples included in
this investigation.
References
Davis L, Glenn T, Strickland D et al (2002) Microsatellite DNA
analyses support an east–west phylogeographic split of American
alligator populations. J Exp Zool (Mol Dev Evol) 294:352–372
Dessauer H, Glenn T, Densmore L (2002) Studies on the molecular
evolution of the Crocodylia: footprints in the sands of time.
J Exp Zool (Mol Dev Evol) 294:302–311
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP4308
EU593525
(ATC)
8
108–130 2 3 N/A – 2 108 1 3 N/A – 2 108 1 4 108 1 3
CpP4311
EU593526
(AGAT)
11
191–215 4 3 191–203 2 2 223–231 2 3 N/A – 2 178–215 4 4 187–215 3 3
Conserv Genet (2009) 10:935–954 953
123
Dever J, Densmore L III (2001) Microsatelittes in Moreleti’s
crocodile (Crocodylus moreletti) and their utility in addressing
crocodilian population genetics. J Herpetol 35:541–544
Dever J, Strauss R, Rainwater T et al (2002) Genetic diversity,
population subdivision and gene flow in wild populations of
Morelet’s crocodile (Crocodylus moreletii) in Belize, Central
America. Copeia 2002:1078–1091
FitzSimmons N, Tanksley S, Forstner M et al (2001) Microsatellite
markers for Crocodylus: new genetic tools for population
genetics, mating system studies and forensics. In: Grigg J,
Seebacher F, Franlin C (eds) Crocodilian biology and evolution.
Surrey Beatty and Sons, Chipping Norton, Australia, pp 51–57
FitzSimmons N, Buchan J, Lam P et al (2002) Identification of
purebred Crocodylus siamensis for reintroduction in Vietnam.
J Exp Zool (Mol Dev Evol) 294:373–381
Glenn T, Stephan W, Dessauer H, Braun M (1996) Allelic diversity in
alligator microsatellites loci is negatively correlated with GC
content of flanking sequences and evolutionary conservation of
PCR amplifiability. Mol Biol Evol 13:1151–1154
Glenn T, Dessauer H, Braun M (1998) Characterisation of microsat-
ellite DNA loci in American alligators. Copeia 1998:591–601
Isberg S, Chen Y, Barker S, Moran C (2004) Analysis of microsat-
ellites and parentage testing in saltwater crocodiles. J Hered
95(5):445–449
Isberg S, Johnston S, Chen Y, Moran C (2006) First evidence of
higher female recombination in a species with temperature-
dependent sex determination: the saltwater crocodile. J Hered
97(6):599–602
Janke A, Gullberg A, Hughes S et al (2005) Mitogenomic analyses
place the gharial (Gavialis gangeticus) on crocodile tree and
provide pre-K/T divergence times for most crocodilians. J Mol
Evol 61:620–626
Kalinowski S, Taper M, Marshall T (2007) Revising how the
computer program CERVUS accommodates genotyping error
increases success in paternity assignment. Mol Ecol 16:1099–
1106
Moore S, Sargeant L, King T et al (1991) The conservation of
dinucleotide microsatellite among mammalian genomes allows
the use of heterologous PCR primer pairs in closely related
species. Genomics 10:654–660
Moran C (1993) Microsatellite repeats in pig (Sus domestica) and
chicken (Gallus domesticus) genomes. J Hered 84:274–280
Primmer C, Moller A, Ellegren H (1996) A wide-range survey of
cross-species microsatellite amplification in birds. Mol Ecol
5(3):365–378
Primmer C, Painter J, Koshtinen M et al (2005) Factors affecting
avian cross-species microsatellite amplification. J Avian Biol
36:348–360
Ramos R, de Buffrenil V, Ross J (1994) Current status of the Cuban
crocodile, Crocodylus rhombifer, in the wild. In: Crocodiles,
proceedings of the 12th working meeting of the crocodile
specialist group, IUCN, Gland, Switzerland, pp, 113–140
Ray D, Dever J, Platt S et al (2004) Low levels of nucleotide diversity
in Crocodylus morelettii and evidence of hybridisation with
C. acutus. Conserv Genet 5:449–464
Selkoe K, Toonen R (2006) Microsatellites for ecologists: a practical
guide to using and evaluating markers. Ecol Lett 9:615–629
Shedlock A, Botka C, Zhao S et al (2007) Phylogenomics of non-
avian reptiles and the structure of the ancestral amniote genome.
PNAS 104(8):2767–2772
Verdade L, Zucoloto R, Coutinho L (2002) Microgeographic
variation in Caiman latirostris. J Exp Zool (Mol Dev Evol)
294:387–396
Wilson A, Massonnet B, Simon J et al (2004) Cross-species
amplification of microsatellite loci in aphids: assessment and
application. Mol Ecol Notes 4:104–109
Zucoloto R, Verdade L, Coutinho L (2002) Microsatellite DNA
Library for Caiman latirostris. J Exp Zool (Mol Dev Evol)
294:346–351
Zucoloto R, Villela P, Verdade L, Coutinho L (2006) Cross-species
microsatellite amplification in South American Caimans (Caiman
spp and Paleosuchus palpebrosus). Genet Mol Biol 29(1):75–79
954 Conserv Genet (2009) 10:935–954
123
... Los microsatélites son un tipo de marcador molecular que permite detectar polimorfismos del adn nuclear utilizando cantidades mínimas de muestra. En la actualidad, son los marcadores más utilizados en estudios de diversidad genética porque su naturaleza codominante permite estimar la diversidad genética intra e interespecífica, por lo cual se puede reconocer si dos o más poblaciones se encuentran emparentadas, o incluso el grado de fragmentación entre dichas poblaciones, además de posibles cuellos de botella, depresión endogámica e hibridación (Fitzsimmons et al., 2000;Miles et al., 2009). Fitzsimmons et al. (2000) fueron los primeros en proponer el uso de microsatélites para estudios de variabilidad genética en poblaciones de cocodrilos. ...
... Según Fitzsimmons et al. (2000), los estudios de genética eran cruciales para una mejor toma de decisiones para los programas de manejo, repoblación y reintroducción, ya que se desconocía en varias especies cuál era el grado de hibridación e introgresión, así como el estado poblacional de especies críticamente amenazadas, la complejidad de las migraciones y el apareamiento de algunas poblaciones e incluso su distribución, especialmente en zonas de simpatría de una o más especies. Sin embargo, el uso de microsatélites en estudios de crocodylianos resultaba costoso y muy laborioso, por lo cual en la última década se han perfeccionado las técnicas de amplificación, haciendo de los microsatélites una técnica de laboratorio más factible de aplicar y más barata, así como una valiosa herramienta para estudios genéticos en poblaciones silvestres (Machkour-M'Rabet et al., 2009;Miles et al., 2009;Bashyal et al., 2014;Muniz et al., 2019). ...
Chapter
The capter presents a population study of Morelet's crocodile (Crocodylus moreletii) in Sian Ka'an Biosphere Reserve, Mexico. The results allow to modeling different harvesting scenarios of a wild population. The model shows that ranching can be a virtuous strategy that helps sustain and recover recover populations, as long as it includes the reintroduction to wildlife of a portion of the extracted individuals. If ranching also involves local communities, it can incentivize them to protect crocodile habitat inside and outside protected areas.
... Los microsatélites son un tipo de marcador molecular que permite detectar polimorfismos del adn nuclear utilizando cantidades mínimas de muestra. En la actualidad, son los marcadores más utilizados en estudios de diversidad genética porque su naturaleza codominante permite estimar la diversidad genética intra e interespecífica, por lo cual se puede reconocer si dos o más poblaciones se encuentran emparentadas, o incluso el grado de fragmentación entre dichas poblaciones, además de posibles cuellos de botella, depresión endogámica e hibridación (Fitzsimmons et al., 2000;Miles et al., 2009). Fitzsimmons et al. (2000) fueron los primeros en proponer el uso de microsatélites para estudios de variabilidad genética en poblaciones de cocodrilos. ...
... Según Fitzsimmons et al. (2000), los estudios de genética eran cruciales para una mejor toma de decisiones para los programas de manejo, repoblación y reintroducción, ya que se desconocía en varias especies cuál era el grado de hibridación e introgresión, así como el estado poblacional de especies críticamente amenazadas, la complejidad de las migraciones y el apareamiento de algunas poblaciones e incluso su distribución, especialmente en zonas de simpatría de una o más especies. Sin embargo, el uso de microsatélites en estudios de crocodylianos resultaba costoso y muy laborioso, por lo cual en la última década se han perfeccionado las técnicas de amplificación, haciendo de los microsatélites una técnica de laboratorio más factible de aplicar y más barata, así como una valiosa herramienta para estudios genéticos en poblaciones silvestres (Machkour-M'Rabet et al., 2009;Miles et al., 2009;Bashyal et al., 2014;Muniz et al., 2019). ...
... Los microsatélites son un tipo de marcador molecular que permite detectar polimorfismos del adn nuclear utilizando cantidades mínimas de muestra. En la actualidad, son los marcadores más utilizados en estudios de diversidad genética porque su naturaleza codominante permite estimar la diversidad genética intra e interespecífica, por lo cual se puede reconocer si dos o más poblaciones se encuentran emparentadas, o incluso el grado de fragmentación entre dichas poblaciones, además de posibles cuellos de botella, depresión endogámica e hibridación (Fitzsimmons et al., 2000;Miles et al., 2009). Fitzsimmons et al. (2000) fueron los primeros en proponer el uso de microsatélites para estudios de variabilidad genética en poblaciones de cocodrilos. ...
... Según Fitzsimmons et al. (2000), los estudios de genética eran cruciales para una mejor toma de decisiones para los programas de manejo, repoblación y reintroducción, ya que se desconocía en varias especies cuál era el grado de hibridación e introgresión, así como el estado poblacional de especies críticamente amenazadas, la complejidad de las migraciones y el apareamiento de algunas poblaciones e incluso su distribución, especialmente en zonas de simpatría de una o más especies. Sin embargo, el uso de microsatélites en estudios de crocodylianos resultaba costoso y muy laborioso, por lo cual en la última década se han perfeccionado las técnicas de amplificación, haciendo de los microsatélites una técnica de laboratorio más factible de aplicar y más barata, así como una valiosa herramienta para estudios genéticos en poblaciones silvestres (Machkour-M'Rabet et al., 2009;Miles et al., 2009;Bashyal et al., 2014;Muniz et al., 2019). ...
Book
Full-text available
La presente obra es una compilación de temas básicos y fundamentales, de utilidad para los biólogos, profesionistas en conservación y personas dedicadas al estudio de los cocodrilos en México. Consideramos que, para estudiar los efectos de la interacción del ser humano con las poblaciones de cocodrilos, así como de las interacciones entre las poblaciones de cocodrilos con el ambiente, se debe llevar a cabo una serie de métodos que permitan obtener datos útiles que ayuden a la conservación de estas especies. En este libro mostramos los enfoques y análisis más usados para evaluar aspectos demográficos, ecológicos y genéticos en las poblaciones de cocodrilos, así como estrategias para conservar a estas especies. Para esta obra se contó con la participación de destacados investigadores adscritos a diferentes instituciones académicas, gubernamentales y de ong del país, así como de expertos en la materia que colaboraron para integrar este documento, que es sólo un breve acercamiento al estudio y conservación de los cocodrilos, tocando temas diversos que incluyen la investigación, el manejo, la docencia y la divulgación. El libro se divide en dos apartados, el primero lo integran cuatro temas en los que se aborda información sobre la taxonomía, biología, importancia ecológica y cultural de los cocodrilos, así como temas de legislación útiles para su protección y aprovechamiento. Estos temas permiten tener una visión general de estos aspectos básicos pero necesarios en el planteamiento de estudios y estrategias de conservación y aprovechamiento sustentable. El segundo apartado, contiene cinco temas enfocados principalmente al diseño y aplicación de las técnicas de estudio para evaluar aspectos de bioacústica, densidad poblacional y la dinámica de las poblaciones de cocodrilos, así como su estructura genética. También se abordan de manera general las técnicas de conservación ex situ, así como el manejo y aprovechamiento de cocodrilos en áreas naturales protegidas.
... The strategies for microsatellite isolation in the majority of the studies were the isolation from genomic libraries, the enrichment protocol Chaeychomsri 2008;Miles et al. 2009;Subalusky et al. 2012), or a mixed-method involving enrichment and 454 pyrosequencing (Wu et al. 2012). ...
... The species has an extensive history of overexploitation and hunting, which combined with habitat loss and restricted distribution have contributed to its critically endangered (CR) status in Colombia and endangered (EN) in Venezuela (Morales-Betancourt et al. 2015;Seijas et al. 2015;Balaguera-Reina et al. 2017). Alarcón and Montenegro (2012) genetically characterized an ex situ population of the Orinoco crocodile located in the Estación de Biología Tropical Roberto Franco (Colombia) using nine heterologous primers for microsatellite loci developed for C. johnstoni by and C. porosus by Miles et al. (2009). Although this ex situ sampling is not from a natural population, considering that the 53 adult (26 females and 27 males) individuals came from diverse origins, genetic analysis performed by the authors may be a good indicator of the genetic diversity of the species. ...
Book
This book aims to be a comprehensive review of the literature on the conservation genetics of the New World crocodilians, from the biological and demographical aspects of the living species to the application of molecular techniques for conservation purposes. It covers the current status of the molecular genetics applied to phylogenetics, phylogeography, diversity, kinship and mating system, and hybridization, as well its implications for decision making with regards to the conservation of these species at academic and governmental levels. This book can be used as a guide for graduate and undergraduate students to understand how conservation genetics techniques are carried out and how they can help preserve not only crocodilians but also other living species.
... Volgens Fitzsimmons et al. (2000) is mikrosatelliete nie so algemeen in krokodille as in ander taksons nie. Tóg het Miles et al. (2009) 82 mikrosatelliete wat voorheen in die soutwaterkrokodil (C. porosus) geïsoleer is ondersoek om te bepaal of hulle in 18 ander krokodilsoorte, waaronder C. niloticus, vermenigvuldig. ...
Article
Full-text available
Meer as een vaar in ’n krokodilbroeisel verhoog die effektiewe populasiegrootte en lei tot ’n stadiger verlies van genetiese variasie as gevolg van inteling en lukraak genetiese swerwing. Meer as een vaar kan ook die variasie met betrekking tot eienskappe wat van kommersiële belang is tussen krokodille uit dieselfde broeisel verklaar. Vrugvliese kan ’n nie-ingrypende bron van DNS verskaf waarmee die genotipe van Nylkrokodilbroeilinge (Crocodylus niloticus) bepaal kan word. Die doel van hierdie studie was om vas te stel hoe doeltreffend die genotipe van Nylkrokodilbroeilinge uit die vrugvliese wat in uitgebroeide eiers agterbly bepaal kan word en of ’n broeisel uit ’n kommunale teeldam op ’n kommersiële plaas meer as een vaar kan hê. Elf mikrosatellietloki is gebruik om die DNS-profiele van 4–6 (gemiddeld 4.4) vrugvliesmonsters (VVMe) van elk van 25 broeisels uit dieselfde teeldam op ’n kommersiële Nylkrokodilplaas te bepaal. DNS het op al 11 loki in 95 van die 110 individue vermeerder, op 1–10 loki in 13 en op geen lokus nie in twee. Drie tot 20 allele is per lokus gevind. Afsonderlike beoordeling van loki het getoon dat 13 broeisels minstens twee vaars gehad het. Met ’n multilokusprogram (Colony) is afgelei dat 19 broeisels minstens twee vaars gehad het, en dat poliandrie en poliginie algemeen was. Verdere navorsing is nodig om die nuttigheid van vrugvliese as ’n bron van DNS vir nesse uit die natuur te bepaal en om, deur meer VVMe per broeisel te gebruik, die mate van poliandrie en poliginie op Nylkrokodilplase en in die natuur meer presies te bepaal.
... Miles et al. (2009a) developed 253 novel polymorphic microsatellite markers derived from the saltwater crocodile (C. porosus), and the markers had successfully tested for cross-species amplification in 18 other species of crocodiles (Miles et al., 2009b). Since then, the markers had been used by researchers for genetic studies in much less known crocodilian species such as T. schlegelii. ...
Thesis
This study is designed to gather information on historical exploitation and ongoing HCC; recent distribution and ecology of crocodile and genetic relationship of crocodile population in Sarawak, to aid sustainable crocodile management and finding solutions for mitigating the HCC. Historical data saw a connection between the exploitation of crocodile with decreasing trend of HCC in Sarawak from the Rajah Brooke era (1900 – 1941) until the post-war period (1946 – 1979), and an increasing trend of HCC from 1980 until 2017 in response to the recovery of the animal populations. Since 1900, crocodile attacks had been occurred in 22 major river basins (RB) in Sarawak, suggesting that the reptile has been widely dispersed throughout all major river basins in the state. For 118 years (1900 – 2017), the highest number of crocodile attacks were recorded in Lupar RB (22.2%) and the attacks had happened up to the inland areas of Belaga and Pelagus in Rajang RB. Further analysis of incidents show crocodile attacks were associated with the human activities pattern, where more attacks involved male victims (84.4%) and adults from age 31 to 40 years old (19.3%). The data also revealed that crocodile attacks in Sarawak could happen anytime regardless of the time, month, season, lunar cycle or tidal. However, more attacks were recorded during the daylight, in the months of March and April, during the Northeast monsoon, at the nights of the first quarter of the lunar cycle and at the time of high tide. Furthermore, fishing (25.2%) and bathing (24.4%) possess the highest risk of crocodile attack in Sarawak, clearly showed that crocodiles are more likely to attack when the victim is in water. Crocodile survey in selected tributaries in Rajang RB showed the distribution of the reptiles throughout the river basin with higher crocodile density at the lower region, the highest density was in Igan River (1.37 individuals/km); while in the middle and upper regions had recorded relatively low density with the lowest density recorded was in Katibas River (0.06 individuals/km) and no crocodile was spotted in Kanowit River. Four out of eight surveyed rivers in Rajang RB recorded increase in the density of crocodile compare to previous survey suggesting that the crocodile population in the river basin is experiencing recovery. The presence of crocodile in different regions (lower, middle and upper) of Rajang RB indicated that C. porosus in Sarawak live in wide range of habitats; from large salt water river system and small tidal tributaries (near to estuary) in lower region into hypo-saline or fresh water non-tidal tributaries in the middle and upper regions. Variation in term of density and distribution of crocodile between the different regions are mainly influenced by the saline characteristic of the river, habitats and the abundance of food sources for crocodile. Based on the analysis of DNA microsatellite sequence data, distinctive subpopulations of C. porosus according to geographical area (river basin) could be observed. High gene flow (Nm) among the crocodile subpopulations suggests frequent movements of the reptile happen across the river basins throughout Sarawak. In general, populations of C. porosus in Sarawak are experiencing expansion as supported by the mismatch distribution and evolutionary neutrality test data, suggesting that populations of crocodile in Sarawak are panmictic population. The findings of the present study imply that increasing of crocodile attacks is associated with the recovery and increased distribution of the reptile in Sarawak, thus crocodile management should emphasis on mitigating HCC and simultaneously continue the efforts for conservation of crocodile and its habitat. Keywords: Crocodylus porosus, human-crocodile conflict, recovery, expansion.
Article
Full-text available
Background The green sea turtle, Chelonia mydas, is a migratory species with a strong natal homing behavior leading to a complex population structure worldwide. The species has suffered severe declines in local populations; it is therefore crucial to understand its population dynamics and genetic structure to adopt appropriate management policies. Here, we describe the development of 25 new microsatellite markers specific to C. mydas and suitable for these analyses. Methods and results They were tested on 107 specimens from French Polynesia. An average allelic diversity of 8 alleles per locus was reported and observed heterozygosity ranged from 0.187 to 0.860. Ten loci were significantly deviant from the Hardy-Weinberg equilibrium, and 16 loci showed a moderate to high level of linkage disequilibrium (4–22%). The overall Fis was positive (0.034, p-value < 0.001), and sibship analysis revealed 12 half- or full-sibling dyads, suggesting possible inbreeding in this population. Cross-amplification tests were performed on two other marine turtle species, Caretta caretta and Eretmochelys imbricata. All loci successfully amplified on these two species, though 1 to 5 loci were monomorphic. Conclusion These new markers will not only be relevant for further analyses on the population structure of the green turtle and the two other species, but they will also be invaluable for parentage studies, for which a high number of polymorphic loci are necessary. This can provide important insight into male reproductive behavior and migration, an aspect of sea turtle biology that is of critical importance for the conservation of the species.
Article
Caiman latirostris has a large geographic distribution, that includes Argentina, Bolivia, Brazil, Paraguay, and Uruguay. In Brazil illegal hunting and land use change have caused population decline, relatively well documented in the last three decades. At such circumstances, the estimate of the species effective population size might help its viability analysis. Single-sample estimator has been developed to estimate current effective population size (Ne). Its main advantage over former methods is that it requires a single sampling, whereas temporal methods require at least two in distinct periods. Such method has been used to estimate Ne of broad-snouted caiman populations in the present study over representative areas of the species range in Brazil. As a result, we learned that in most populations only a relatively low number of adults effectively contribute to genetic variation. The following measures are proposed as management actions to mitigate such problem: (1) an update of population sampling on the main river basins where the species lives; (2) definition, delimitation and conservation of natural habitats for the conservation of the species in the wild, to guarantee its reproduction; and (3) new conservation genetic studies to determine current genetic diversity and its monitoring on the main river basins of the species range, with special attention to genetic diversity recovery.
Chapter
The subject of this chapter is addressed seeking to establish a balanced relationship of deepening, trying to be interesting for those who are looking for information on molecular markers, while not intending to be too long in the descriptions of the techniques and providing an indication of application in molecular ecology of crocodilians that are best treated in other chapters of the book. Whenever possible, we use examples of the results of our own research with crocodilians, while mixing them with illustrative images of the techniques with the intention of making the reading interesting both for the public that wants to study other groups of living beings and for other researchers like us falling in love with crocodilians. The application of molecular markers in molecular ecology is presented in the next chapters: a discussion of the progress in phylogenetic studies is done in Chap. 3; the application of molecular markers to study phylogeography is presented in Chap. 4; a more accurate review of the molecular markers used to conservation genetics studies is done in Chap. 5; in Chap. 6 parentage and mating systems of crocodilians are reviewed in the light of molecular markers; and in Chap. 7, examples of hybridization detected with those markers were depicted. A review of the development of molecular markers for later use in the studies of molecular ecology of crocodilians in America is presented in this chapter, from the first studies with isoenzymes to the most current techniques.
Chapter
Genetic diversity is one of the most important attributes of any population; it is defined as the variation in the amount of genetic information within and among individuals of a population, species, assemblage, or community. It can be expressed as differences between individuals at different levels, such as morphological features, structure and chromosomal number, and polymorphisms of sequences of DNA or proteins. An assessment of genetic diversity is fundamental to population genetic studies and has extremely important applications in conservation biology and the development of management and sustainable use plans. This chapter discusses the main indices that allow analyzing genetic variability and population structure of New World crocodilian populations, the methodologies used to estimate these indices, and the principal population genetic data available for these species. The effective population size concept is also discussed, a fundamental parameter in the study of principally those crocodile populations that have been drastically reduced in size and/or suffered fragmentation of their environments.
Article
Full-text available
Microsatellite loci of American alligators were identified from small insert DNA libraries. The average length of microsatellites (18.4 repeats) was similar to that observed in mammals. Polymerase chain reaction (PCR) primers were developed and tested for 20 microsatellite loci that contained at least 10 uninterrupted AC or AG repeats. Genotypes for the 15 loci that could be scored readily were obtained for alligators from Louisiana and Florida. Eleven of the 15 loci were polymorphic. For the polymorphic loci, the number of alleles per locus ranged from 4-17 (average = 8.5), and observed heterozygosity within populations ranged from 0.231-0.865 (average = 0.466). Heterozygosity of these loci is almost 20 times higher than values obtained using isozymes. Populations from Louisiana and Florida differed substantially at these loci (overall F ST=0.137,θ p=0.239, and R ST=0.387). The PCR primers also produced single amplicons from species of Alligatoridae, Gavialidae, and Crocodilidae, indicating that they may be useful for genetic studies in other crocodilians.
Article
Full-text available
Microsatellite DNA markers have been used to assess genetic diversity and to study ecological behavioral character-istics in animals. Although these markers are powerful tools, their development is labor intensive and costly. Thus, before new markers are developed it is important to prospect the use of markers from related species. In the present study we investigated the possibility of using microsatellite markers developed for Alligator mississipiensis and Cai-man latirostris in South American crocodilians. Our results demonstrate the use of microsatellite markers for Paleosuchus palpebrosus, Caiman crocodilus and Caiman yacare.
Article
Full-text available
The lack of information surrounding natural history and ecology of the endan- gered Morelet's crocodile (Crocodylus moreletii) has prompted a baseline study of the population genetics for this species. Nine microsatellite loci have been used to estimate genetic structure within and gene flow patterns among crocodiles (using a recently described maximum likelihood approach) from seven localities in north- central Belize. Individuals from the seven localities grouped into four apparent pop- ulations. Within localities, a high degree of genetic heterogeneity was observed. Among all localities, some subdivision was present (F ST 5 0.062; RST 5 0.100). Fur- thermore, among the apparent populations, we found a significant correlation be- tween geographic distance and genetic subdivision. Our findings suggest a relatively high level of migration among populations (Nm 5 5.15) and are consistent with an isolation-by-distance model of gene flow. Two contiguous subpopulations in partic- ular, New River and New River Lagoon, may form an important source for genetic variation for smaller populations throughout the region. These data will allow us to test hypotheses of relatedness among C. moreletii for other drainages in Belize and will be useful in optimizing future management programs for C. moreletii.
Article
Full-text available
Examinations of both population genetic structure and the processes that lead to such structure in croc-odilians have been initiated in several species in response to a call by the IUCN Crocodile Specialist Group. A recent study used microsatellite markers to characterize Morelet's crocodile (Crocodylus moreletii) populations in north-central Belize and presented evidence for isolation by distance. To further investigate this hypothesis, we sequenced a portion of the mitochondrial control region for representative animals after including samples from additional locales in Belize, Guatemala and Mexico. While there is limited evidence of subdivision involving other locales, we found that most of the differentiation among populations of C. moreletii can be attributed to animals collected from a single locale in Belize, Banana Bank Lagoon. Furthermore, mitochondrial DNA sequence analysis showed that animals from this and certain other locales display a haplotype characteristic of the American crocodile, C. acutus, rather than C. moreletii. We interpret this as evidence of hybridization between the two species and comment on how these new data have influenced our interpretation of previous findings. We also find very low levels of nucleotide diversity in C. moreletii haplotypes and provide evidence for a low rate of substitution in the crocodilian mito-chondrial control region. Finally, the conservation implications of these findings are discussed.
Article
Full-text available
ABSTRACT Questions of population identification and gene flow have become more important in the conservation and management of crocodilians. Additionally there has long been an interest in understanding crocodilian mating systems. To address such questions we designed nuclear microsatellite markers from the DNA of C. acutus, C. porosus and C. johnstoni. We report on the development and testing of 26 new microsatellite loci for Crocodylus spp, which represent the first microsatellite loci found in Crocodylus.
Article
Despite the relative ease of isolating microsatellites, their development still requires substantial inputs of time, money and expertise. For this reason there is considerable interest in using existing microsatellites on species from which markers were not cloned. We tested cross-species amplification of 48 existing aphid loci in species of the following genera: Aphidinae: Aphidini: Aphis and Rhopalosiphum; Aphidinae: Macrosiphini: Acyrthosiphum, Brevicoryne, Diuraphis, Illinoia, Macrosiphoniella, Macrosiphum, Metopeurum, Metapolophium, Myzus, Phorodon, Sitobion and Uroleucon and Neuquenaphidinae: Neuquenaphis. Our results show cross-species application of known microsatellite loci is a highly promising source of codominant markers for population genetic and evolutionary studies in aphids.
Article
Compilation and analysis of information from the literature regarding cross-species microsatellite amplification and polymorphism success, and relating this to source-target species genetic distance as estimated by pairwise cytochrome b (cytb) divergence, enabled an in-depth investigation of factors affecting avian cross-species microsatellite amplification. Source-target species cytb distances provided accurate estimates of cross-species microsatellite amplification/polymorphism success rates not only in birds, but also in taxa where microsatellites cross-amplify across contrasting levels of taxonomic classification (frogs and cetaceans). As cytb is one of the most commonly sequenced DNA regions, pairwise cytb genetic distances should therefore be useful for predicting cross-species microsatellite success across a range of taxonomic groups. While the most important factor affecting cross-species microsatellite amplification/polymorphism success was a negative association with source-target species genetic distance, associations with additional features affecting cross-species amplification/polymorphism success included: decreasing PCR annealing temperature significantly increasing the chance of successful cross-species amplification, and a significant positive association between source species polymorphism and the proportion of target species in which a locus revealed polymorphism. No association between cross-species amplification and repeat motif (di-, tri-, or tetranucelotide) or repeat structure (perfect, imperfect, or compound) was observed. A set of nine loci which cross-amplified across an unusually broad range of passerine bird species were also identified, and could serve as a good starting point for cross-species amplification testing in passerine species for which insufficient loci are available.
Article
The high degree of polymorphism displayed by DNA microsatellites makes them useful as DNA markers in linkage studies. A search of the DNA sequence databases revealed that the locations of dinucleotide microsatellites are often conserved among mammalian species, enabling the prediction of the presence of DNA microsatellites using comparative genetic data. In closely related species such as cattle and sheep, this conservation was close enough to allow PCR primers designed for use in one species to be used to analyze microsatellite length polymorphism in the other. A total of 48 sets of primer pairs, flanking bovine microsatellites and giving polymorphic PCR products in that species, were tested with template DNA from sheep, horses, and humans. Specific products were obtained in 27 cases (56%) with ovine DNA, 20 of which (42%) showed polymorphisms. With equine DNA, 3 (6.2%) gave specific but monomorphic products, while no specific products were obtained using human DNA. The ability to use heterologous PCR primers, coupled with comparative mapping information will facilitate the use of DNA microsatellites in gene mapping studies in closely related species such as cattle and sheep, rat and mouse, or primates.