Content uploaded by Stacey Lyn Lance
Author content
All content in this area was uploaded by Stacey Lyn Lance on Oct 14, 2015
Content may be subject to copyright.
SHORT COMMUNICATION
Cross-species amplification of microsatellites in crocodilians:
assessment and applications for the future
Lee G. Miles ÆStacey L. Lance ÆSally R. Isberg Æ
Chris Moran ÆTravis C. Glenn
Received: 14 April 2008 / Accepted: 18 April 2008 / Published online: 8 May 2008
ÓSpringer Science+Business Media B.V. 2008
Microsatellite DNA loci have emerged as the dominant
genetic tool for addressing questions associated with genetic
diversity in many wildlife species, including crocodilians.
Despite their usefulness, their isolation and development can
be costly, as well as labour intensive, limiting their wider use
in many crocodilian species. In this study, we investigate the
cross-species amplification success of 82 existing micro-
satellites previously isolated for the saltwater crocodile
(Crocodylus porosus) in 18 non-target crocodilian species;
Alligator sinensis,Caiman crocodylus,Caiman latirostris,
Caiman yacare,Melanosuchus niger,Paleosuchus palpe-
brosus,Crocodylus acutus,Mecistops cataphractus,
Crocodylus intermedius,Crocodylus johnstoni,Crocodylus
mindorensis,Crocodylus moreletii,Crocodylus niloticus,
Crocodylus novaeguineae,Crocodylus palustis,Crocodylus
rhombifer,Crocodylus siamensis, and Osteolaemus tetra-
spis. Our results show a high level of microsatellites cross-
amplification making available polymorphic markers for a
range of crocodilian species previously lacking informative
genetic markers.
Keywords Crocodile Crocodilian Microsatellites
Cross-species amplification
Introduction
Microsatellite DNA loci (short tandem repeats) have
emerged as one of the most popular and powerful choices
of molecular markers for researchers addressing questions
of genetic diversity. They are ubiquitous in most eukaryote
genomes (Moran 1993) and provide hyper-variable
sequence tagged single locus markers capable of providing
relatively contemporary estimates of migration and relat-
edness among individuals (Selkoe and Toonen 2006; Miles
et al. unpublished data). For these reasons, microsatellites
have been widely used for population studies in a variety of
wildlife species (Wilson et al. 2004). In crocodilians,
microsatellites have been used to assess genetic diversity,
mating behaviour, hybridisation, as well as dispersal sys-
tems, in a variety of species (Glenn et al. 1996,1998;
Fitzsimmons et al. 2001; Dever et al. 2002; Davis et al.
2002; Dessauer et al. 2002; Verdade et al. 2002; Isberg
et al. 2004,2006). Despite this, informative microsatellite
markers still do not exist for many crocodilian species
(Glenn et al. 1998).
Crocodilians are an ancient lineage of reptiles comprising
nine genera and 23 species. These include alligators, caiman,
crocodiles, false crocodiles, and gharials. Crocodilians are
also the sole surviving reptilian archosaurs, a group of
diapsids that include dinosaurs and other ancient reptiles.
Despite a long and impressive history, the past century has
seen crocodilians face overwhelming threats from human
habitation. Fortunately today, many crocodilians are
recovering from the human exploitations that occurred
during the first half of the 20th century. These exploitations
L. G. Miles (&)S. R. Isberg C. Moran
Faculty of Veterinary Science, University of Sydney, Room 513,
RMC Gunn Building, Sydney, NSW 2006, Australia
e-mail: l.miles@usyd.edu.au
S. L. Lance T. C. Glenn
Savannah River Ecology Laboratory, University of Georgia,
P.O. Drawer E, Aiken, SC 29802, USA
S. R. Isberg
Porosus Pty Ltd, PO Box 86, Palmerston, NT 0831, Australia
T. C. Glenn
Department of Environmental Health Science, University
of Georgia, Athens, GA 30602, USA
123
Conserv Genet (2009) 10:935–954
DOI 10.1007/s10592-008-9601-6
impacted crocodilian numbers and inevitably the genetic
structure and diversity within these populations (Davis et al.
2002). Although recovery programs have bolstered croco-
dilian numbers, 17 of the 23 species are still listed as CITES
Appendix I in various regions, and the pressures of illegal
hunting, habitat fragmentation and human encroachment
continue to loom for a range of vulnerable crocodilians. In
addition to previous threats, the elimination of spatial and
temporal boundaries through modern anthropogenic pres-
sures has facilitated hybridization in crocodiles by bringing
together crocodilian species that would otherwise not breed
due to a lack of opportunity (Fitzsimmons et al. 2002). This
has been identified in several Crocodylus species such as
Crocodylus rhombifer,Crocodylus moreletti,Crocodylus
siamensis and Crocodylus porosus (Ramos et al. 1994;
Fitzsimmons et al. 2002; Ray et al. 2004). Problems such as
these exemplify the need for further polymorphic markers to
assist in population studies to assess the vulnerability status
of some species. Genetic studies provide information perti-
nent to the development of management plans by identifying
conservation units for many threatened and endangered
species. However, these studies hinge on the development
and availability of genetic tools to address the contemporary
issues facing wildlife species. We aim to address this
shortfall in molecular resources for some crocodilians.
Microsatellites have been isolated for a variety of dif-
ferent species including Alligator mississipiensis (Glenn
et al. 1998), Caiman latirostris (Zucoloto et al. 2002),
Crocodylus moreletii (Dever and Densmore 2001), Croc-
odylus johnstoni and Crocodylus porosus (Fitzsimmons
et al. 2001; Miles et al. unpublished data). To date, most of
the microsatellites cited in the literature were originally
developed from either the American alligator (Alligator
mississipiensis) or the saltwater crocodile (Crocodylus
porosus), and later cross-amplified in other closely related
non-target species for wider application. Although cross-
species amplification has been successfully employed
among closely related crocodilians (Dever et al. 2002;
Fitzsimmons et al. 2002; Zucoloto et al. 2006), most
examples have been within Alligatoridae family, with few
polymorphic markers for true Crocodylid members. Glenn
et al. (1996) noted that microsatellites isolated from the
American alligator were significantly less likely to amplify
orthologous loci from distantly related species such as
those in the Crocodylidae family. This is not surprising
given the divergence time of alligators and crocodiles,
which is estimated to be 140 MYA (Janke et al. 2005).
Thus, a major limiting factor currently affecting the
broader application of microsatellites in crocodilian
research, especially for ‘‘true crocodiles’’, is the lack of
suitable universal primers capable of amplifying homolo-
gous loci in a large range of species. Since the isolation and
development of microsatellites is both labour intensive and
costly, we have prospected the utility of a large set of novel
microsatellites recently isolated from Crocodylus porosus
for genetic mapping purposes (Miles et al. unpublished
data), in a range of non-target crocodilians. In addition to
the cost, the reported low levels of repetitive sequence in
non-avian reptiles reported by Shedlock et al. (2007) could
potentially limit the rapid isolation and development of
microsatellites in other crocodilian species, and make the
task more expensive.
Therefore, the practical benefits of cross-species
amplification in wildlife such as birds and non-avian rep-
tiles are arguably greater than that of mammalian species.
Indeed, cross-species amplification has proved sufficiently
successful in such a wide range of species (Moore et al.
1991) that evolutionary genetic studies have been con-
ducted based solely on cross-amplified microsatellites
(Primmer et al. 2005). With this in mind, we are optimistic
that the evaluation of these Crocodylus porosus microsat-
ellites will generate multiple markers useful for future
research in a variety of crocodilians currently lacking
informative genetic resources. In this communication, we
present an assessment of the microsatellite cross-species
amplification, as well as speculate on their future value to
crocodilian researchers.
Methods
Two hundred and fifty three novel microsatellites were
developed by Miles et al. (unpublished data) for the
purpose of constructing the first crocodilian (Crocodylus
porosus) genetic-linkage map. From the framework map,
82 microsatellites were selected for whole genome scans
based on their relatively even map distribution and high
polymorphic content in the Crocodylus porosus mapping
resource. Fortuitously, these criteria are highly desirable
for genetic markers employed in population and evolu-
tionary genetic studies, and thus the suite of 82
microsatellites was retained for cross-species amplification.
The markers chosen were those displaying the highest
levels of polymorphism in Crocodylus porosus, as it has
been commonly observed that a negative relationship exists
between cross-species amplification/polymorphism success
and the evolutionary distance from the source species
(Glenn et al. 1996; Primmer et al. 2005). This was pref-
erable in order to retain high polymorphic content for
microsatellites in the respective crocodilian species.
The species included in this scan were the Chinese alligator
(Alligator sinensis), spectacled caiman (Caiman crocodylus),
broad-snouted caiman (Caiman latirostris), Jacare
´caiman
(Caiman yacare), black caiman (Melanosuchus niger),
Cuvier’s dwarf caiman (Paleosuchus palpebrosus), American
crocodile (Crocodylus acutus), slender-snouted crocodile
936 Conserv Genet (2009) 10:935–954
123
Table 1 Summary of locus amplification success in Crocodilians
Locus Crocodylus
Crocodilidae Alligatoridae
C.ac C.pal C.sia C.mor M.cat C.nil O.tet C.min C.rho C.nov C.jo C.int C.cro C.lat M.nig P.pal C.ya A.sin
CpDi06 ++ + + + + + + + + ++ + + + + ++
CpDi10 ++ + + + + + + + + ++ + - - + -+
CpDi11 ++ + + + + + + + + ++ - - - - --
CpDi13 ++ + + + + + + + - ++ ± + + + ±+
CpDi21 +- + + + + - + ± - -+ - - - - --
CpDi24 ++ + + + + ± + + + ++ + + + + ++
CpDi28 ++ + + + + ± + + + ++ + - - - --
CpDi29 ++ + + + + ± + + + ++ + + + ± ++
CpDi41 ++ + + + + ± + + + ++ + + + + ±-
CpDi42 ++ + + + + ± + + + ++ - - - - ++
CpF509 ++ + + + + ± + + + ++ + + - + -+
CpP106 ++ + + + + ± + + + ++ ± - - - --
CpP114 ++ + + + + ± + + + ++ - - - - --
CpP116 ++ + + + + ± + + + ++ ± ± - + -+
CpP121 ++ + + + + ± + + + ++ - - - + -±
CpP205 ++ + + + + ± + + + ++ ± - - - --
CpP218 ++ + + + + ± + + + -+ + + + + +±
CpP302 ++ + + + + ± + + + ++ - - - - --
CpP305 ++ + + + + ± + + + ++ - - + - +-
CpP307 ++ + + + + ± - ± - ++ + ± + - --
CpP309 ++ + + + + ± + + + ++ - - + + --
CpP314 ++ + + + + ± + + + ++ + + ± + ±+
CpP405 ++ + + + + ± + + + ++ + + + ± ++
CpP610 ++ + + + + - + + + ++ + + + + ++
CpP706 ++ + + + + ± + + + ++ + ± ± + ++
CpP722 ++ + + + + - + + + ++ + - ± - --
CpP801 ++ + + + + - + + + ++ - - - - -+
CpP803 +- + - + - - + ± - -+ - - - - --
CpP815 ++ + + + + - + + + ++ - - - - --
CpP903 ++ + + + + + + + + ++ + + - + ++
CpP906 ++ - ± + + - - + + -+ - - - - --
CpP914 ++ + + + + + + + + ++ + + + + ++
CpP1303 ++ + + + + + + + + ++ - - - - --
Conserv Genet (2009) 10:935–954 937
123
Table 1 continued
Locus Crocodylus
Crocodilidae Alligatoridae
C.ac C.pal C.sia C.mor M.cat C.nil O.tet C.min C.rho C.nov C.jo C.int C.cro C.lat M.nig P.pal C.ya A.sin
CpP1401 ++ ++ + +++ + + +++ ++ +++
CpP1404 ++ ++ + +++ - + ++± -- ---
CpP1409 ++ ++ + +-+ + + ++- -- ---
CpP1416 ++ ++ + +++ + + ++- -- ---
CpP1603 ++ ++ + +++ + + ++± -- ---
CpP1610 +- ++ + +++ + + +++ ++ -+-
CpP1708 ++ ++ + +++ + + +++ ++ +++
CpP2201 +- ++ + +++ + + ++± -- ±--
CpP2206 ++ ++ + +++ + + +++ ±+ +±±
CpP2504 ++ ++ - +-+ + + ++- -- ±--
CpP2514 ++ ++ + +++ + + ++- -- ---
CpP2516 ++ ++ + +++ + + +++ +± +±+
CpP2704 ++ ++ + +++ + + ++± -- --±
CpP2706 ++ ++ + +++ + + ++- +- ±-+
CpP2815 ++ ++ + +++ + + +++ -± ±±+
CpP2902 -- ++ + +++ + + ±±+ ±+ -++
CpP3004 ++ ++ + +++ + + +++ -- ---
CpP3211 ++ ++ + +++ + + ++- -- ---
CpP3215 -- -- - --- - - --+ -- ---
CpP3216 ++ ++ + +++ + + ++± +- ---
CpP3217 -- -- - --- - - --- -- ---
CpP3220 ++ ++ + +++ + + +++ ±± ±--
CpP3303 ++ ++ + +++ + + ++- ++ +-+
CpP3309 ++ ++ + +++ + + +++ ++ +++
CpP3313 ++ ++ + +++ + + +++ -- ---
CpP3314 ++ ++ + +++ + + +++ ++ +++
CpP3601 ++ ++ + +++ + + ++- -- ±-+
CpP3603 ++ ++ + +++ + - ++- -- ---
CpP4004 ++ ++ + +++ + + +++ +± ±--
CpP4006 ++ ++ + +++ + + ++± -- ±--
CpP4010 ++ ++ + +++ + + ++± -- ---
CpP4013 ++ ++ + +++ + + +++ ++ -++
CpP4116 ++ ++ + +±+ + + ++- -- ---
938 Conserv Genet (2009) 10:935–954
123
(Mecistops cataphractus), Orinoco crocodile (Crocodylus
intermedius), Australian freshwater crocodile (Crocodylus
johnstoni), Philippine crocodile (Crocodylus mindorensis),
Morelet’s crocodile (Crocodylus moreletii), Nile crocodile
(Crocodylus niloticus), New Guinea Crocodile (Crocodylus
novaeguineae), mugger (Crocodylus palustis), Cuban croco-
dile (Crocodylus rhombifer), Siamese crocodile (Crocodylus
siamensis) and African dwarf crocodile (Osteolaemus tetra-
spis). Species and sample numbers are provided in Tables 1–3.
The microsatellites were amplified according to the
respective conditions previously described for Crocodylus
porosus (Miles et al. unpublished data). No further opti-
misation of these primers was attempted, so it is likely that
some primers here could be further optimized for various
crocodilian species.
The limited number of samples that were available for
many of the species included in this investigation compli-
cated the generation of allele frequency statistics.
Although, CERVUS version 3.0 (Kalinowski et al. 2007)
was used to efficiently estimate the number of alleles per
locus (k), statistics such as observed heterozygosity (H
obs
)
and Polymorphic Information Content (PIC) for each locus
were not generated due to low sample number.
Results and discussion
We attempted to amplify 82 microsatellite loci in 70
individuals across 18 species of crocodilians. The intention
of this scan was not to exhaustively evaluate each micro-
satellite for each and every crocodilian, but to present
strong evidence for specific microsatellite cross-amplifi-
cation, and provide preliminary information pertaining to
the utility of the microsatellites where possible. The suc-
cess of locus amplifications for the crocodilians included in
this study are summarised in Table 1. Allele numbers and
ranges, along with the DNA sample numbers are presented
in Table 2for Crocodilidae species, and in Table 3for
Alligatoridae species.
The success of heterologous microsatellite amplification
observed in this study ranged widely with an average
amplification success of 90% among Crocodilidae species
(ranging from 56% to 96%), an average of 35% amplifi-
cation success among Caiman species (ranging from 27%
to 47%) and 41% amplification success for the Chinese
Alligator (Alligator sinensis). To be more conservative,
these values were calculated with consideration for
ambiguous amplifications, which to avoid over estimating
success rates, was taken to be negative. It was evident that
the success of cross-amplification was highly correlated
with the evolutionary distance of the crocodilian of interest
to the microsatellite source species, with the highest levels
of amplification observed in Crocodylid species. These
Table 1 continued
Locus Crocodylus
Crocodilidae Alligatoridae
C.ac C.pal C.sia C.mor M.cat C.nil O.tet C.min C.rho C.nov C.jo C.int C.cro C.lat M.nig P.pal C.ya A.sin
CpP4208 +- + + + + + + - - +- - - - - --
CpP4301 ++ + + + + + + + + ++ + + + ± -+
CpP4304 ++ + + + + + + + + ++ - - - - --
CpP4308 ++ + + + + + + + + ++ + - ± - ±+
CpP4311 ++ + + + + + + + + ++ + + + - ++
Species key: C.ac, Crocodylus acutus; C.pal, Crocodylus palustris; C.sia, Crocodylus siamensis; C.mor, Crocodylus moreletii; M.cat, Mecistops cataphractus; C.nil, Crocodylus niloticus; O.tet,
Osteolaemus tetraspis; C.min, Crocodylus mindorensis; C.rho, Crocodylus rhombifer; C.nov, Crocodylus novaeguineae; C.jo, Crocodylus johnstoni; C.int, Crocodylus intermedius; C.cro,
Caiman crocodylus; C.lat, Caiman latirostris; M.nig, Melanosuchus niger; P.pal, Paleosuchus palpebrosus; C.ya, Caiman yacare; A.sin, Alligator sinensis
Score key: +, Good amplification; -, No amplification; ±Ambiguous
Conserv Genet (2009) 10:935–954 939
123
Table 2 Microsatellite locus information, including sample size (N), observed number of alleles (K) and allele ranges for Crocodildae spp.
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi06
EU593279
(AC)
20
236–274 6 8 245 1 1 234–259 5 8 239 1 3 241–255 6 8 236-274 8 8
CpDi10
EU593283
(AC)
13
(CT)
16
251–253 2 8 247 1 1 251–261 4 8 251–253 2 3 247–255 3 8 249–255 2 8
CpDi11
EU593284
(AC)
18
172 1 8 174 1 1 173–190 6 8 174 1 3 183–187 3 8 178–184 4 8
CpDi13
EU593286
(AC)
18
361–374 3 8 359 1 1 320–386 7 8 347–363 2 3 347–374 3 8 364–374 5 8
CpDi21
EU593290
(AC)
18
171–178 2 8 N/A – 1 169–174 2 8 166–169 2 3 163–182 5 8 163–190 6 8
CpDi24
EU593293
(AC)
19
134–136 2 8 142 1 1 120–169 4 8 152–155 2 3 120–150 5 8 136–155 8 8
CpDi28
EU593295
(AC)
22
131–137 4 8 120 1 1 120–131 4 8 131–135 2 3 126–129 3 8 118–152 5 8
CpDi29
EU593296
(AC)
14
247–249 2 8 254–256 2 1 243–249 4 8 241–252 2 3 234–262 5 8 249–164 6 8
CpDi41
EU593301
(AC)
19
187 1 8 183 1 1 185–189 2 8 187 1 3 185–189 2 8 187–189 2 8
CpDi42
EU593302
(AC)
11
115–138 4 8 133 1 1 135–168 7 8 122–133 2 3 101–102 2 8 117–138 8 8
CpF509
EU593315
(AC)
14
324–328 3 8 317 1 1 312–335 5 8 307–312 3 3 317–356 7 8 313–324 5 8
CpP106
EU593323
(ATAG)
9
252–260 3 8 240 1 1 240–244 2 8 264–268 2 3 231 1 8 256–260 2 8
CpP114
EU593329
(AGAT)
7
189 1 8 189 1 1 181–185 2 8 189–194 2 3 200–213 2 8 187–201 2 8
CpP116
EU593331
(AGAT)
9
267–273 3 8 269 1 1 269 1 8 273–282 2 3 257–262 2 8 269–278 2 8
CpP121
EU593333
(AGAT)
5
163–171 2 8 159 1 1 171–187 5 8 163–175 3 3 163–183 5 8 151–159 2 8
CpP205
EU593338
(AGAT)
8
329 1 8 334 1 1 325–345 4 8 329 1 3 321–349 4 8 325–338 3 8
940 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP218
EU593346
(ACCC)
5
181–185 2 8 170 1 1 170 1 8 185–193 3 3 172 1 8 170–197 7 8
CpP302
EU593350
(AC)
17
193–211 5 8 191 1 1 191–196 5 8 203–216 3 3 165–173 3 8 173–224 9 8
CpP305
EU593352
(AC)
16
204–213 4 8 192 1 1 186–221 9 8 196–229 3 3 188–234 6 8 180–242 13 8
CpP307
EU593353
(ACTC)
13
342–373 5 8 319 1 1 382–416 4 8 370–392 2 3 315–331 4 8 310–378 8 8
CpP309
EU593354
(AAAC)
28
214–231 4 8 212 1 1 207–222 3 8 214–219 2 3 226–228 2 8 224–294 8 8
CpP314
EU593357
(AGAT)
11
261–267 3 8 248 1 1 225–263 4 8 260–278 4 3 235–275 4 8 248–275 6 8
CpP405
EU593361
(AAAG)
15
191 1 8 191 1 1 191–195 2 8 191 1 3 179 1 8 187–195 3 8
CpP610
EU593371
(ACAG)
21
225–250 4 8 242–256 2 1 254 1 8 227 1 3 231–233 2 8 227–228 2 8
CpP706
EU593375
(ACAG)
15
86–93 2 8 86 1 1 86 1 8 86 1 3 89–101 3 8 86–101 2 8
CpP722
EU593381
(ACAG)
13
(AG)
14
147–182 4 8 131 1 1 133–138 5 8 139 1 3 N/A 0 8 123–198 4 8
CpP801
EU593382
(AGAT)
15
164–176 4 8 156–160 2 1 137–153 3 8 179–192 3 3 N/A 0 8 160–188 7 8
CpP804
EU593383
(AGAT)
7
190–198 3 8 N/A – 1 177 1 8 N/A – 3 N/A 0 8 N/A – 8
CpP815
EU593390
(AGAT)
14
230 1 8 239 1 1 236–257 5 8 235–239 2 3 N/A 0 8 233–243 3 8
CpP903
EU593391
(ACT)
13
230 1 8 226 1 1 226 1 8 230 1 3 217–226 2 8 226–230 2 8
CpP906
EU593392
(ACAG)
16
281–325 2 8 322 1 1 N/A – 8 293 1 3 N/A 0 8 281–316 2 8
CpP914
EU593395
(AGAT)
9
255–263 2 8 279 1 1 267–275 2 8 267–275 2 3 215–267 5 8 255–267 4 8
Conserv Genet (2009) 10:935–954 941
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP1303
EU593414
(AAAC)
5
235 1 8 235 1 1 235 1 8 235 1 3 235–243 2 8 235 1 8
CpP1401
EU593419
(AGAT)
6
170 1 8 174 1 1 170–178 2 8 170 1 3 174–191 5 8 170 1 8
CpP1404
EU593421
(AGAT)
10
294–307 3 8 311–322 2 1 268–290 6 8 277 1 3 264–284 4 8 179–311 4 8
CpP1409
EU593425
(AGAT)
17
235–264 2 8 259–267 2 1 236–264 7 8 271–289 2 3 255–277 3 8 251–279 9 8
CpP1416
EU593429
(ACAT)
6
186–192 2 8 203–205 2 1 203–209 6 8 200 1 3 190–199 2 8 179–192 4 8
CpP1603
EU593433
(AGAT)
8
304–312 2 8 308 1 1 312 1 8 312 1 3 310 1 8 307–320 4 8
CpP1610
EU593437
(AGAT)
5
300–304 2 8 N/A – 1 288–296 2 8 296–304 3 3 288–304 4 8 299–307 5 8
CpP2201
EU593442
(ACAG)
5
224 1 8 N/A – 1 224–240 5 8 220 1 3 214–216 2 8 220–226 4 8
CpP2206
EU593445
(AAAG)
14
235 1 8 243 1 1 239–243 2 8 235 1 3 239–262 4 8 235–243 3 8
CpP2504
EU593451
(AGAT)
9
332–379 4 8 342 2 1 319–366 6 8 308 1 3 N/A 0 8 327–368 8 8
CpP2514
EU593456
(AGAT)
6
181 1 8 158 1 1 171 1 8 172 1 3 181–196 4 8 171–175 3 8
CpP2516
EU593457
(AAC)
9
290–293 2 8 290 1 1 296–299 2 8 293–306 3 3 291–294 2 8 290–296 3 8
CpP2704
EU593458
(AGAT)
12
140 1 8 148 1 1 140–145 2 8 135 1 3 140–145 2 8 140 1 8
CpP2706
EU593460
(AAAC)
7
330 1 8 330 1 1 334 1 8 330 1 3 332 1 8 330–338 3 8
CpP2815
EU593465
(ATC)
8
164 1 8 163 1 1 163 1 8 163 1 3 157 1 8 154–163 2 8
CpP2902
EU593468
(ATC)
9
N/A – 8 N/A – 1 386 1 8 380–389 2 3 377 1 8 380–395 3 8
942 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP3004
EU593474
(AGAT)
11
(ACCT)
6
126–130 2 8 146 1 1 130–138 2 8 146–162 2 3 126–166 6 8 126–154 6 8
CpP3211
EU593479
(AAAC)
5
314 1 8 323 1 1 321 1 8 314 1 3 310 1 8 310–315 3 8
CpP3215
EU593482
(AGAT)
7
N/A – 8 N/A – 1 N/A – 8 N/A – 3 N/A 0 8 N/A – 8
CpP3216
EU593483
(ACAG)
5
140 1 8 140 1 1 140 1 8 140 1 3 140 1 8 140 1 8
CpP3217
EU593484
(AAAC)
6
N/A – 8 N/A – 1 N/A – 8 N/A – 3 N/A 0 8 N/A – 8
CpP3220
EU593486
(AAAC)
25
117 1 8 127 1 1 123 1 8 117 1 3 123 1 8 117 1 8
CpP3303
EU593488
(AACC)
11
363 1 8 363 1 1 355–375 2 8 375 1 3 363 1 8 367–383 5 8
CpP3309
EU593490
(AGAT)
14
160–164 2 8 189 1 1 164 1 8 160 1 3 172–193 3 8 153–172 4 8
CpP3313
EU593491
(AGAT)
6
365 1 8 365 1 1 369–385 3 8 390–402 2 3 369–385 4 8 365–374 3 8
CpP3314
EU593492
(AGAT)
10
312–324 3 8 312 1 1 300–304 2 8 308–332 4 3 300–304 2 8 304–308 2 8
CpP3601
EU593503
(AAC)
12
162–167 3 8 165 1 1 167–173 3 8 161 1 3 162–164 2 8 161–167 3 8
CpP3603
EU593504
(AGAT)
5
376–380 2 8 364 1 1 376–392 3 8 376–380 2 3 359 1 8 368–372 2 8
CpP4004
EU593510
(AGAT)
10
395–419 5 8 407 1 1 400–416 3 8 399–403 2 3 374–390 4 8 382–403 4 8
CpP4006
EU593511
(AGAT)
11
95–103 3 8 103 1 1 99–103 2 8 103–107 2 3 95 1 8 91–120 6 8
CpP4010
EU593513
(ACAT)
9
200–209 4 8 206 1 1 200 1 8 210 1 3 196–200 2 8 202–206 3 8
CpP4013
EU593514
(AAAG)
9
(AAAG)
5
360–361 2 8 361 1 1 361 1 8 361–362 2 3 361–372 3 8 361–364 3 8
Conserv Genet (2009) 10:935–954 943
123
Table 2 continued
Locus accession Repeat motif Crocodilidae
C. acutus C. palustrus C. siamensis C. moreletti M. cataphractus C .niloticus
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP4116
EU593518
(AGAT)
12
209–226 4 8 218–226 2 1 214–230 2 8 214–226 3 3 199–205 3 8 205–222 4 8
CpP4208
EU593520
(AGAT)
14
N/A – 8 N/A – 1 160 1 8 160 1 3 188–228 6 8 N/A – 8
CpP4301
EU593522
(ACT)
10
352–355 2 8 340 1 1 355–382 6 8 355–358 2 3 340 1 8 340 1 8
CpP4304
EU593524
(AAC)
7
125 1 8 131 1 1 119 1 8 134 1 3 122–134 2 8 125–137 3 8
cpP4308
EU593525
(ATC)
8
105–120 3 8 102 1 1 102–111 3 8 117 1 3 98 1 8 108–127 6 8
CpP4311
EU593526
(AGAT)
11
198–227 5 8 211–215 2 1 207–215 3 8 198 1 3 203–207 2 8 203–239 9 8
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi06
EU593279
(AC)
20
230–236 2 8 261–266 2 1 226–245 2 3 255 1 1 247 1 2 288–293 2 2
CpDi10
EU593283
(AC)
13
(CT)
16
253–268 6 8 257 1 1 251 1 3 253 1 1 247 1 2 259 1 2
CpDi11
EU593284
(AC)
18
172–203 7 8 183 1 1 172 1 3 174 1 1 184 1 2 172 1 2
CpDi13
EU593286
(AC)
18
342–374 4 8 361–363 2 1 363–372 2 3 N/A – 1 359 1 2 361–374 2 2
CpDi21
EU593290
(AC)
18
163–174 2 8 180–184 2 1 169–171 2 3 N/A – 1 N/A – 2 169 1 2
CpDi24
EU593293
(AC)
19
101–145 6 8 142 1 1 146–148 2 3 146–152 2 1 144 1 2 152 1 2
CpDi28
EU593295
(AC)
22
109–131 4 8 126 1 1 120–135 2 3 141–143 2 1 126 1 2 141–145 2 2
CpDi29
EU593296
(AC)
14
244–246 2 8 249 1 1 247 1 3 269–270 2 1 247 1 2 243 1 2
CpDi41
EU593301
(AC)
19
189–195 2 8 187 1 1 187 1 3 185 1 1 185 1 2 187 1 2
944 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi42
EU593302
(AC)
11
96–117 4 8 126 1 1 113 1 3 115 1 1 107 1 2 111 1 2
CpF509
EU593315
(AC)
14
301 1 8 320 1 1 320 1 3 324 1 1 307 1 2 313 1 2
CpP106
EU593323
(ATAG)
9
244–247 2 8 247–256 2 1 244 1 3 244 1 1 247 1 2 244 1 2
CpP114
EU593329
(AGAT)
7
194–198 3 8 181 1 1 194–195 2 3 189 1 1 201 1 2 209–211 2 2
CpP116
EU593331
(AGAT)
9
259–280 3 8 261 1 1 273 1 3 261 1 1 273 1 2 269 1 2
CpP121
EU593333
(AGAT)
5
159–173 5 8 163 1 1 159 1 3 171 1 1 171 1 2 163 1 2
CpP205
EU593338
(AGAT)
8
321–349 6 8 317 1 1 317 1 3 317 1 1 309 1 2 325 1 2
CpP218
EU593346
(ACCC)
5
172 1 8 173 1 1 177–181 2 3 185 1 1 N/A – 2 201–205 2 2
CpP302
EU593350
(AC)
17
183–205 7 8 187 1 1 209–220 3 3 181 1 1 203–207 3 2 199–218 3 2
CpP305
EU593352
(AC)
16
165 1 8 199–201 2 1 233 1 3 176 1 1 188–197 2 2 194–197 3 2
CpP307
EU593353
(ACTC)
13
312–315 2 8 N/A – 1 333 1 3 N/A – 1 322 1 2 333–342 2 2
CpP309
EU593354
(AAAC)
28
226 1 8 219 1 1 214–224 2 3 214–219 2 1 209 1 2 219 1 2
CpP314
EU593357
(AGAT)
11
240–242 2 8 257 1 1 246 1 3 263–265 2 1 232 1 2 255–263 3 2
CpP405
EU593361
(AAAG)
15
179 1 8 195 1 1 191 1 3 195 1 1 191 1 2 191 1 2
CpP610
EU593371
(ACAG)
21
225–259 5 8 268 1 1 242–264 2 3 256 1 1 254 1 2 227 1 2
CpP706
EU593375
(ACAG)
15
86 1 8 86–89 2 1 86 1 3 86 1 1 86–89 2 2 86–93 2 2
CpP722
EU593381
(ACAG)
13
(AG)
14
127–129 2 8 131 1 1 149–161 2 3 127–135 2 1 141 1 2 145 1 2
Conserv Genet (2009) 10:935–954 945
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP801
EU593382
(AGAT)
15
N/A – 8 160–180 2 1 164–176 2 3 160 1 1 176–192 2 2 180–188 3 2
CpP804
EU593383
(AGAT)
7
N/A – 8 177 1 1 194 1 3 N/A – 1 N/A – 2 190 1 2
CpP815
EU593390
(AGAT)
14
N/A – 8 235 1 1 235–242 2 3 235 1 1 242 1 2 226–235 2 2
CpP903
EU593391
(ACT)
13
226 1 8 226 1 1 230 1 3 226 1 1 226 1 2 230 1 2
CpP906
EU593392
(ACAG)
16
N/A – 8 N/A 0 1 281 1 3 322 1 1 N/A – 2 281 1 2
CpP914
EU593395
(AGAT)
9
267–287 6 8 259 1 1 255 1 3 270 1 1 270 1 2 255 1 2
CpP1303
EU593414
(AAAC)
5
243 1 8 235 1 1 235 1 3 235 1 1 235 1 2 235 1 2
CpP1401
EU593419
(AGAT)
6
166–191 6 8 170 1 1 170 1 3 178–182 2 1 170 1 2 170 – 2
CpP1404
EU593421
(AGAT)
10
268–296 5 8 298 1 1 N/A – 3 N/A – 1 288 1 2 284 1 2
CpP1409
EU593425
(AGAT)
17
226–259 3 8 264 1 1 253–264 2 3 261 1 1 226 1 2 247–253 3 2
CpP1416
EU593429
(ACAT)
6
186–190 2 8 196 1 1 186 1 3 188 1 1 200 1 2 192 1 2
CpP1603
EU593433
(AGAT)
8
302–323 3 8 320 1 1 315 1 3 312–315 2 1 315 1 2 312 1 2
CpP1610
EU593437
(AGAT)
5
300–312 5 8 296–304 2 1 304 1 3 300 1 1 288 1 2 296–310 2 2
CpP2201
EU593442
(ACAG)
5
218–228 5 8 220 1 1 220–222 2 3 224 1 1 224 1 2 220 1 2
CpP2206
EU593445
(AAAG)
14
235–248 3 8 235 1 1 239 1 3 235 1 1 243 1 2 239 1 2
CpP2504
EU593451
(AGAT)
9
N/A – 8 352 1 1 351–375 3 3 351–360 2 1 349 1 2 347–351 2 2
CpP2514
EU593456
(AGAT)
6
187–203 6 8 184 1 1 172 1 3 184 1 1 183 1 2 178 1 2
946 Conserv Genet (2009) 10:935–954
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP2516
EU593457
(AAC)
9
287–299 5 8 287 1 1 293–299 2 3 287 1 1 285–291 2 2 293 1 2
CpP2704
EU593458
(AGAT)
12
140–145 2 8 140 1 1 140 1 3 140 1 1 145 1 2 145 1 2
CpP2706
EU593460
(AAAC)
7
324–332 2 8 334 1 1 330 1 3 334 1 1 330 1 2 330 1 2
CpP2815
EU593465
(ATC)
8
157–159 2 8 167 1 1 163 1 3 167 1 1 161 1 2 163 1 2
CpP2902
EU593468
(ATC)
9
377 1 8 386 1 1 380 1 3 389 1 1 386 1 2 386 1 2
CpP3004
EU593474
(AGAT)
11
(ACCT)
6
109–146 4 8 142 1 1 130 1 3 122–126 2 1 122 1 2 122 1 2
CpP3211
EU593479
(AAAC)
5
310–311 2 8 314 1 1 314 1 3 314 1 1 315 1 2 314 1 2
CpP3215
EU593482
(AGAT)
7
N/A – 8 N/A 0 1 N/A – 3 N/A – 1 N/A – 2 N/A – 2
CpP3216
EU593483
(ACAG)
5
140 1 8 140 1 1 140 1 3 140 1 1 140 1 2 140–185 4 2
CpP3217
EU593484
(AAAC)
6
N/A – 8 N/A 0 1 N/A – 3 N/A – 1 N/A – 2 N/A – 2
CpP3220
EU593486
(AAAC)
25
125–129 2 8 136 1 1 117 1 3 131 1 1 140 1 2 117 1 2
CpP3303
EU593488
(AACC)
11
379–394 4 8 363 1 1 355–363 2 3 371 1 1 379 1 2 367 1 2
CpP3309
EU593490
(AGAT)
14
148–189 6 8 168 1 1 160 1 3 168 1 1 164 1 2 164 1 2
CpP3313
EU593491
(AGAT)
6
385–397 4 8 374 1 1 365–369 2 3 365 1 1 365 1 2 374–381 2 2
CpP3314
EU593492
(AGAT)
10
288–297 2 8 300 1 1 321–324 2 3 312 1 1 316 1 2 304 1 2
CpP3601
EU593503
(AAC)
12
154–162 4 8 155–162 2 1 143–160 3 3 162 1 1 158 1 2 160 1 2
CpP3603
EU593504
(AGAT)
5
364–380 3 8 372 1 1 368 1 3 N/A – 1 368 1 2 376 1 2
Conserv Genet (2009) 10:935–954 947
123
Table 2 continued
Locus accession Repeat motif O. tetraspis C. mindorensis C. rhombifer C. novaguineae C. johnsoni C. intermedius
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP4004
EU593510
(AGAT)
10
391–427 8 8 399–407 2 1 403 1 3 399 1 1 395 1 2 411 1 2
CpP4006
EU593511
(AGAT)
11
111–124 4 8 95 1 1 87 1 3 95 1 1 103 1 2 103 1 2
CpP4010
EU593513
(ACAT)
9
200–204 2 8 209 1 1 204 1 3 209–212 2 1 196 1 2 196 1 2
CpP4013
EU593514
(AAAG)
9
(AAAG)
5
355 1 8 361 1 1 361 1 3 364 1 1 364 1 2 361 1 2
CpP4116
EU593518
(AGAT)
12
203–209 2 8 214 1 1 222 2 3 205–209 2 1 218–222 2 2 209 1 2
CpP4208
EU593520
(AGAT)
14
208–233 8 8 168 1 1 N/A – 3 N/A – 1 168 1 2 N/A – 2
CpP4301
EU593522
(ACT)
10
337–349 2 8 349 1 1 355–364 3 3 355 1 1 352–361 2 2 355 1 2
CpP4304
EU593524
(AAC)
7
122–134 4 8 125 1 1 128–134 2 3 128 1 1 119 1 2 125 1 2
cpP4308
EU593525
(ATC)
8
114–124 4 8 130 1 1 114–120 2 3 98–117 2 1 108 1 2 124–130 2 2
CpP4311
EU593526
(AGAT)
11
203–247 8 8 203 1 1 207–219 3 3 198 1 1 219–223 2 2 198–203 2 2
948 Conserv Genet (2009) 10:935–954
123
Table 3 Microsatellite locus information, including sample size (N), observed number of alleles (K) and allele ranges for Alligatoridae spp.
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpDi06
EU593279
(AC)
20
222 1 3 226 1 2 222 1 3 222 1 2 222 1 4 222 1 3
CpDi10
EU593283
(AC)
13
(CT)
16
247–255 2 3 N/A – 2 N/A – 3 249 1 2 N/A – 4 251–278 2 3
CpDi11
EU593284
(AC)
18
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpDi13
EU593286
(AC)
18
370 1 3 370 1 2 370–374 2 3 370 1 2 374 1 4 363–374 2 3
CpDi21
EU593290
(AC)
18
171 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpDi24
EU593293
(AC)
19
111 1 3 111 1 2 113 1 3 111 1 2 111 1 4 111–190 3 3
CpDi28
EU593295
(AC)
22
126–128 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpDi29
EU593296
(AC)
14
246 1 3 246 1 2 246 1 3 243 1 2 246 1 4 239–246 2 3
CpDi41
EU593301
(AC)
19
179 1 3 185 1 2 177–185 2 3 187 1 2 182 1 4 N/A – 3
CpDi42
EU593302
(AC)
11
N/A – 3 N/A – 2 186 1 3 N/A – 2 95–136 2 4 87–98 2 3
CpF509
EU593315
(AC)
14
313–315 2 3 317 1 2 N/A – 3 319 1 2 N/A – 4 312 1 3
CpP106
EU593323
(ATAG)
9
244 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP114
EU593329
(AGAT)
7
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP116
EU593331
(AGAT)
9
254 1 3 266 1 2 N/A – 3 262 1 2 N/A – 4 261–271 2 3
CpP121
EU593333
(AGAT)
5
N/A – 3 N/A – 2 N/A – 3 183 1 2 N/A – 4 171 1 3
CpP205
EU593338
(AGAT)
8
317 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP218
EU593346
(ACCC)
5
168 1 3 168 1 2 168 1 3 172 1 2 168 1 4 168 1 3
Conserv Genet (2009) 10:935–954 949
123
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP302
EU593350
(AC)
17
N/A – 3 N/A – 2 204 1 3 N/A – 2 N/A – 4 N/A – 3
CpP305
EU593352
(AC)
16
N/A – 3 N/A – 2 178 1 3 N/A – 2 176 1 4 N/A – 3
CpP307
EU593353
(ACTC)
13
331 1 3 310–333 2 2 318–344 2 3 N/A – 2 N/A – 4 N/A – 3
CpP309
EU593354
(AAAC)
28
260 1 3 N/A – 2 221 1 3 213–221 2 2 N/A – 4 N/A – 3
CpP314
EU593357
(AGAT)
11
223–255 6 3 232–242 4 2 223 1 3 228 1 2 295 1 4 229–295 2 3
CpP405
EU593361
(AAAG)
15
188 1 3 184 1 2 184 1 3 N/A – 2 184 1 4 188–204 2 3
CpP610
EU593371
(ACAG)
21
220 1 3 225 1 2 225 1 3 231 1 2 220 1 4 220–225 2 3
CpP706
EU593375
(ACAG)
15
86–101 2 3 N/A – 2 N/A – 3 86 1 2 86 1 4 86 1 3
CpP722
EU593381
(ACAG)
13
(AG)
14
135–234 3 3 N/A – 2 219 1 3 N/A – 2 N/A – 4 N/A – 3
CpP801
EU593382
(AGAT)
15
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 132 1 3
CpP804
EU593383
(AGAT)
7
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP815
EU593390
(AGAT)
14
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP903
EU593391
(ACT)
13
226–231 4 3 230–233 2 2 N/A – 3 225 1 2 225–270 3 4 226–231 3 3
CpP906
EU593392
(ACAG)
16
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP914
EU593395
(AGAT)
9
246–249 2 3 249 1 2 251 1 3 246–253 3 2 246–251 3 4 242–249 2 3
CpP1303
EU593414
(AAAC)
5
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1401
EU593419
(AGAT)
6
155–163 2 3 155–163 2 2 155 1 3 155–160 2 2 155–163 2 4 155–163 5 3
950 Conserv Genet (2009) 10:935–954
123
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP1404
EU593421
(AGAT)
10
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1409
EU593425
(AGAT)
17
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1416
EU593429
(ACAT)
6
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1603
EU593433
(AGAT)
8
316–320 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP1610
EU593437
(AGAT)
5
304–319 2 3 315–319 2 2 299–319 3 3 N/A – 2 319–327 3 4 N/A – 3
CpP2201
EU593442
(ACAG)
5
220 1 3 N/A – 2 N/A – 3 230 1 2 N/A – 4 N/A – 3
CpP2206
EU593445
(AAAG)
14
239–248 2 3 235 1 2 224–235 2 3 230–243 2 2 235 1 4 224 1 3
CpP2504
EU593451
(AGAT)
9
N/A – 3 N/A – 2 N/A – 3 349 1 2 N/A – 4 N/A – 3
CpP2514
EU593456
(AGAT)
6
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP2516
EU593457
(AAC)
9
284–287 2 3 286–296 3 2 289–291 2 3 280–298 3 2 293 1 4 282 1 3
CpP2704
EU593458
(AGAT)
12
140–145 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 140 1 3
CpP2706
EU593460
(AAAC)
7
N/A – 3 316 1 2 N/A – 3 328 1 2 N/A – 4 305–326 3 3
CpP2815
EU593465
(ATC)
8
157–166 3 3 N/A – 2 161 1 3 161 1 2 158 1 4 153–154 2 3
CpP2902
EU593468
(ATC)
9
386 1 3 386 1 2 386 1 3 N/A – 2 386 1 4 386–395 2 3
CpP3004
EU593474
(AGAT)
11
(ACCT)
6
148 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3211
EU593479
(AAAC)
5
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3215
EU593482
(AGAT)
7
385 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
Conserv Genet (2009) 10:935–954 951
123
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP3216
EU593483
(ACAG)
5
140 1 3 154 1 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3217
EU593484
(AAAC)
6
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3220
EU593486
(AAAC)
25
103–107 2 3 184 1 2 125 1 3 98 1 2 N/A – 4 N/A – 3
CpP3303
EU593488
(AACC)
11
N/A – 3 355 1 2 355 1 3 353–361 2 2 N/A – 4 367 1 3
CpP3309
EU593490
(AGAT)
14
190–210 5 3 157–161 2 2 177–185 3 3 185–190 3 2 159–200 5 4 155–202 3 3
CpP3313
EU593491
(AGAT)
6
369–377 2 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP3314
EU593492
(AGAT)
10
303 1 3 303 1 2 307 1 3 298–323 3 2 303 1 4 303–305 2 3
CpP3601
EU593503
(AAC)
12
N/A – 3 N/A – 2 N/A – 3 156–162 2 2 N/A – 4 170–189 4 3
CpP3603
EU593504
(AGAT)
5
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A 3
CpP4004
EU593510
(AGAT)
10
357–411 3 3 355–436 2 2 382 1 3 399 1 2 N/A – 4 N/A – 3
CpP4006
EU593511
(AGAT)
11
95 1 3 N/A – 2 N/A – 3 107 1 2 N/A – 4 N/A – 3
CpP4010
EU593513
(ACAT)
9
200 1 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP4013
EU593514
(AAAG)
9
(AAAG)
5
352 1 3 353 1 2 353 1 3 N/A – 2 352 1 4 351–352 2 3
CpP4116
EU593518
(AGAT)
12
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP4208
EU593520
(AGAT)
14
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
CpP4301
EU593522
(ACT)
10
337–340 2 3 337 1 2 273–335 3 3 358 1 2 N/A – 4 260–345 3 3
CpP4304
EU593524
(AAC)
7
N/A – 3 N/A – 2 N/A – 3 N/A – 2 N/A – 4 N/A – 3
952 Conserv Genet (2009) 10:935–954
123
findings support those found for cross-species amplification
within Caiman spp. (Zucoloto et al. 2002), as well as
within avian cross-species amplification studies (Primmer
et al. 1996,2005). Although less frequent heterologous
microsatellite amplification was observed in Alligatoridae
species, the new microsatellites presented here, together
with already existing genetic markers (Glenn et al. 1998;
Zucoloto et al. 2002,2006) provide an array of genetic
markers to support future research in Alligator and Caiman
species.
Allele numbers and ranges are presented in Table 2for
Crocodilidae species and Table 3for Alligatoridae species,
although these statistics are incomplete given the small
sample numbers available for some species. While several
loci were identified as being monomorphic, it would be
premature to assume that these loci are truly monomorphic,
due to low sample numbers. It is, however, recommended
that these microsatellites be considered and evaluated more
extensively for polymorphic information content in
respective target species. On the other hand, loci exhibiting
unique fixed alleles for different species present the
potential for their employment in species identification
kits, whereby suites of microsatellites could be used to
identify genetic profiles unique to specific species. This
could be a valuable tool for addressing problems associated
with hybridization (where morphological characteristics
are insufficient), as well as for regulation of illegal skin
trade and wildlife forensics.
By far the most valuable outcome of this investigation is
the observed high level of cross-amplification among true
crocodilians, providing many polymorphic microsatellites
for a range of Crocodylid species previously lacking
informative genetic markers. Once these markers are more
thoroughly characterised in specific populations, they will
help contribute to the evaluation of genetic diversity in a
wide range of crocodilians and help support conservation
and management efforts worldwide.
Acknowledgements This research was supported by Rural Indus-
tries Research and Development Corporation grant US-139A to the
University of Sydney. All research took place at the University of
Sydney, Australia, and the Savannah River Ecology Laboratory
(SREL), of the University of Georgia, USA. We thank Dr. Kent Vliet,
Dr. Robert Godshalk, Mitch Eaton and Matthew Shirley who kindly
provided us with many of the crocodilian DNA samples included in
this investigation.
References
Davis L, Glenn T, Strickland D et al (2002) Microsatellite DNA
analyses support an east–west phylogeographic split of American
alligator populations. J Exp Zool (Mol Dev Evol) 294:352–372
Dessauer H, Glenn T, Densmore L (2002) Studies on the molecular
evolution of the Crocodylia: footprints in the sands of time.
J Exp Zool (Mol Dev Evol) 294:302–311
Table 3 continued
Locus accession Repeat motif C .crocodylus C. latirostris M. niger P. palpebrosus C. yacare A. sinensis
Range (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KNRange (bp) KN
CpP4308
EU593525
(ATC)
8
108–130 2 3 N/A – 2 108 1 3 N/A – 2 108 1 4 108 1 3
CpP4311
EU593526
(AGAT)
11
191–215 4 3 191–203 2 2 223–231 2 3 N/A – 2 178–215 4 4 187–215 3 3
Conserv Genet (2009) 10:935–954 953
123
Dever J, Densmore L III (2001) Microsatelittes in Moreleti’s
crocodile (Crocodylus moreletti) and their utility in addressing
crocodilian population genetics. J Herpetol 35:541–544
Dever J, Strauss R, Rainwater T et al (2002) Genetic diversity,
population subdivision and gene flow in wild populations of
Morelet’s crocodile (Crocodylus moreletii) in Belize, Central
America. Copeia 2002:1078–1091
FitzSimmons N, Tanksley S, Forstner M et al (2001) Microsatellite
markers for Crocodylus: new genetic tools for population
genetics, mating system studies and forensics. In: Grigg J,
Seebacher F, Franlin C (eds) Crocodilian biology and evolution.
Surrey Beatty and Sons, Chipping Norton, Australia, pp 51–57
FitzSimmons N, Buchan J, Lam P et al (2002) Identification of
purebred Crocodylus siamensis for reintroduction in Vietnam.
J Exp Zool (Mol Dev Evol) 294:373–381
Glenn T, Stephan W, Dessauer H, Braun M (1996) Allelic diversity in
alligator microsatellites loci is negatively correlated with GC
content of flanking sequences and evolutionary conservation of
PCR amplifiability. Mol Biol Evol 13:1151–1154
Glenn T, Dessauer H, Braun M (1998) Characterisation of microsat-
ellite DNA loci in American alligators. Copeia 1998:591–601
Isberg S, Chen Y, Barker S, Moran C (2004) Analysis of microsat-
ellites and parentage testing in saltwater crocodiles. J Hered
95(5):445–449
Isberg S, Johnston S, Chen Y, Moran C (2006) First evidence of
higher female recombination in a species with temperature-
dependent sex determination: the saltwater crocodile. J Hered
97(6):599–602
Janke A, Gullberg A, Hughes S et al (2005) Mitogenomic analyses
place the gharial (Gavialis gangeticus) on crocodile tree and
provide pre-K/T divergence times for most crocodilians. J Mol
Evol 61:620–626
Kalinowski S, Taper M, Marshall T (2007) Revising how the
computer program CERVUS accommodates genotyping error
increases success in paternity assignment. Mol Ecol 16:1099–
1106
Moore S, Sargeant L, King T et al (1991) The conservation of
dinucleotide microsatellite among mammalian genomes allows
the use of heterologous PCR primer pairs in closely related
species. Genomics 10:654–660
Moran C (1993) Microsatellite repeats in pig (Sus domestica) and
chicken (Gallus domesticus) genomes. J Hered 84:274–280
Primmer C, Moller A, Ellegren H (1996) A wide-range survey of
cross-species microsatellite amplification in birds. Mol Ecol
5(3):365–378
Primmer C, Painter J, Koshtinen M et al (2005) Factors affecting
avian cross-species microsatellite amplification. J Avian Biol
36:348–360
Ramos R, de Buffrenil V, Ross J (1994) Current status of the Cuban
crocodile, Crocodylus rhombifer, in the wild. In: Crocodiles,
proceedings of the 12th working meeting of the crocodile
specialist group, IUCN, Gland, Switzerland, pp, 113–140
Ray D, Dever J, Platt S et al (2004) Low levels of nucleotide diversity
in Crocodylus morelettii and evidence of hybridisation with
C. acutus. Conserv Genet 5:449–464
Selkoe K, Toonen R (2006) Microsatellites for ecologists: a practical
guide to using and evaluating markers. Ecol Lett 9:615–629
Shedlock A, Botka C, Zhao S et al (2007) Phylogenomics of non-
avian reptiles and the structure of the ancestral amniote genome.
PNAS 104(8):2767–2772
Verdade L, Zucoloto R, Coutinho L (2002) Microgeographic
variation in Caiman latirostris. J Exp Zool (Mol Dev Evol)
294:387–396
Wilson A, Massonnet B, Simon J et al (2004) Cross-species
amplification of microsatellite loci in aphids: assessment and
application. Mol Ecol Notes 4:104–109
Zucoloto R, Verdade L, Coutinho L (2002) Microsatellite DNA
Library for Caiman latirostris. J Exp Zool (Mol Dev Evol)
294:346–351
Zucoloto R, Villela P, Verdade L, Coutinho L (2006) Cross-species
microsatellite amplification in South American Caimans (Caiman
spp and Paleosuchus palpebrosus). Genet Mol Biol 29(1):75–79
954 Conserv Genet (2009) 10:935–954
123