Mechanisms of HIV Transcriptional Regulation and Their Contribution to Latency

Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
Molecular biology international 06/2012; 2012(7):614120. DOI: 10.1155/2012/614120
Source: PubMed


Long-lived latent HIV-infected cells lead to the rebound of virus replication following antiretroviral treatment interruption and present a major barrier to eliminating HIV infection. These latent reservoirs, which include quiescent memory T cells and tissue-resident macrophages, represent a subset of cells with decreased or inactive proviral transcription. HIV proviral transcription is regulated at multiple levels including transcription initiation, polymerase recruitment, transcription elongation, and chromatin organization. How these biochemical processes are coordinated and their potential role in repressing HIV transcription along with establishing and maintaining latency are reviewed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HIV-1 virus can enter a dormant state and become inactive, which reduces accessibility by antiviral drugs. We approach this latency problem from an unconventional point of view, withthe focus on understanding how intrinsic chemical noise (copy number fluctuations of the Tat protein) can be used to assist the activation process of the latent virus. Several phase diagrams have been constructed in order to visualize in which regions of the parameter space noise can drive the activation process. Essential to the study is the use of a hyperbolic coordinate system, which greatly facilitates quantification of how the various reaction rate combinations shape the noise behavior of the Tat protein feedback system. We have designed a mathematical manual of how to approach the problem of activation quantitatively, and introduce the notion of an ``operating point'' of the virus. For both noise-free and noise-based strategies we show how operating point off-sets induce changes in the number of Tat molecules. The major result of the analysis is that for every noise-free strategy there is a noise-based strategy that requires lower dosage, but achieves the same anti-latency effect. It appears that the noise-based activation is advantageous for every operating point.
    Full-text · Article · Mar 2013 · Theoretical Biology and Medical Modelling
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A region in the conserved 5' long terminal repeat (LTR) promoter of the integrated HIV-1C provirus was identified for effective targeting by a short double-stranded RNA (dsRNA) to cause heterochromatization leading to a long-lasting decrease in viral transcription, replication and subsequent productive infection in human host cells. Small interfering RNAs (siRNAs) were transfected into siHa cells containing integrated LTR-luciferase reporter constructs and screened for efficiency of inducing transcriptional gene silencing (TGS). TGS was assessed by a dual luciferase assay and real-time PCR. Chromatin modification at the targeted region was also studied. The efficacy of potent siRNA was then checked for effectiveness in TZM-bl cells and human peripheral blood mononuclear cells (PBMCs) infected with HIV-1C virus. Viral Gag-p24 antigen levels were determined by ELISA. One HIV-1C LTR-specific siRNA significantly decreased luciferase activity and its mRNA expression with no such effect on HIV-1B LTR. This siRNA-mediated TGS was induced by histone methylation, which leads to heterochromatization of the targeted LTR region. The same siRNA also substantially suppressed viral replication in TZM-bl cells and human PBMCs infected with various HIV-1C clinical isolates for ≥3 weeks after a single transfection, even of a strain that had a mismatch in the target region. We have identified a potent dsRNA that causes long-term suppression of HIV-1C virus production in vitro and ex vivo by heritable epigenetic modification at the targeted C-LTR region. This dsRNA has promising therapeutic potential in HIV-1C infection, the clade responsible for more than half of AIDS cases worldwide.
    Full-text · Article · Sep 2013 · Journal of Antimicrobial Chemotherapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By targeting CD4(+) effector T cells, HIV has a dramatic impact on the depletion, expansion and function of the different polarized T cell subsets. The maturation of T cell lineages is in part driven by intrinsic transcription factors that potentially influence how efficiently HIV replicates. In this review, we explore whether transcription factors that are required for polarizing T cells influence HIV replication. In particular, we examine provirus transcription as well as the establishment and maintenance of HIV latency. Furthermore, it is suggested these factors may provide novel cell-specific therapeutic strategies for targeting the HIV latent reservoir.
    Preview · Article · Sep 2013 · Virology: Research and Treatment
Show more