Nickel Nanoparticles Enhance Platelet-Derived Growth Factor–Induced Chemokine Expression by Mesothelial Cells via Prolonged Mitogen-Activated Protein Kinase Activation

P.O. Box 7633, North Carolina State University, Raleigh, NC 27695-7633. .
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 3.99). 06/2012; 47(4):552-61. DOI: 10.1165/rcmb.2012-0023OC
Source: PubMed


Pleural diseases (fibrosis and mesothelioma) are a major concern for individuals exposed by inhalation to certain types of particles, metals, and fibers. Increasing attention has focused on the possibility that certain types of engineered nanoparticles (NPs), especially those containing nickel, might also pose a risk for pleural diseases. Platelet-derived growth factor (PDGF) is an important mediator of fibrosis and cancer that has been implicated in the pathogenesis of pleural diseases. In this study, we discovered that PDGF synergistically enhanced nickel NP (NiNP)-induced increases in mRNA and protein levels of the profibrogenic chemokine monocyte chemoattractant protein-1 (MCP-1 or CCL2), and the antifibrogenic IFN-inducible CXC chemokine (CXCL10) in normal rat pleural mesothelial 2 (NRM2) cells in vitro. Carbon black NPs (CBNPs), used as a negative control NP, did not cause a significant increase in CCL2 or CXCL10 in the absence or presence of PDGF. NiNPs prolonged PDGF-induced phosphorylation of the mitogen-activated protein kinase family termed extracellular signal-regulated kinases (ERK)-1 and -2 for up to 24 hours, and NiNPs also synergistically increased PDGF-induced hypoxia-inducible factor (HIF)-1α protein levels in NRM2 cells. Inhibition of ERK-1,2 phosphorylation with the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, blocked the synergistic increase in CCL2, CXCL10, and HIF-1α levels induced by PDGF and NiNPs. Moreover, the antioxidant, N-acetyl-L-cysteine (NAC), significantly reduced HIF-1α, ERK-1,2 phosphorylation, and CCL2 protein levels that were synergistically increased by the combination of PDGF and NiNPs. These data indicate that NiNPs enhance the activity of PDGF in regulating chemokine production in NRM2 cells through a mechanism involving reactive oxygen species generation and prolonged activation of ERK-1,2.

Download full-text


Available from: James C Bonner
  • Source
    • "They are characterized as spherical in shape with a ~20 nm diameter, having a specific surface area of 40–60 m2/g, a metal purity of 99.9%, and insoluble in water. Size and shape have previously been verified by measuring digitized TEM images with Adobe Photoshop and determining pixel length of >100 NiNPs [15]. Furthermore, the oxidation state of these NiNPs is oxidation state (0) zero [56]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nickel nanoparticles (NiNPs) are increasingly used in a variety of industrial applications, including the manufacturing of multi-walled carbon nanotubes (MWCNTs). While occupational nickel exposure is a known cause of pulmonary alveolitis, fibrosis, and cancer, the health risks of NiNPs are not well understood, especially in susceptible individuals such as asthmatics. The T-box transcription factor Tbx21 (T-bet) maintains Th1 cell development and loss of T-bet is associated with a shift towards Th2 type allergic airway inflammation that characterizes asthma. The purpose of this study was to determine the role of T-bet in susceptibility to lung remodeling by NiNPs or MWCNTs. Wild-type (WT) and T-bet-/- mice were exposed to NiNPs or MWCNTs (4 mg/kg) by oropharyngeal aspiration (OPA). Necropsy was performed at 1 and 21 days. Bronchoalveolar lavage fluid (BALF) was collected for differential counting of inflammatory cells and for measurement of cytokines by ELISA. The left lung was collected for histopathology. The right lung was analyzed for cytokine or mucin (MUC5AC and MUC5B) mRNAs. Morphometry of alcian-blue/periodic acid Schiff (AB/PAS)-stained lung tissue showed that NiNPs, significantly increased mucous cell metaplasia in T-bet-/- mice at 21 days (p < 0.001) compared to WT mice, and increased MUC5AC and MUC5B mRNAs (p < 0.05). MWCNTs also increased mucous cell metaplasia in T-bet-/- mice, but to a lesser extent than NiNPs. Chronic alveolitis was also increased by NiNPs, but not MWCNTs, in T-bet-/- mice compared to WT mice at 21 days (P < 0.001). NiNPs also increased IL-13 and eosinophils (p < 0.001) in BALF from T-bet-/- mice after 1 day. Interestingly, the chemokine CCL2 in the BALF of T-bet-/- mice was increased at 1 and 21 days (p < 0.001 and p < 0.05, respectively) by NiNPs, and to a lesser extent by MWCNTs at 1 day. Treatment of T-bet-/- mice with a monoclonal anti-CCL2 antibody enhanced NiNP-induced mucous cell metaplasia and MUC5AC mRNA levels (p < 0.05), yet marginally reduced NiNP-induced alveolitis. These findings identify T-bet as a potentially important susceptibility factor for NiNP exposure and to a lesser extent for MWCNT exposure, and suggests that individuals with asthma are at greater risk.
    Full-text · Article · Feb 2014 · Particle and Fibre Toxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUS316L stainless steel and cobalt–chromium and platinum–chromium alloys are widely used platforms for coronary stents. These alloys also contain nickel (Ni), which reportedly induces allergic reactions in some subjects and is known to have various cellular effects. The effects of Ni on neointima formation after stent implantation remain unknown, however. We developed coronary stents made of Ni-free high-nitrogen austenitic stainless steel prepared using a N2-gas pressurized electroslag remelting (P-ESR) process. Neointima formation and inflammatory responses following stent implantation in porcine coronary arteries were then compared between the Ni-free and SUS316L stainless steel stents. We found significantly less neointima formation and inflammation in arteries implanted with Ni-free stents, as compared to SUS316L stents. Notably, Ni2+ was eluted into the medium from SUS316L but not from Ni-free stainless steel. Mechanistically, Ni2+ increased levels of hypoxia inducible factor protein-1α (HIF-1α) and its target genes in cultured smooth muscle cells. HIF-1α and their target gene levels were also increased in the vascular wall at SUS316L stent sites but not at Ni-free stent sites. The Ni-free stainless steel coronary stent reduces neointima formation, in part by avoiding activation of inflammatory processes via the Ni-HIF pathway. The Ni-free-stainless steel stent is a promising new coronary stent platform.
    Full-text · Article · Dec 2012 · Science and Technology of Advanced Materials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles (NP) possess remarkable adjuvant and carrier capacity, therefore are used in the development of various vaccine formulations. Our previous studies demonstrated that inert non-toxic 40-50 nm polystyrene NP (PS-NP) can promote strong CD8 T cell and antibody responses to the antigen, in the absence of observable inflammatory responses. Furthermore, instillation of PS-NP inhibited the development of allergic airway inflammation by induction of an immunological imprint via modulation of dendritic cell (DC) function without inducing oxidative stress in the lungs in mice. This is in contrast to many studies which show that a variety of ambient and man-made NP promote lung immunopathology, raising concerns generally about the safe use of NPs in biomedicine. Most NPs are capable of inducing inflammatory pathways in DC largely mediated by signalling via the extracellular signal-regulated kinase 1/2 (ERK). Herein, we investigate whether PS-NPs also activate ERK in DC in vitro. Our data show that PS-NP do not induce ERK activation in two different types of bone marrow derived (BM) DC cultures (expanded with GM-CSF or with GM-CSF together with IL-4). The absence of such signalling was not due to lack of PS-NP uptake by BM-DC as confirmed by confocal microscopy and flow cytometry. The process of NP uptake by DC usually initiates ERK signalling, suggesting an unusual uptake pathway may be engaged by PS-NPs. Indeed, data herein showns that uptake of PS-NP by BM-DC was substantially inhibited by phorbol myristate acetate (PMA) but not cytochalasin D (CCD), suggesting an uptake pathway utilising caveole for PS-NP. Together these data show that BM-DC take up PS-NP via a caveole-dependent pathway which does not trigger ERK signalling which may explain their efficient uptake by DC, without the concomitant activation of conventional inflammatory pathways.
    Full-text · Article · Feb 2013 · Methods
Show more