Refining the Role of B Cells in Atherosclerosis

University of Virginia, University of Virginia Health Sciences Center, Box 801394 MR5, Charlottesville, VA 22908. .
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6). 07/2012; 32(7):1548-9. DOI: 10.1161/ATVBAHA.112.249235
Source: PubMed

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and results: We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. Twenty-four coexpression modules were identified, including 1 case-specific and 1 control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with gene expression-associated single-nucleotide polymorphisms and with results of genome-wide association studies of CHD and its risk factors, the control-specific DM was implicated as CHD causal based on its significant enrichment for both CHD and lipid expression-associated single-nucleotide polymorphisms. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver genes. Multitissue key drivers (SPIB and TNFRSF13C) and tissue-specific key drivers (eg, EBF1) were identified. Conclusions: Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk.
    Full-text · Article · Mar 2013 · Arteriosclerosis Thrombosis and Vascular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerotic lesions grow via the accumulation of leukocytes and oxidized lipoproteins in the vessel wall. Leukocytes can attenuate or augment atherosclerosis through the release of cytokines, chemokines, and other mediators. Deciphering how leukocytes develop, oppose and complement each other's function, and shape the course of disease, can illuminate understanding of atherosclerosis. Innate response activator (IRA) B cells are a recently described population of GM-CSF-secreting cells of hitherto unknown function in atherosclerosis. Here we show that IRA B cells arise during atherosclerosis in mice and humans. In response to high cholesterol diet, IRA B cell numbers increase preferentially in secondary lymphoid organs via Myd88-dependent signaling. Mixed chimeric mice lacking B cell-derived GM-CSF develop smaller lesions with fewer macrophages and effector T cells. Mechanistically, IRA B cells promote the expansion of classical dendritic cells, which then generate IFNγ-producing TH1 cells. This IRA B cell-dependent TH1 skewing manifests in an IgG1 to IgG2c isotype switch in the immunoglobulin response against oxidized lipoproteins. GM-CSF-producing IRA B cells alter adaptive immune processes and shift the leukocyte response toward a TH1-associated mileu that aggravates atherosclerosis.
    Full-text · Article · Jan 2014 · Circulation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mineralocorticoid receptors (MR) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease.
    No preview · Article · Apr 2014 · Steroids
Show more