Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

Department of Basic Medical Sciences, School of Medicine, University of Missouri, 2411 Holmes Street, Kansas City, MO 64108, USA.
Lipids in Health and Disease (Impact Factor: 2.22). 06/2012; 11(1):76. DOI: 10.1186/1476-511X-11-76
Source: PubMed


Altered immune function during ageing results in increased production of nitric oxide (NO) and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.
The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P < 0.02) in the activities of chymotrypsin-like, trypsin-like, and post-acidic (post-glutamase) proteasome sites in RAW 264.7 cells at a dose of only 20 μM. These compounds also inhibited the production of NO by RAW-264.7 cells stimulated with LPS alone (>40%; P < 0.05), or LPS + interferon-γ (IFN-γ; >60%; P < 0.02). Furthermore, resveratrol, pterostilbene, morin hydrate, and quercetin suppressed secretion of TNF-α (>40%; P < 0.05) in LPS-stimulated RAW 264.7 cells, and suppressed NF-κB activation (22% to 45%; P < 0.05) in LPS-stimulated HEK293T cells. These compounds also significantly suppressed LPS-induced expression of TNF-α, IL-1β, IL-6, and iNOS genes in RAW 264.7 cells, and also in thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.
The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli. This is the first report demonstrating that resveratrol and pterostilbene act as proteasome inhibitors, thus providing a mechanism for their anti-inflammatory effects.

Download full-text


Available from: Nilofer Qureshi, Professor
    • "IkBα stabilization thus reducing the expression of the inducible nitric oxide synthase, COX-2, IL-6, IL-8, and TNF genes. Similar results were obtained using LPS-stimulated RAW 264.7 cells and macrophages derived from mice models [74]. Moreover, Morin is effective in reducing liver inflammation of rats fed with a high fructose diet. "

    No preview · Article · Jan 2016
  • Source
    • "Wobec tego może być uważana za potencjalny naturalny składnik spożywczy o właściwościach przeciwzapalnych [66]. Podobnie resweratrol, inhibitor proteasomów, przeciwzapalny związek obecny w składnikach diety śródziemnomorskiej, hamuje wytwarzanie NO i cytokin prozapalnych w makrofagach stymulowanych LPS [91]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages play an important role in innate immunity, in induction and orchestration of acquired immune response as well as in the maintenance of tissue homeostasis. Macrophages as antigen presenting cells induce or inhibit the development of immune response and as effector cells play an important role in innate immunity to infectious agents and in delayed--type hypersensitivity as well. Thus, either up- or down-regulation of their activity leads to the impairment of different biological processes. This often results in the development of immunological diseases or inflammatory response associated with metabolic, cardiovascular or neuroendocrine disorders. Therefore, the possibility of modulation of macrophage function should allow for elaboration of new effective therapeutic strategies. Noteworthy, interaction of medicaments with macrophages may directly mediate their therapeutic activity or is an additional beneficial effect increasing efficacy of treatment. Further, macrophage differentiation is regulated by miRNA-223, while expression of miRNA-146 and miRNA-155 may modulate and/or be a result of the current cell phenotype. Present review is focused on the current knowledge about the action of medicaments, microRNA molecules, exosomes and related vesicles on macrophages leading to modulation of their biological activity.
    Full-text · Article · Sep 2015 · Postępy Higieny i Medycyny Doświadczalnej (Advances in Hygiene and Experimental Medicine)
  • Source
    • "required for F508-CFTR correction [35]. Recently, resveratrol has received broad interest due to its antioxidant, antimutagenic, anti-inflammatory and chemoprotective properties [36] [37]; and like curcumin is readily available in many Health Food stores. Resveratrol has also been reported to have beneficial effects on the activity of mutant CFTR [10] [11] [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol. High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. Taken together, our results do not support the use of resveratrol supplements as a therapy for patients with cystic fibrosis. It is possible that further modifications of the resveratrol backbone would yield a more efficacious compound. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Sep 2015 · Biochimica et Biophysica Acta
Show more