A Novel Combined Method of Osteosynthesis in Treatment of Tibial Fractures: A Comparative Study on Sheep with Application of Rod-Through-Plate Fixator and Bone Plating

Small Animal Clinic 'Billy', Tallinn, Estonia.
Anantomia Histologia Embryologia (Impact Factor: 0.67). 06/2012; 42(2). DOI: 10.1111/j.1439-0264.2012.01167.x
Source: PubMed


The study compares the efficiency of a new bone fixator combining periostal and intramedullary osteosynthesis to bone plating in treatment of tibial fractures in sheep. Experimental osteotomies were performed in the middle third of the left tibia. Animals were divided into two groups: in one group (four animals) combined osteosynthesis (rod-through-plate fixator, RTP fixator) was applied, and in the other group (three animals) bone plating was used. The experiments lasted for 10 weeks during which fracture union was followed by radiography, and the healing process was studied by blood serum markers reflecting bone turnover and by histological and immunohistochemical investigations. In the RTP fixator group, animals started to load body weight on the operated limbs the next day after the surgery, while in the bone plating group, this happened only on the seventh day. In the RTP fixator group, consolidation of fractures was also faster, as demonstrated by radiographical, histological, and immunohistochemical investigations and in part by blood serum markers for bone formation. It can be concluded that application of RTP fixation is more efficient than plate fixation in the treatment of experimental osteotomies of long bones in sheep.

1 Follower
17 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Changes in bone remodeling during pathological states and during their treatment can be assessed noninvasively by measuring biomarkers of bone metabolism. Their application is limited, however, by the potential biological variability in the levels of these biomarkers over time. To determine the short-term variability in biomarkers of bone metabolism in adult sheep, the authors measured serum levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC), N-terminal propeptide of type-III procollagen (PIIINP), deoxypyridinoline (DPD), tartrate-resistant acid phosphatase (TRAP), calcium and phosphorus intermittently over a 12-week period. There were significant differences in mean ALP activity and in phosphorus concentrations over time, but all other biomarkers showed no significant short-term variability. The results suggest that biomarkers of bone metabolism in sheep, especially the bone resorption marker DPD and the bone formation marker BALP, can be used reliably to detect changes in bone cellular activity.
    No preview · Article · Dec 2013 · Lab Animal
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the field of fracture healing it is essential to know the impacts of new materials. Fracture healing of long bones is studied in various animal models and extrapolated for use in humans, although there are differences between the micro- and macrostructure of human versus animal bone. Unfortunately, recommended standardised models for fracture repair studies do not exist. Many different study designs with various animal models are used. Concerning the general principles of replacement, refinement and reduction in animal experiments (three "Rs"), a standardisation would be desirable to facilitate better comparisons between different studies. In addition, standardised methods allow better prediction of bone healing properties and implant requirements with computational models. In this review, the principles of bone fracture healing and differences between osteotomy and artificial fracture models as well as influences of fixation devices are summarized. Fundamental considerations regarding animal model choice are discussed, as it is very important to know the limitations of the chosen model. In addition, a compendium of common animal models is assembled with special focus on rats, rabbits, and sheep as most common fracture models. Fracture healing simulation is a basic tool in reducing the number of experimental animals, so its progress is also presented here. In particular, simulation of different animal models is presented. In conclusion, a standardized fracture model is of utmost importance for the best adaption of simulation to experimental setups and comparison between different studies. One of the basic goals should be to reach a consensus for standardised fracture models.
    No preview · Article · Aug 2014 · Journal of Biomedical Materials Research Part A
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Jul 2015 · Advanced drug delivery reviews