Second trimester serum tests for Down's Syndrome screening

Department of Women’s and Children’s Health, The University of Liverpool, Liverpool, UK. .
Cochrane database of systematic reviews (Online) (Impact Factor: 6.03). 06/2012; 6(6):CD009925. DOI: 10.1002/14651858.CD009925
Source: PubMed


Down's syndrome occurs when a person has three copies of chromosome 21 - or the specific area of chromosome 21 implicated in causing Down's syndrome - rather than two. It is the commonest congenital cause of mental retardation. Noninvasive screening based on biochemical analysis of maternal serum or urine, or fetal ultrasound measurements, allows estimates of the risk of a pregnancy being affected and provides information to guide decisions about definitive testing.
To estimate and compare the accuracy of second trimester serum markers for the detection of Down's syndrome.
We carried out a sensitive and comprehensive literature search of MEDLINE (1980 to May 2007), EMBASE (1980 to 18 May 2007), BIOSIS via EDINA (1985 to 18 May 2007), CINAHL via OVID (1982 to 18 May 2007), The Database of Abstracts of Reviews of Effectiveness (The Cochrane Library 2007, Issue 1), MEDION (May 2007), The Database of Systematic Reviews and Meta-Analyses in Laboratory Medicine (May 2007), The National Research Register (May 2007), Health Services Research Projects in Progress database (May 2007). We studied reference lists and published review articles.
Studies evaluating tests of maternal serum in women at 14-24 weeks of gestation for Down's syndrome, compared with a reference standard, either chromosomal verification or macroscopic postnatal inspection.
Data were extracted as test positive/test negative results for Down's and non-Down's pregnancies allowing estimation of detection rates (sensitivity) and false positive rates (1-specificity). We performed quality assessment according to QUADAS criteria. We used hierarchical summary ROC meta-analytical methods to analyse test performance and compare test accuracy. Analysis of studies allowing direct comparison between tests was undertaken. We investigated the impact of maternal age on test performance in subgroup analyses.
Fifty-nine studies involving 341,261 pregnancies (including 1,994 with Down's syndrome) were included. Studies were generally high quality, although differential verification was common with invasive testing of only high-risk pregnancies. Seventeen studies made direct comparisons between tests. Fifty-four test combinations were evaluated formed from combinations of 12 different tests and maternal age; alpha-fetoprotein (AFP), unconjugated oestriol (uE3), total human chorionic gonadotrophin (hCG), free beta human chorionic gonadotrophin (βhCG), free alpha human chorionic gonadotrophin (αhCG), Inhibin A, SP2, CA125, troponin, pregnancy-associated plasma protein A (PAPP-A), placental growth factor (PGF) and proform of eosinophil major basic protein (ProMBP).Meta-analysis of 12 best performing or frequently evaluated test combinations showed double and triple tests (involving AFP, uE3, total hCG, free βhCG) significantly outperform individual markers, detecting six to seven out of every 10 Down's syndrome pregnancies at a 5% false positive rate. Tests additionally involving inhibin performed best (eight out of every 10 Down's syndrome pregnancies) but were not shown to be significantly better than standard triple tests in direct comparisons. Significantly lower sensitivity occurred in women over the age of 35 years. Women who miscarried in the over 35 group were more likely to have been offered an invasive test to verify a negative screening results, whereas those under 35 were usually not offered invasive testing for a negative screening result. Pregnancy loss in women under 35 therefore leads to under ascertainment of screening results, potentially missing a proportion of affected pregnancies and affecting the accuracy of the sensitivity.
Tests involving two or more markers in combination with maternal age are significantly more sensitive than those involving one marker. The value of combining four or more tests or including inhibin have not been proven to show statistically significant improvement. Further study is required to investigate reduced test performance in women aged over 35 and the impact of differential pregnancy loss on study findings.

1 Follower
13 Reads

  • No preview · Article · Dec 2012 · American journal of obstetrics and gynecology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systematic reviews that "compare" the accuracy of 2 or more tests often include different sets of studies for each test. To investigate the availability of direct comparative studies of test accuracy and to assess whether summary estimates of accuracy differ between meta-analyses of noncomparative and comparative studies. Systematic reviews in any language from the Database of Abstracts of Reviews of Effects and the Cochrane Database of Systematic Reviews from 1994 to October 2012. 1 of 2 assessors selected reviews that evaluated at least 2 tests and identified meta-analyses that included both noncomparative studies and comparative studies. 1 of 3 assessors extracted data about review and study characteristics and test performance. 248 reviews compared test accuracy; of the 6915 studies, 2113 (31%) were comparative. Thirty-six reviews (with 52 meta-analyses) had adequate studies to compare results of noncomparative and comparative studies by using a hierarchical summary receiver-operating characteristic meta-regression model for each test comparison. In 10 meta-analyses, noncomparative studies ranked tests in the opposite order of comparative studies. A total of 25 meta-analyses showed more than a 2-fold discrepancy in the relative diagnostic odds ratio between noncomparative and comparative studies. Differences in accuracy estimates between noncomparative and comparative studies were greater than expected by chance (P < 0.001). A paucity of comparative studies limited exploration of direction in bias. Evidence derived from noncomparative studies often differs from that derived from comparative studies. Robustly designed studies in which all patients receive all tests or are randomly assigned to receive one or other of the tests should be more routinely undertaken and are preferred for evidence to guide test selection. National Institute for Health Research (United Kingdom).
    No preview · Article · Apr 2013 · Annals of internal medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sulphate contributes to numerous physiological processes in mammalian physiology, particularly during development. Sulphotransferases mediate the sulphate conjugation (sulphonation) of numerous compounds, including steroids, glycosaminoglycans, proteins, neurotransmitters and xenobiotics, transforming their biological activities. Importantly, the ratio of sulphonated to unconjugated molecules plays a significant physiological role in many of the molecular events that regulate mammalian growth and development. In humans, the fetus is unable to generate its own sulphate and therefore relies on sulphate being supplied from maternal circulation via the placenta. To meet the gestational needs of the growing fetus, maternal blood sulphate concentrations double from mid-gestation. Maternal hyposulphataemia has been linked to fetal sulphate deficiency and late gestational fetal loss in mice. Disorders of sulphonation have also been linked to a number of developmental disorders in humans, including skeletal dysplasias and premature adrenarche. Whilst recognised as an important nutrient in mammalian physiology, sulphate is largely unappreciated in clinical settings. In part, this may be due to technical challenges in measuring sulphate with standard pathology equipment, and hence the limited findings of perturbed sulphate homeostasis affecting human health. This review article is aimed at highlighting the importance of sulphate in mammalian development, with basic science research being translated through animal models and linking to human disorders.
    Preview · Article · May 2013 · Reproduction
Show more