Differential expression of galectin-1 and its interactions with cells and laminins in the intervertebral disc

Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708.
Journal of Orthopaedic Research (Impact Factor: 2.99). 12/2012; 30(12):1923-31. DOI: 10.1002/jor.22158
Source: PubMed


Galectin-1 (Gal-1), an endogenous β-galactoside-binding protein, binds to laminins, which are highly expressed in the nucleus pulposus (NP) of the intervertebral disc (IVD). The objective of this study is to evaluate the expression of Gal-1 protein in IVD tissues during aging and the effect of Gal-1 on IVD cell adhesion to laminins. Tissues from rat, porcine, and human (scoliosis or disc degeneration) IVDs were used to evaluate Gal-1 expression via immunostaining, RT-PCR, and Western blot analysis. Attachment of isolated IVD cells (porcine and human) on select laminin isoforms (LM-111 and LM-511) was compared with/without pre-incubation with exogenous Gal-1. A biotinylated Gal-1(B-Gal-1) was used to evaluate for binding to IVD cells and to select for IVD cells by magnetic activated cell sorting (MACS). NP cells expressed high levels of Gal-1 protein as compared to anulus fibrosus (AF) cells in immature tissues, while exogenous Gal-1 increased both NP and AF cell attachment to laminins and exhibited a similar binding to both cell types in vitro. With aging, Gal-1 levels in NP tissue appeared to decrease. In addition, incubation with B-Gal-1 was able to promote the retention of more than 50% of IVD cells via MACS. Our results provide new findings for the presence and functional role of Gal-1 within IVDs. Similar staining patterns for Gal-1 and LM-511 in IVD tissue suggest that Gal-1 may serve as an adhesion molecule to interact with both cells and laminins. This MACS protocol may be useful for selecting pure IVD cells from mixed cells of pathological tissue. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1923-1931, 2012.

15 Reads
  • Source
    • "As shown in Table 1, results confirmed higher mRNA expression levels in immature rat NP as compared to AF for several cell surface receptors CD239 (Lu), CD151 (PETA-3), CD24, CD54 (ICAM), CD325 (CDH2) and galectin-1(GAL-1) identified in previous studies of rat, porcine, bovine or human IVDs [27], [30], [33], [37], [38]. mRNA levels for other receptors highly expressed in NP tissues were ALCAM (CD166), TNFRSF12A, PVR (CD155), IGF-1R (CD221), DDR1(CD167), SDC4, RHAMM (CD168) and LAMP1(CD107a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intervertebral disc (IVD) disorder and age-related degeneration are believed to contribute to low back pain. Cell-based therapies represent a promising strategy to treat disc degeneration; however, the cellular and molecular characteristics of disc cells during IVD maturation and aging still remain poorly defined. This study investigated novel molecular markers and their age-related changes in the rat IVD. Affymetrix cDNA microarray analysis was conducted to identify a new set of genes characterizing immature nucleus pulposus (NP) cells. Among these markers, select neuronal-related proteins (Basp1, Ncdn and Nrp-1), transcriptional factor (Brachyury T), and cell surface receptors (CD24, CD90, CD155 and CD221) were confirmed by real-time PCR and immunohistochemical (IHC) staining for differential expression between IVD tissue regions and among various ages (1, 12 and 21 months). NP cells generally possessed higher levels of mRNA or protein expression for all aforementioned markers, with the exception of CD90 in anulus fibrosus (AF) cells. In addition, CD protein (CD24 and CD90) and Brachyury (T) expression in immature disc cells were also confirmed via flow cytometry. Similar to IHC staining, results revealed a higher percentage of immature NP cells expressing CD24 and Brachyury, while higher percentage of immature AF cells was stained positively for CD90. Altogether, this study identifies that tissue-specific gene expression and age-related differential expression of the above markers do exist in immature and aged disc cells. These age-related phenotype changes provide a new insight for a molecular profile that may be used to characterize NP cells for developing cell-based regenerative therapy for IVD regeneration.
    Full-text · Article · Dec 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) - originating from the Wharton's jelly - remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. However, no studies have demonstrated that MSCs can regenerate matrix with unique characteristics matching that of immature nucleus pulposus (NP) tissues of the IVD. In our prior work, immature NP cells were found to express specific laminin isoforms and laminin-binding receptors that may serve as phenotypic markers for evaluating MSC differentiation to NP-like cells. The goal of this study is to evaluate these markers and matrix synthesis for HUCMSCs cultured in a laminin-rich pseudo-three-dimensional culture system. HUCMSCs were seeded on top of Transwell inserts pre-coated with Matrigel™, which contained mainly laminin-111. Cells were cultured under hypoxia environment with three differentiation conditions: NP differentiation media (containing 2.5% Matrigel™ solution to provide for a pseudo-three-dimensional laminin culture system) with no serum, or the same media supplemented with either insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1). Cell clustering behavior, matrix production and the expression of NP-specific laminin and laminin-receptors were evaluated at days 1, 7, 13 and 21 of culture. Data show that a pseudo-three-dimensional culture condition (laminin-1 rich) promoted HUCMSC differentiation under no serum conditions. Starting at day 1, HUCMSCs demonstrated a cell clustering morphology similar to that of immature NP cells in situ and that observed for primary immature NP cells within the similar laminin-rich culture system (prior study). Differentiated HUCMSCs under all conditions were found to contain glycosaminoglycan, expressed extracellular matrix proteins of collagen II and laminin α5, and laminin receptors (integrin α3 and β4 subunits). However, neither growth factor treatment generated distinct differences in NP-like phenotype for HUCMSC as compared with no-serum conditions. HUCMSCs have the potential to differentiate into cells sharing features with immature NP cells in a laminin-rich culture environment and may be useful for IVD cellular therapy.
    Full-text · Article · Oct 2013 · Stem Cell Research & Therapy