Effects of a Carbohydrate-, Protein-, and Ribose-Containing Repletion Drink During 8 Weeks of Endurance Training on Aerobic Capacity, Endurance Performance, and Body Composition

ArticleinThe Journal of Strength and Conditioning Research 26(8):2234-42 · June 2012with60 Reads
Impact Factor: 2.08 · DOI: 10.1519/JSC.0b013e3182606cec · Source: PubMed

    Abstract

    This study compared a carbohydrate-, protein-, and ribose-containing repletion drink vs. carbohydrates alone during 8 weeks of aerobic training. Thirty-two men (age, mean ± SD = 23 ± 3 years) performed tests for aerobic capacity (V(O2)peak), time to exhaustion (TTE) at 90% V(O2)peak, and percent body fat (%fat), and fat-free mass (FFM). Testing was conducted at pre-training (PRE), mid-training at 3 weeks (MID3), mid-training at 6 weeks (MID6), and post-training (POST). Cycle ergometry training was performed at 70% V(O2)peak for 1 hours per day, 5 days per week for 8 weeks. Participants were assigned to a test drink (TEST; 370 kcal, 76 g carbohydrate, 14 g protein, 2.2 g d-ribose; n = 15) or control drink (CON; 370 kcal, 93 g carbohydrate; n = 17) ingested immediately after training. Body weight (BW; 1.8% decrease CON; 1.3% decrease TEST from PRE to POST), %fat (5.5% decrease CON; 3.9% decrease TEST), and FFM (0.1% decrease CON; 0.6% decrease TEST) decreased (p ≤ 0.05), whereas V(O2)peak (19.1% increase CON; 15.8% increase TEST) and TTE (239.1% increase CON; 377.3% increase TEST) increased (p ≤ 0.05) throughout the 8 weeks of training. Percent decreases in %fat from PRE to MID3 and percent increases in FFM from PRE to MID3 and MID6 were greater (p ≤ 0.05) for TEST than CON. Overall, even though the TEST drink did not augment BW, V(O2)peak, or TTE beyond carbohydrates alone, it did improve body composition (%fat and FFM) within the first 3-6 weeks of supplementation, which may be helpful for practitioners to understand how carbohydrate-protein recovery drinks can and cannot improve performance in their athletes.