Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania

National Institute for Medical Research, Amani Centre, P, O, Box 81, Muheza, Tanzania. .
Malaria Journal (Impact Factor: 3.11). 06/2012; 11(1):188. DOI: 10.1186/1475-2875-11-188
Source: PubMed


A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania.
The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR.
As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species.
The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area.

Download full-text


Available from: Stephen Magesa, Jan 14, 2014
  • Source
    • "In addition, most strategies target host-seeking and blood feeding mosquitoes, relying on potential human hosts to attract the vectors to the vicinity of the insecticide, which is exclusively used within residences. Consequently , the efficacy of such treatments is behavior-dependent, with endophilic species which tend to rest and feed indoors affected more than exophilic, outdoor-feeding vectors (Fornadel et al., 2010; Russell et al., 2011; Derua et al., 2012). Accordingly, a shift in the disease transmission dynamics may perpetuate the incidence of the disease, as a readily available pool of the pathogen is maintained within the latter, impeding attempts to reduce and sustain EIRs below the desired thresholds for prolonged periods (Beier et al., 1999; McKenzie et al., 2001; Shaukat et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Attractive toxic sugar bait (ATSB) is a highly effective method which targets mosquitoes based on their sugar foraging behavior, by presenting baits of attractive compounds in combination with sugar and oral toxin to local mosquito populations. Environmental concerns and insecticide selection-pressure have prompted investigations of novel, ecologically-harmless substances which can be used as insecticides. This study examined the efficacy of microencapsulated garlic-oil as the oral toxin component of ATSB for controlling An. sergentii populations inhabiting desert-surrounded wetlands in Israel. ATSB solution containing 0.4% encapsulated garlic oil was applied to local vegetation around a streamlet located in the lower Jordan Valley. To determine the propensity of bait ingestion, and assess the potential ecological impact of the method, mosquito and non-target specimens were collected and tested for the presence of natural plant- or attractive sugar bait (ASB)-derived sugars. Over the experimental period, biting-pressure values in the ATSB treatment site decreased by 97.5%, while at the control site, treated with non-toxic ASB, no significant changes were observed. Approximately 70% of the mosquitoes collected before both treatments, as well as those captured following the application of ASB at the control site, were found to have ingested sugar prior to capture. Non-target insects were minimally affected by the treatment when ATSB was applied to foliage of non-flowering plants. Of the non-Diptera species, only 0.7% of the sampled non-target insects were found to have ingested ASB-solution which was applied to green vegetation, compared with 8.5% which have foraged on ASB-derived sugars applied to flowering plants. Conversely, a high proportion of the non-target species belonging to the order Diptera, especially non-biting midges, were found to have ingested foliage-applied ASB, with more than 36% of the specimens collected determined to have foraged on bait-derived sugars. These results prove that food-grade, EPA-exempt microencapsulated garlic oil is a highly effective insecticide which can be utilized for mosquito population control. The relatively short half-life of this active ingredient makes it a suitable for use in areas where repeated application is possible, limiting the accumulation of deleterious compounds and ensuring minimal environmental impact when applied in accordance with label recommendations. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Jun 2015 · Acta tropica
  • Source
    • "Resistance to pyrethroid insecticides in An. gambiae s.l. in eastern Uganda is extensive and appears to be increasing (Ramphul et al. 2009; Verhaeghen et al. 2010; Mawejje et al. 2013). There is some evidence that the role of An. arabiensis in malaria transmission in the region may also be on the increase (Mawejje et al. 2013) as has been seen in neighbouring countries (Lindblade et al. 2006; Bayoh et al. 2010; Derua et al. 2012; Mwangangi et al. 2013). Here, we have undertaken microarray analysis of the pyrethroid-resistant phenotype in both Anopheles gambiae and An. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Insecticide resistance is a major impediment to the control of vectors and pests of public health importance and is a strongly selected trait capable of rapid spread, sometimes even between closely related species. Elucidating the mechanisms generating insecticide resistance in mosquito vectors of disease, and understanding the spread of resistance within and between populations and species are vital for the development of robust resistance management strategies. Here, we studied the mechanisms of resistance in two sympatric members of the Anopheles gambiae species complex-the major vector of malaria in sub-Saharan Africa-to understand how resistance has developed and spread in eastern Uganda, a region with some of the highest levels of malaria. In eastern Uganda, where the mosquitoes Anopheles arabiensis and An. gambiae can be found sympatrically, low levels of hybrids (0.4 %) occur, offering a route for introgression of adaptively important variants between species. In independent microarray studies of insecticide resistance, Gste4, an insect-specific glutathione S-transferase, was among the most significantly up-regulated genes in both species. To test the hypothesis of interspecific introgression, we sequenced 2.3 kbp encompassing Gste4. Whilst this detailed sequencing ruled out introgression, we detected strong positive selection acting on Gste4. However, these sequences, followed by haplotype-specific qPCR, showed that the apparent up-regulation in An. arabiensis is a result of allelic variation across the microarray probe binding sites which artefactually elevates the gene expression signal. Thus, face-value acceptance of microarray data can be misleading and it is advisable to conduct a more detailed investigation of the causes and nature of such signal. The identification of positive selection acting on this locus led us to functionally express and characterise allelic variants of GSTE4. Although the in vitro data do not support a direct role for GSTE4 in metabolism, they do support a role for this enzyme in insecticide sequestration. Thus, the demonstration of a role for an up-regulated gene in metabolic resistance to insecticides should not be limited to simply whether it can metabolise insecticide; such a strict criterion would argue against the involvement of GSTE4 despite the weight of evidence to the contrary.
    Full-text · Article · Sep 2014 · Molecular Genetics and Genomics
  • Source
    • "This study provides substantial information on malaria vector dynamics and their contribution to malaria transmission in rural southern Tanzania over a five year period. Consistent with other studies, which have documented a shift in malaria vector composition and a change in malaria transmission dynamics seemingly as a result of extensive use of LLINs [4, 5, 36], this study reports a steady decrease to undetectable levels of An. gambiae s.s. with steady increase in the proportion of its sibling species An. arabiensis and a surge in the abundance of An. funestus s.s. in year 2012. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background In order to sustain the gains achieved by current malaria control strategies, robust surveillance systems that monitor dynamics of vectors and their roles in malaria transmission over time are essential. This longitudinal study demonstrates the trends in malaria vector dynamics and their relative contribution to malaria transmission in hyperendemic transmission settings in Tanzania. Methods The study was conducted in two villages within the Kilombero Valley, in rural Tanzania for five consecutive years (2008–2012). Seventy-two houses were selected per village and each house was sampled for mosquitoes monthly using a CDC light trap. Collected mosquitoes were assessed for species identity and sporozoite infection status using PCR and ELISA, respectively. Anopheles funestus and Anopheles arabiensis susceptibility to insecticides was assessed using WHO guidelines. Results A total of 100,810 malaria vectors were collected, of which 76% were Anopheles gambiae s. l. and 24% were An. funestus. Of all An. funestus samples that amplified with PCR (n = 2,737), 97% were An. funestus s.s., 2% were Anopheles rivorulum and 1% Anopheles leesoni. Whereas for An. gambiae s.l. (n = 8,117), 93% were An. arabiensis and 7% were Anopheles gambiae s.s. The proportion of An. gambiae s.s. identified by PCR (2,924) declined from 0.2% in the year 2008 to undetectable levels in 2012. Malaria transmission intensity significantly decreased from an EIR of 78.14 infectious bites/person/year in 2008 to 35 ib/p/yr in 2011 but rebounded to 226 ib/p/yr in 2012 coinciding with an increased role of An. funestus in malaria transmission. Insecticide susceptibility tests indicated high levels of resistance in An. funestus against deltamethrin (87%), permethrin (65%), lambda cyhalothrin (74%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed insecticide resistance to deltamethrin (64%), permethrin (77%) and lambda cyhalothrin (42%) in 2014. Conclusion The results indicate the continuing role of An. arabiensis and the increasing importance of An. funestus in malaria transmission, and pyrethroid resistance development in both species. Complementary vector control and surveillance tools are needed that target the ecology, behaviour and insecticide resistance management of these vector species, in order to preserve the efficacy of LLINs.
    Full-text · Article · Aug 2014 · Malaria Journal
Show more