Atypical features of nanophthalmic macula- A spectral domain OCT study

Head Glaucoma Services, LV Prasad Eye institute, Patia, Bhubaneswar, Orissa, India. .
BMC Ophthalmology (Impact Factor: 1.02). 06/2012; 12(1):12. DOI: 10.1186/1471-2415-12-12
Source: PubMed


To report atypical features on Spectral domain optical coherence tomography (SD-OCT) in a case of non-familial pure adult nanophthalmos.
A 39 year old male hyperope was found to have biometric and fundus findings typical of nanophthalmos. The additional atypical features included serous pigment epithelial detachment (PED) in right eye and a cuff of subretinal fluid with underlying yellow deposits along superotemporal arcade in the left eye. Fundus flourescein angiogram showed hyperfluorescence due to window defect, dye pooling due to serous PED in right eye and leak superior to disc in right eye and superotemporally in left eye. Cirrus-SD OCT horizontal line scan passing through the fovea showed extensive inner limiting membrane corrugations causing distorted foveal contour in both eyes. A large juxtafoveal serous PED and a small extrafoval PED were seen with folds in the retinal pigment epithelium (RPE)-choriocapillary layer in the right eye.
Structural disruptions in the RPE-choriocapillary complex in the form of folds or juxtafoveal serous PED and RPE folds can be atypical features of nanophthalmic macula better discerned on high resolution OCT.

  • Source
    • "This is in accordance with our findings. Since SD-OCT reliably indicates retinal folds in both humans and mice (Rao et al. 2012; Secondi et al. 2012), the discrepancy in BALB/cByJ findings seems to represent histological artifacts that are initiated during eye embedding, putatively caused by destabilizing retinal lesions. This further stresses the benefit of in vivo measurements by the noninvasive SD-OCT system. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Spectral domain optical coherence tomography (SD-OCT) has recently been established as a method for in vivo imaging of fundus and retina in the mouse. It enables more effective studies of retinal diseases including investigations of etiopathologic mechanisms. In order to learn more about longitudinal fundus development and to enable recognition of disease-associated irregularities, we performed confocal scanning laser ophthalmoscopy (cSLO) and SD-OCT measurements in the inbred strains C57BL/6J, C3HeB/FeJ, FVB/NCrl, BALB/cByJ, and 129S2/SvJ when they were between 2 and 6 months of age. In general, cSLO and SD-OCT data did not reveal sex-specific or unilateral differences. C3HeB/FeJ and FVB/NCrl mice showed diffuse choroidal dysplasia. Choroidal vein-like structures appeared as dark fundus stripes in C3HeB/FeJ. In FVB/NCrl, fundus fleck accumulation was found. In contrast, only minor time-dependent changes of fundus appearance were observed in C57BL/6J, BALB/cByJ, and 129S2/SvJ. This was also found for individual fundic main blood vessel patterns in all inbred strains. Vessel numbers varied between 6 and 13 in C57BL/6J. This was comparable in most cases. We further found that retinae were significantly thicker in C57BL/6J compared to the other strains. Total retinal thickness generally did not change between 2 and 6 months of age. As a conclusion, our results indicate lifelong pathologic processes in C3HeB/FeJ and FVB/NCrl that affect choroid and orbital tissues. Inbred strains with regular retinal development did not reveal major time-dependent variations of fundus appearance, blood vessel pattern, or retinal thickness. Consequently, progressive changes of these parameters are suitable indicators for pathologic outliers.
    Full-text · Article · May 2013 · Mammalian Genome