Cytogenetic investigation of Triticum timopheevii (Zhuk.) Zhuk. and related species using C-banding technique

Kansas State University, Throckmorton Hall
Theoretical and Applied Genetics (Impact Factor: 3.79). 10/1994; 89(5):622-628. DOI: 10.1007/BF00222457


Triticum timopheevii and related species T. militinae (2n=28, AtG) and T. zhukovskyi (2n=42, AmAtG), hybrids T. kiharae, T. miguschovae, the amphidiploid T. timopheevii x T. tauschii (all 2n=42, AtGD), T. fungicidum (ABAtG) and T. timonovum (2n=56, AtAtGG) were analyzed using the C-banding technique. Chromosomes of the Am and At genomes in the karyotype of T. zhukovskyi differed in their C-banding pattern. Partial substitutions of At-genome chromosomes and a complete substitution of the G-genome chromosomes by homoeologous chromosomes of an unidentified tetraploid wheat species with an AB genome composition were found in the T. timonovum karyotype. At- and G-genome chromosomes in the karyotypes of all studied species had similar C-banding patterns and were characterized by a low level of polymorphism. The comparative stability of the At and G genomes is determined by the origin and specifity of cultivation of studied species.

Download full-text


Available from: Ekaterina D Badaeva
  • Source
    • "The C-banded A t-and G-genome chromosomes in TA 3432, the T. timopheevii-A, tauschii amphiploid, are similar to the standard karyotype of T. timopheevii, indicating that there have been no major modifications of these genomes in the amphiploid (Badaeva et al. 1994). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether the two tetraploid wheat species, the well known Triticum turgidum L. (macaroni wheat, AABB genomes) and the obscure T. timopheevii Zhuk. (A(t)A(t)GG), have monophyletic or diphyletic origin from the same or different diploid species presents an interesting evolutionary problem. Moreover, T. timopheevii and its wild form T. araraticum are an important genetic resource for macaroni and bread-wheat improvement. To study these objectives, the substitution and genetic compensation abilities of individual T. timopheevii chromosomes for missing chromosomes of T. aestivum 'Chinese Spring' (AABBDD) were analyzed. 'Chinese Spring' aneuploids (nullisomic-tetrasomics) were crossed with a T. timopheevii x Aegilops tauschii amphiploid to isolate T. timopheevii chromosomes in a monosomic condition. The F1 hybrids were backcrossed one to four times to Chinese Spring aneuploids without selection for the T. timopheevii chromosome of interest. While spontaneous substitutions involving all A(t)- and G-genome chromosomes were identified, the targeted T. timopheevii chromosome was not always recovered. Lines with spontaneous substitutions from T. timopheevii were chosen for further backcrossing. Six T. timopheevii chromosome substitutions were isolated: 6A(t) (6A), 2G (2B), 3G (3B), 4G (4B), 5G (5B) and 6G (6B). The substitution lines had normal morphology and fertility. The 6A(t) of T. timopheevii was involved in a translocation with chromosome 1G, resulting in the transfer of the group-1 gliadin locus to 6A(t). Chromosome 2G substituted for 2B at a frequency higher than expected and may carry putative homoeoalleles of gametocidal genes present on group-2 chromosomes of several alien species. Our data indicate a common origin for tetraploid wheat species, but from separate hybridization events because of the presence of a different spectrum of intergenomic translocations.
    Full-text · Article · Dec 1996 · Theoretical and Applied Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The wild tetraploid wheat species Tr$$ (Zhuk) Zhuk Var. araratieum is a source of pest resistance genes for T$$ aesti$$ L. Our objectives were to describe the breeding behaviour of T.arartuititm when backcrossed to common wheat and transfer resistance to leaf rust (caused by Pu$$) and powdery mildew (caused by Blumeria $$wheat. Crosses were made between five wheat genotypes and $$ accessions. Fertifity and chromosome numbers of BC$$; plants were determined. Resistance to leaf rust was transferred toBC2 -derived families from 10 different T’ararati$$an accessions. Leaf rust resistance genes in nine T. araratieum accessions can be assigned to at least four loci. Leaf rust resistance transferred from three accessions was inherited in the hexaploid derivatives as a single. $$ gene in each case. Resistance to powdery mildew was also detected in the T. araratie$$ backcross derivatives. Fertile hexaploid derivatives expressing T’araratieum-derived resistance genes can be recovered after two backcrosses to wheat cultivars.
    Preview · Article · Apr 1997 · Plant Breeding
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The karyotypes of 47 hybrid lines obtained from crosses of common wheat Triticum aestivum L. (cv. Rodina and line 353) with Triticum timopheevii(Zhuk.) Zhuk. (A tA tGG) and related species T. militinae Zhuk. et Migusch. (A tA tGG) and T. kiharae Dorof. et Migusch. (A tA tGGD sqD sq) were analyzed by C-banding. Most lines were resistant to yellow rust and powdery mildew. The introgression of alien genetic material to the common wheat genome was realized via substitutions of complete A +-,G-, and D-genome chromosomes, chromosome arms, or their fragments. The pattern of chromosome substitutions in resistant lines differed from that in introgressive hybrids selected for other traits. Substitutions of chromosomes 6G, 2At, 2G, and 5G were revealed in 31, 23, 18, and 13 lines, respectively. Substitutions of chromosomes 4G, 4At, and 6At were not observed. In 15 lines, a 5BS.5BL-5GL translocation was identified. High frequency of substitutions of chromosomes 2At, 2G, 5G, and 6G indicate that they may carry the resistance genes and that they are closely related to the respective homoeologous chromosomes of common wheat that determines their high compensation ability.
    Full-text · Article · Dec 2000 · Russian Journal of Genetics
Show more