Venus, Mars, Saturn und Halley — Wissenschaftliche Instrumente aus Graz in den Tiefen des Weltraums

To read the full-text of this research, you can request a copy directly from the author.


Das Institut für Weltraumforschung hat eine lange Tradition im Bau von wissenschaftlichen Instrumenten und deren Anwendungen im erdnahen und erdfernen Weltraum. Magnetometer, neuartige Ionenquellen zur Kontrolle der elektrostatischen Aufladung von Satelliten und Rasterkraftmikroskope gehören zu diesen hochspezialisierten Geräten. Die Entwicklungen wurden sehr oft in enger Zusammenarbeit mit nationalen und internationalen Partnem und der lokalen Industrie durchgeführt. Prof. Riedler war in fast allen Fällen der leitende Wissenschaftler (Principal Investigator). The Space Research Institute has a long and successful history in space instrumentation. Magnetometer, ion emitters for the control of spacecraft surface charging and atomic force microscopes belong to the highlights of sophisticated hardware developed at the institute. Nearly all of the instruments involve significant contributions by industry and wide national and international collaboration. Prof. Riedler acted in nearly all cases as Principal Investigator.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
The microimaging dust analysis system (MIDAS) will be part of the payload of ESA’s Rosetta spacecraft4 to explore comet Wirtanen between 2011 and 2013. The launch of the spacecraft will take place in early 2003. MIDAS is based on an atomic force microscope, a technique which has made rapid progress in recent years after the discovery of the principle in 1986 by Binnig et al.1 The main scientific objective of MIDAS concerns the microtextural and statistical analysis of cometary dust grains and the project will resolve surface features with a spatial resolution of 4 nm in x and y direction and better than 1 nm in the z-direction. The comparative simplicity and robustness of the technique lends itself to space applications. The capabilities of the instrument are tailored to studies of the cometary environment and will provide an insight into the physical properties of dust grains that are not accessible otherwise. The prominent anticipated results are the size and texture of individual cometary grains and their building blocks in the range 4 nm to 5 μm. In preparation of the mission, a comprehensive measurement program of cosmic spherules and interplanetary dust grains has been initiated in order to build up experience in analyzing extraterrestrial particles with this technique. We present a description of the microscope and initial results from our AFM measurements on extraterrestrial material.