Content uploaded by Ioan Bucataru
Author content
All content in this area was uploaded by Ioan Bucataru
Content may be subject to copyright.
SU (2)
c
SO(3) S O(3) S U (2)
SU (2)
C2R3
O(3)
−I3R3
SO(3)
SU (2)
SO(3) SU (2)
SU (2)
C2R3
SO(3) SU (2)
SO(3)
SO(3)
SU (2)
SU (2)
SU (2)
SU (2)
SO (3)
R3
c
c:R3×R3×R3×R3−→ R
c(u, v, z, w) = c(v , u, z, w) = c(z, w, u, v),∀u, v, z, w ∈R3.
{e1, e2, e3}R3
cijkl =c(ei, ej, ek, el), i, j, k, l ∈ {1,2,3}.
c34= 81 cijkl
c
c(u, v, z, w) = cij kl uivjzkwl,
SU (2)
u=uieiv=vieiz=zieiw=wiei
cijkl =cj ikl =cklij,
i, j, k, l ∈ {1,2,3}
c
1c1111,1c2222,1c3333 ,
4c2323,2c2233,4c1212 ,2c1122,4c1313 ,2c1133 ,
4c1123,8c1213,4c1233 ,8c1323,4c2213 ,8c1223 ,
4c1222,4c1112,4c2223 ,4c1113,4c2333 ,4c1333 .
c
c
{e1, e2, e3}
Vij =ci1j1+ci2j2+ci3j3,
Dij =c11ij +c22ij +c33ij.
V D
SU (2)
O(3)
c
A
c(Au, Av, Aw, Az ) = c(u, v, w, z),∀u, v, z, w ∈R3.
Gc
O(3)
Gc−I3
A
−A A −A
SO(3)
e
GcGc
e
Gc
f
Gc=Gc∩SO(3) Gc=−f
Gc∪f
Gc.
SO(3) SU (2)
SU (2)
SO(3) SU (2) ψ:SU (2) −→ SO(3)
A∈SO(3)
±B∈SU (2) ψ(±B) = A
ψ
ψ
R3
C2ψ
ψ:±cos θ/2ιsin θ/2
ιsin θ/2 cos θ/27→
1 0 0
0 cos θ−sin θ
0 sin θcos θ
,
ψ:±cos θ/2 sin θ/2
−sin θ/2 cos θ/27→
cos θ0−sin θ
0 1 0
sin θ0 cos θ
,
ψ:± eιθ/20
0e−ιθ/2!7→
cos θ−sin θ0
sin θcos θ0
0 0 1
,
ι=√−1
ψ
SU (2)
SU (2)
Hcψ(Hc) = e
GcHc
Gce
Gc
Gc={±I3}
e
Gc={I3}Hc={±I2}
R3
Gc={±I3,±Re3}Re3
e3
e
Gc={I3,−Re3}SU (2)
Hc=±I2,±ι0
0−ι.
{e1, e2, e3}R3e3
{e1, e2}
c1111, c2222 , c3333 ,
c1122, c1133 , c2233 ,
c1212, c1313 , c2323 ,
c1112, c1222 , c1233 , c1323 .
Gc={±I3,±Rei, i ∈ {1,2,3}}
e
Gc={I3,−Rei, i ∈ {1,2,3}}
SU (2)
Hc=±I2,±0ι
ι0,±0 1
−1 0 ,±ι0
0−ι.
{e1, e2, e3}R3e1, e2, e3
c1111, c2222 , c3333 ,
c1122, c1133 , c2233 ,
c1212, c1313 , c2323 .
Gc={±I3,±Ruα,±R±2π/3,e3, α ∈ {1,2,3}}
Ruα, α ∈ {1,2,3}e3
2π/3
uα
e3e2uα
uα= sin(θα/2)e1−cos(θα/2)e2θα∈ {0,±2π/3}
e
Gc={I, −Ruα, R±2π/3,e3, α ∈
{1,2,3}} SU (2)
Hc=(±I2,±0 1
−1 0 ,± 0e±ιπ/3
−e∓ιπ/30!,± e±ιπ/30
0e∓ιπ/3!).
{e1, e2, e3}R3
c1111 =c2222, c3333,
c1122, c1133 =c2233,
c1212 =1
2(c1111 −c1122), c1313 =c2323,
c1123 =−c2223 =c1213.
Re3
e3
c1123 =−c2223 =c1213
Gc={±I3,±R±π/2,e3,±Rπ,e3,±Ruα, α ∈ {1,2,3,4}}
Ruα, α ∈ {1,2,3,4}
e3π/4
uα
e3e1e2
uα= sin(θα/2)e1−cos(θα/2)e2θα∈ {0,±π/2, π}
e
Gc={I3, R±π/2,e3, Rπ,e3,−Ruα, α ∈
{1,2,3,4}} SU (2)
Hc=(±I2,± e±ιπ/40
0e∓ιπ/4!,±ι0
0−ι,±0ι
ι0,
±0 1
−1 0 ,± 0ιe±ιπ/4
−e∓ιπ/40!)
{e1, e2, e3}R3
c1111 =c2222, c3333 ,
c1122, c1133 =c2233,
c1212, c1313 =c2323.
SU (2)
Gg=
±
cos θ−sin θ0
sin θcos θ0
0 0 1
,±
cos θsin θ0
sin θ−cos θ0
0 0 1
, θ ∈(−π, π]
.
±Rθ,e3
θ e3±Ru
u(θ) = sin(θ/2)e1−
cos(θ/2)e2
e3
e3
O(2) O(3)
e
Gc={Rθ,e3,−Ru(θ), θ ∈
(−π, π]}SU (2)
Hc=(± eιθ/20
0e−ιθ/2!,± 0eιθ/2
−e−ιθ/20!, θ ∈(−π, π]).
{e1, e2, e3}R3e3
c1111 =c2222, c3333,
c1122, c1133 =c2233,
c1212 =1
2(c1111 −c1122), c1313 =c2323.
Gc={A∈O(3), A(ei) = ±ej, i, j ∈ {1,2,3}}.
e
Gc={A∈SO(3), A(ei) = ±ej, i, j ∈
{1,2,3}} SU (2)
Hc=±I2,±0ι
ι0,±0 1
−1 0 ,±ι0
0−ι,
± e±ιπ/40
0e∓ιπ/4!,± 0e±ιπ/4
−e∓ιπ/40!,
±cos π/4±ιsin π/4
±ιsin π/4 cos π/4,±cos π/4∓sin π/4
±sin π/4 cos π/4,
±∓sin π/4ιcos π/4
ιcos π/4∓sin π/4,±±ιsin π/4 cos π/4
−cos π/4∓ιsin π/4,
±ιcos π/4∓sin π/4
±sin π/4−ιcos π/4,±±ιsin π/4ιcos π/4
ιcos π/4∓ιsin π/4,
±±sin π/4 cos π/4
−cos π/4±sin π/4,±ιcos π/4∓ιsin π/4
∓ιsin π/4−ιcos π/4.
{e1, e2, e3}R3e1, e2, e3
c1111 =c2222 =c3333,
c1122 =c1133 =c2233,
c1212 =c1313 =c2323.
Gc=O(3)
e
Gc=SO(3) Hc=SU (2)
{e1, e2, e3}R3
c1111 =c2222 =c3333 = 2c1212 +c1122,
c1122 =c1133 =c2233,
c1212 =c1313 =c2323.
C2
SU (2)
SU (2)
C2R3
φ:C2→R3
SO (3) R3SU (2)
C2
C2−→ R3
φ
↓˜gA↓gψ(A)
φ
C2−→ R3
,
˜gAgψ(A)C2R3
A SU (2) ψ(A)SO(3)
ψ:SU (2) →SO (3)
gψ(A)(φ) = φ(˜gA).
(0, R)∈C2
r1, r2, r3∈R3(r1)2+ (r2)2+ (r3)2=R2R∈R
SU (2) SO (3)
C2R3z1, z2≡
p1+ιq1, p2+ιq2SU (2) ξ1, ξ 2, ξ3
SO (3) z1, z 2
SU (2) (0, R)∈C2z1, z 2
SO (3)
r1, r2, r3∈R3ξ1, ξ2, ξ3
z1, z2SU (2)
a b
−b a ,
|a|2+|b|2= 1 SU (2) (0, R)∈C2
n(Rb, Ra)∈C2,|a|2+|b|2= 1o.
z1, z2
z2
R
z1
R
−z1
R
z2
R
SU (2) (0, R)z1, z2
SU (2)
SO (3)
1
R z2z1
−z1z2!7→ 1
R2
Re (z2)2−(z1)2Im (z2)2−(z1)22Re z1z2
Re ι(z2)2+ (z1)2 Im ι(z2)2+ (z1)2 2Im z1z2
−2Re z1z2−2Im z1z2z22−z12
.
r1, r2, r3∈R3
1
R2
Re (z2)2−(z1)2Im (z2)2−(z1)22Re z1z2
Re ι(z2)2+ (z1)2 Im ι(z2)2+ (z1)2 2Im z1z2
−2Re z1z2−2Im z1z2z22−z12
r1
r2
r3
.
R φ
SU (2) SO (3)
φ:z1
z27→ 1
R2
Re (z2)2−(z1)2Im (z2)2−(z1)22Re z1z2
Re ι(z2)2+ (z1)2 Im ι(z2)2+ (z1)2 2Im z1z2
−2Re z1z2−2Im z1z2z22−z12
r1
r2
r3
.
ξ1, ξ2, ξ3
C2
SO(3)
C2
SU (2)
cijkl
{e1, e2, e3}R3
P(ξ1, ξ2, ξ3) = cijklξiξjξkξl
SU (2)
PV(ξ1, ξ2, ξ3) = Vij ξiξj,
PD(ξ1, ξ2, ξ3) = Dij ξiξj,
V D
e
Gc
e
Gc={A∈SO(3), P (AX) = P(X), PV(AX) = PV(X), PD(AX) = P(X),∀X∈R3}.
C2
SU (2)
r1, r2, r3
φ:z1
z27→ 1
R2
Re (z2)2−(z1)2Im (z2)2−(z1)22Re z1z2
Re ι(z2)2+ (z1)2 Im ι(z2)2+ (z1)2 2Im z1z2
−2Re z1z2−2Im z1z2z22−z12
r1
r2
r3
z1, z2r1, r2, r3=a(−1,−ι, 0)
a
R3
z1, z2a=
R2/2
ϕ: (z1, z2)7→ (ξ1(z1, z2) = (z1)2−(z2)2, ξ2(z1, z 2) = −ι((z1)2+(z2)2), ξ3(z1, z2) = 2z1z2)
P, PVPD
ϕ
P(z1, z2) = P((z1)2−(z2)2,−ι((z1)2+ (z2)2),2z1z2),
z1z2
PV(z1, z2) = PV((z1)2−(z2)2,−ι((z1)2+ (z2)2),2z1z2)
PD(z1, z2) = PD((z1)2−(z2)2,−ι((z1)2+ (z2)2),2z1z2),
z1
z2
ϕ SO(3) SU (2)
Hc
Hc={U∈SU (2), P (U Z ) = P(Z), PV(UZ) = PV(Z), PD(U Z) = P(Z),∀Z∈C2}.
P(8)(t) = P(z1/z2,1),
P(4)
V(t) = PV(z1/z2,1),
P(4)
D(t) = PD(z1/z2,1),
t=z1/z2
z1, z2˜
z1,˜
z2
Pz1, z2t=z1/z2
z2qP(q) z1
z2!=˜
z2qP(q) ˜
z1
˜
z2!,
q
P(8)
P(8)(t) = a8t8+a7t7+a6t6+a5t5+a4t4−a5t3+a6t2−a7t+a8,
SU (2)
a8=c1111 +c2222 −4c1212 −2c1122 + 4ι(−c1112 +c1222),
a7= 8[c1113 −c1322 −2c1223 +ι(−c1123 +c2223 −2c1213)],
a6= 4[−c1111 +c2222 −4c2323 + 4c1313 −2c2233 + 2c1133 + 2ι(c1112 +c1222 −2c1233 −4c1323)],
a5= 8[−3c1113 −c1322 + 4c1333 −2c1223 +ι(c1123 + 3c2223 −4c2333 + 2c1213)],
a4= 2(3c1111 + 3c2222 + 8c3333 −16c2323 −16c1313 + 4c1212 + 2c1122 −8c1133 −8c2233).
P(8)
P(8) c
c
P(4)
V
P(4)
V(t) = aV
4t4+aV
3t3+aV
2t2−aV
3t+aV
4.
aV
4=c1111 −c2222 +c1313 −c2323 −2ι(c1112 +c1222 +c1323),
aV
3= 4[c1113 +c1223 +c1333 −ι(c1213 +c2223 +c2333)],
aV
2= 2(−c1111 −c2222 + 2c3333 −2c1212 +c1313 +c2323).
P(4)
D
P(4)
D(t) = aD
4t4+aD
3t3+aD
2t2−aD
3t+aD
4.
aD
4=c1111 −c2222 +c1133 −c2233 −2ι(c1112 +c1222 +c1233),
aD
3= 4[c1113 +c1322 +c1333 −ι(c1123 +c2223 +c2333)],
aD
2= 2(−c1111 −c2222 + 2c3333 −2c1122 +c1133 +c2233).
P(4)
VP(4)
D
HcSU (2)
SU (2)
P(8) P(4)
VP(4)
D
Hc
P(8) P(4)
VP(4)
D
P(2q)(t) = εqP(2q)(t/ε), q ∈ {2,4},
ε2= 1 P(4) P(4)
VP(4)
D
P(z1, z2)PV(z1, z2)PD(z1, z2)
(z1, z2)7→ ±(z1, z2)
±(ιz1,−ιz2).
P(z1, z2)PV(z1, z2)PD(z1, z2)
P(8)(t)P(4)
V(t)P(4)
D(t)
t=z1/z27→ ±t=±z1/z2.
a7=a5=aV
3=aD
3= 0.
c1113 =c1223 =c1333 =c1213 =c2223 =c2333 =c1322 =c1123 = 0.
SU (2)
P(8) P(4)
VP(4)
D
P(2q)(t) = εqP(2q)(t/ε), q ∈ {2,4},
P(2q)(t) = εqt2qP(2q)(−ε/t), q ∈ {2,4},
ε2= 1 P(4) P(4)
VP(4)
D
P(z1, z2)PV(z1, z2)PD(z1, z2)
(z1, z2)7→
±(z1, z2)
±(ιz2, ιz1)
±(z2,−z1)
±(ιz1,−ιz2).
P(z1, z2)PV(z1, z2)PD(z1, z2)
P(8)(t)P(4)
V(t)P(4)
D(t)
t=z1/z27→ ±t=εt
±1/t =−ε/t.
Im(a8) = Im(a6) = Im(aV
4) = Im(aD
4) = 0.
c1112 =c1222 =c1233 =c1323 = 0.
P(8) P(4)
VP(4)
D
P(2q)(t) = ωqP(2q)(t/ω), q ∈ {2,4},
P(2q)(t) = ωqt2qP(2q)(−ω/t), q ∈ {2,4},
ω3= 1 P(4) P(4)
VP(4)
D
P(z1, z2)PV(z1, z2)PD(z1, z2)
(z1, z2)7→
±(z1, z2)
±(z2,−z1)
±(e±ιπ/3z2,−e∓ιπ/3z1)
±(e±ιπ/3z1, e∓ιπ/3z2).
P(z1, z2)PV(z1, z2)PD(z1, z2)
P(8)(t)P(4)
V(t)P(4)
D(t)
t=z1/z27→ ωt
−ω/t .
P(8)(ωt) = ωP (8) (t),
P(4)
V(ωt) = ω2P(4)
V(t),
P(4)
D(ωt) = ω2P(4)
D(t).
P(8)(t) = a7t7+a4t4−a7t=t(a7t6+a4t3−a7).
P(4)(t) = a2t2.
P(8) P(4)
V
P(4)
D
a8=a6=a5=aV
4=aV
3=aD
4=aD
3= 0.
SU (2)
ω=e2πι/3
q= 4 Re(a7) = 0
Re(a7) =
0
P(8) P(4)
VP(4)
D
P(2q)(t) = αqP(2q)(t/α), q ∈ {2,4},
P(2q)(t) = αqt2qP(2q)(−α/t), q ∈ {2,4},
α4= 1 P(4) P(4)
VP(4)
D
P(z1, z2)PV(z1, z2)PD(z1, z2)
(z1, z2)7→
±(z1, z2)
±(e±ιπ/4z1, e∓ιπ/4z2)
±(ιz1,−ιz2)
±(ιz2, ιz1)
±(z2,−z1)
±(ιe±ιπ/4z2,−ιe∓ιπ/4z1).
P(z1, z2)PV(z1, z2)PD(z1, z2)
P(4)(t)P(4)
V(t)P(4)
D(t)
t=z1/z27→ αt
−α/t .
P(8)(αt) = P(8) (t),
P(4)
V(αt) = α2P(4)
V(t),
P(4)
D(αt) = α2P(4)
D(t).
P(8)(t) = a8t8+a4t4+a8.
P(4)(t) = a2t2.
α= 1 q= 4
Im(a8) = 0 P(8) P(4)
V
P(4)
D
Im(a8) = a7=a6=a5=aV
4=aV
3=aD
4=aD
3= 0.
Im(a8) = Re(a7) = a6=a5=aV
4=aV
3=aD
4=aD
3= 0.
Re(a8) = 0
Im(a7) = 0
P(8) P(4)
VP(4)
D
P(2q)(t) = zqP(2q)(t/z), q ∈ {2,4},
P(2q)(t) = zqt2qP(2q)(−z/t), q ∈ {2,4},
z=eιθ P(4)
P(4)
VP(4)
D
P(z1, z2)PV(z1, z2)PD(z1, z2)
(z1, z2)7→ (±(eιθ/2z1, e−ιθ/2z2)
±(eιθ/2z2,−e−ιθ/2z1).
SU (2)
P(z1, z2)PV(z1, z2)PD(z1, z2)
P(4)(t)P(4)
V(t)P(4)
D(t)
t=z1/z27→ (eιθ t
−eιθ/t .
P(4)
VP(4)
D
P(4)
V(t) = a(V)
2t2
P(4)
D(t) = a(D)
2t2
aV
4=aV
3=aD
4=aD
3= 0.
P(8) P(8)(t) =
a4t4
a8=a7=a6=a5= 0.
P(4)
VP(4)
DP(8)
P(2q)(t) = αqP(2q)(t/α),
P(2q)(t) = αqt2qP(2q)(−α/t),
2qP(2q)(t) = (t−α)2qP(2q)(β
a
t+α
t−α),
α4= 1 β2= 1
2qP(2q)(t) =
(P(z1, z2)PV(z1, z2)PD(z1, z2)
(z1, z2)7→
±(z1, z2)
±(ιz2, ιz1)
±(z2,−z1)
±(ιz1,−ιz2)
±(e±ιπ/4z1, e∓ιπ/4z2)
±(e±ιπ/4z2,−e∓ιπ/4z1)
±(cos(π/4)z1±ιsin(π/4)z2,±ιsin(π/4)z1+ cos(π/4)z2)
±(cos(π/4)z1∓sin(π/4)z2,±sin(π/4)z1+ cos(π/4)z2)
±(∓sin(π/4)z1+ιcos(π/4)z2, ι cos(π/4)z1∓sin(π/4)z2)
±(±ιsin(π/4)z1+ cos(π/4)z2,−cos(π/4)z1∓ιsin(π/4)z2)
±(ιcos(π/4)z1∓sin(π/4)z2,±sin(π/4)z1−ιcos(π/4)z2)
±(±ιsin(π/4)z1+ιcos(π/4)z2, ι cos(π/4)z1∓ιsin(π/4)z2)
±(±sin(π/4)z1+ cos(π/4)z2,−cos(π/4)z1±sin(π/4)z2)
±(ιcos(π/4)z1∓ιsin(π/4)z2,∓ιsin(π/4)z1−ιcos(π/4)z2).
PV(z1, z2)PD(z1, z2)
P(z1, z2)
P(8)(t)
P(4)
VP(4)
D
aV
4=aV
3=aV
2=aD
4=aD
3=aD
2= 0.
Im(a8) = a7=a6=a5= 0.
t= 1 α=−1
a4= 14a8.
P(8) P(4)
VP(4)
D
P(z1, z2)PV(z1, z2)PD(z1, z2)
P(8)
P(4)
VP(4)
D
SU (2)
P(8) P(4)
VP(4)
D
a8=a7=a6=a5=a4=aV
4=aV
3=aV
2=aD
4=aD
3=aD
2= 0.
P(2q)(t) = εqP(2q)(t/ε)ωqt2qP(2q)(−ω/t) 2−q(t−α)2qP(2q)(β
a
t+α
t−α)
ε2= 1
ε2= 1 ω2= 1
ε3= 1 ω3= 1
ε4= 1 ω4= 1
|ε|= 1 |ω|= 1
ε4= 1 ω4= 1 α4= 1, β2= 1
|ε|= 1 |ω|= 1 |α|= 1 |β|= 1
e3
e3
e1e2π/2
P(2q)(t)
P(2q)(t) = a0+a1t+···+a2qt2q,
a0=εqa0
a1=εq−1a1
an=εq−nan
a0=ω−qa2q
a1=−ω1−qa2q−1
an= (−1)nωn−qa2q−n.
ε2= 1 q
ε2= 1 ω2= 1
a2k=a2q−2k
ε3= 1 ω3= 1
ak
q−k
ak= (−1)kωk−qa2q−n
ε4= 1 ω4= 1
akq−k
ak= (−1)kωk−qa2q−n
|ε|= 1
n=q εn−q= 1
ε4= 1
ω4= 1
α4= 1 β2= 1
akq−k
ak= (−1)kωk−qa2q−n
t= 1
α=−1
an
n=q εn−q= 1
SU (2)
Tr. Isotropic 5,
8
Isotropic 2,
8
Orthotropic 9,8
Cubic 3,48
Monoclinic 13,4
Trigonal 6,12
Anisotropic 21,2
Tetragonal 6,16