Airborne Volatile Organic Compounds and Their Potential Health Impact on the Vicinity of Petrochemical Industrial Complex

Water Air and Soil Pollution (Impact Factor: 1.55). 01/2011; 214(1):83-92. DOI: 10.1007/s11270-010-0406-0


The aggregate potential health impact due to ambient volatile organic compounds on the population living in the area nearby the petrochemical industrial complex in Thailand was evaluated using measured air contaminants concentration. Airborne volatile organic compounds were collected using canisters and were analyzed by gas chromatography/mass spectrophotometer following the US.EPA TO 15 procedure. Composite samples taken over a 24-h period were collected monthly. Concentrations of volatile organic compounds (VOCs) were analyzed for a suite of 24 compounds covering both carcinogenic and non-carcinogenic substances. Results were determined and analyzed in order to evaluate their spatial variability and their potential health risk. Comparison of data from each monitoring site indicated that patterns of VOCs across sites were different from their major species and their concentrations which might be influenced by nearest potential emission sources. Carcinogenic VOCs such as benzene, 1,3butadiene, and 1,2 dichloroethane were found to be higher than their annual national standards. A potential cancer risk map was drawn based on benzene concentration in order to illustrate the zone of impact and the number in the population likely to be exposed. Results indicated that 82% of the total area, and 89.6% of the total population were within the impact area. It was suspected that high concentrations of benzene and 1,3 butadiene might be attributed by both the mobile source and the point source of emissions while 1,2 dichloroethane was suspected to be emitted from factories located upwind from the monitoring sites. Hazard quotients and hazard indexes were applied to determine chronic health effects with non-cancer endpoints. Calculated values of hazard indexes for each of the target organ systems were lower than 1, which indicated that the non-cancer chronic risk due to level of volatile organic compounds in the study area was less.

Download full-text


Available from: Sarawut Thepanondh
  • Source
    • "Several studies have assessed the CR for inhalation exposure to toxic VOCs in the petrochemical-based industrial area, but the majority calculated only the cancer risk and noncancer risk based on ambient VOC concentrations (Pan et al., 2011; Thepanondh et al., 2010). The different impacts on human health were not examined among various process units in the petrochemical industry. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties. Copyright © 2015 Elsevier B.V. All rights reserved.
    Preview · Article · Jul 2015 · Science of The Total Environment
  • Source
    • "Main industries found in the MA are petrochemical industry, metal processing, oil refining, gas separation, electricity generation, and seaport, with the first three having the largest sizes in terms of investment (Pimpisut et al., 2005). The development and operation of the MA have occasionally brought out local environmental problems (e.g., air, wastewater, groundwater contamination, hazardous wastes), among which air pollution appears to be perceived as serious (PCD, 2008; SST, 2010; Thepanondh et al., 2010). Due to increased public concern, the government declared the MA as a pollution-controlled zone in 2009, having enforced the IEAT and entrepreneurs to seek proper measures to limit and control emissions to the environment (PCD, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation in the area. In this study, a dispersion study of NO2 and SO2 was conducted using the AERMOD model. The area-specific emission inventories of NOx and SO2 were prepared, including both stack and nonstack sources, and divided into 11 emission groups. Annual simulations were performed for the year 2006. Modeled concentrations were evaluated with observations. Underestimation of both pollutants was Jbund, and stack emission estimates were scaled to improve the modeled results before quantifying relative roles of individual emission groups to ambient concentration overfour selected impacted areas (two are residential and the others are highly industrialized). Two concentration measures (i.e., annual average area-wide concentration or AC, and area-wide robust highest concentration or AR) were used to aggregately represent mean and high-end concentrations Jbfor each individual area, respectively. For AC-NO2, on-road mobile emissions were found to be the largest contributor in the two residential areas (36-38% of total AC-NO2), while petrochemical-industry emissions play the most important role in the two industrialized areas (34-51%). For AR-NO2, biomass burning has the most influence in all impacted areas (>90%) exceptJor one residential area where on-road mobile is the largest (75%). For AC-SO2, the petrochemical industry contributes most in all impacted areas (38-56%). For AR-SO2, the results vary. Since the petrochemical industry was often identified as the major contributor despite not being the largest emitter, air quality workers should pay special attention to this emission group when managing air quality for the MA.
    Full-text · Article · Aug 2012 · Journal of the Air & Waste Management Association (1995)
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work presents the detailed characterization of sea breeze (SB) over the Rayong coastal area, one of the most rapidly developed and highly industrialized areas during the last decade in Thailand, using observation data analysis and fine-resolution (2 km) mesoscale meteorological modeling with incorporation of new land cover and satellite-derived vegetation fraction data sets. The key characteristics considered include frequency of SB occurrence, sea-breeze day (SBD) identification, degree of inland penetration, and boundary layer development. It was found that SBs occur frequently in the winter due mainly to relatively large land–sea temperature contrasts and minimally in the wet season. Monthly mean SB onset and cessation times are at around 12–15 local time (LT) and 18–21 LT, respectively, and its strength peaks during the early- to mid-afternoon. Monthly SB hodographs generally exhibit clockwise rotations, and SB inland penetration (at PCD-T tower) ranges widely with the monthly means of 25–55 km from the coast. Mesoscale MM5 modeling was performed on two selected SBDs (13 January and 16 March 2006), on which the SBs are under weak and onshore strong influences from background winds, respectively. Simulated near-surface winds and temperature were found to be in fair-to-acceptable agreement with the observations. The SB circulation along the Rayong coast is clearly defined with a return flow aloft and a front on 13 January, while it is enhanced by the onshore background winds on 16 March. Another SB along the Chonburi coast also develops separately, but their fronts merge into one in the mid-afternoon, resulting in large area coverage by the SB. Simulated planetary boundary layer height over the land area is significantly affected by a thermal internal boundary layer (TIBL) induced by an SB, which is found to be low near the coast and increases toward the front (up to 800–1,000 m along the Rayong coast).
    No preview · Article · May 2012 · Meteorology and Atmospheric Physics
Show more