Proliferative and Nonproliferative Lesions of the Rat and Mouse Central and Peripheral Nervous Systems

Merck KGaA, Darmstadt, Germany.
Toxicologic Pathology (Impact Factor: 2.14). 05/2012; 40(4 Suppl):87S-157S. DOI: 10.1177/0192623312439125
Source: PubMed


Harmonization of diagnostic nomenclature used in the pathology analysis of tissues from rodent toxicity studies will enhance the comparability and consistency of data sets from different laboratories worldwide. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of four major societies of toxicologic pathology to develop a globally recognized nomenclature for proliferative and nonproliferative lesions in rodents. This article recommends standardized terms for classifying changes observed in tissues of the mouse and rat central (CNS) and peripheral (PNS) nervous systems. Sources of material include academic, government, and industrial histopathology databases from around the world. Covered lesions include frequent, spontaneous, and aging-related changes as well as principal toxicant-induced findings. Common artifacts that might be confused with genuine lesions are also illustrated. The neural nomenclature presented in this document is also available electronically on the Internet at the goRENI website (

  • Source
    • "Recently, the STP has undertaken a major harmonization exercise for rodent pathology – the INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) initiative [16]. So far this group has reported on the hepaticobiliary, respiratory, nervous and urinary systems [17-20]. For some time the National Cancer Institute’s Mouse Models of Human Cancer consortium (MMHCC) has been examining the classification of tumours in genetically engineered mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The capture and use of disease-related anatomic pathology data for both model organism phenotyping and human clinical practice requires a relatively simple nomenclature and coding system that can be integrated into data collection platforms (such as computerized medical record-keeping systems) to enable the pathologist to rapidly screen and accurately record observations. The MPATH ontology was originally constructed in 2,000 by a committee of pathologists for the annotation of rodent histopathology images, but is now widely used for coding and analysis of disease and phenotype data for rodents, humans and zebrafish. Construction and content MPATH is divided into two main branches describing pathological processes and structures based on traditional histopathological principles. It does not aim to include definitive diagnoses, which would generally be regarded as disease concepts. It contains 888 core pathology terms in an almost exclusively is_a hierarchy nine layers deep. Currently, 86% of the terms have textual definitions and contain relationships as well as logical axioms to other ontologies such the Gene Ontology. Application and utility MPATH was originally devised for the annotation of histopathological images from mice but is now being used much more widely in the recording of diagnostic and phenotypic data from both mice and humans, and in the construction of logical definitions for phenotype and disease ontologies. We discuss the use of MPATH to generate cross-products with qualifiers derived from a subset of the Phenotype and Trait Ontology (PATO) and its application to large-scale high-throughput phenotyping studies. MPATH provides a largely species-agnostic ontology for the descriptions of anatomic pathology, which can be applied to most amniotes and is now finding extensive use in species other than mice. It enables investigators to interrogate large datasets at a variety of depths, use semantic analysis to identify the relations between diseases in different species and integrate pathology data with other data types, such as pharmacogenomics.
    Full-text · Article · Sep 2013 · Journal of Biomedical Semantics
  • Source
    • "All sections of CNS tissues with tumors were reviewed according to the International Harmonization of Nomenclature and Diagnostic Criteria (INHAND)8. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to accurately assess the carcinogenicity of chemicals with regard to rare tumors such as rat CNS tumors, sufficient information about spontaneous tumors are very important. This paper presents the data on the type, incidence and detected age of CNS tumors in F344/DuCrlCrlj (a total of 1363 males and 1363 females) and Crl:CD(SD) rats (a total of 1650 males and 1705 females) collected from in-house background data-collection studies and control groups of carcinogenicity studies at our laboratory, together with those previously reported in F344 and SD rats. The present data on F344/DuCrlCrlj rats (F344 rats) and Crl:CD(SD) rats (SD rats) clarified the following. (1) The incidences of all CNS tumors observed in F344 rats were less than 1%. (2) The incidences of malignant astrocytoma and granular cell tumor were higher in male SD rats than in female SD rats. (3) The incidences of astrocytoma and granular cell tumor were higher in SD rats than in F344 rats. (4) Among astrocytoma, oligodendroglioma and granular cell tumor, oligodendroglioma was detected at the youngest age, followed by astrocytoma, and ultimately, granular cell tumor developed in both strains. The incidences observed in our study were almost consistent with those previously reported in F344 and SD rats.
    Full-text · Article · Sep 2013 · Journal of Toxicologic Pathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is generally said that neoplastic cells are immunohistochemically negative for glial fibrillary acidic protein (GFAP) in rat spontaneous astrocytomas, and there are no reports describing the existence of GFAP-positive neoplastic astrocytes in rat spontaneous oligodendrogliomas and mixed gliomas which contain neoplastic astrocytes. In the present study, to clarify whether GFAP-positive neoplastic astrocytes exist in rat spontaneous oligodendrogliomas and mixed gliomas or not, immunohistochemical examination was performed on spontaneous oligodendrogliomas (26 cases) and mixed gliomas (5 cases) collected from the carcinogenicity studies and short-term toxicity studies. The neoplastic cells that constitute oligodendrogliomas and mixed gliomas were morphologically classified into five types: round A, round B, round C, spindle, and bizarre. The cells of round A, B, and C types were thought to be neoplastic oligodendrocytes because of their positive immunostainability for Olig2. The origin of bizarre cells was obscure because they were negative for Olig2, GFAP, and nestin. The spindle cells were considered to be neoplastic astrocytes, because some of them were positive for GFAP or nestin, and GFAP-positive spindle cells could be morphologically distinguished from reactive astrocytes. In conclusion, the present study clarified for the first time that GFAP-positive neoplastic astrocytes exist in rat spontaneous gliomas.
    No preview · Article · Oct 2012 · Toxicologic Pathology
Show more