ChemInform Abstract: The Development of FtsZ Inhibitors as Potential Antibacterial Agents

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China.
ChemMedChem (Impact Factor: 2.97). 07/2012; 7(7):1161-72. DOI: 10.1002/cmdc.201200156
Source: PubMed


The emergence and prevalence of bacterial resistance has resulted in a clear demand for novel antibacterial drugs. As a tubulin homologue, FtsZ is an essential cell-division protein in prokaryotic organisms and is showing increasing promise as a target for antibacterial drug discovery. This review describes the role of FtsZ in bacterial cytokinesis and various FtsZ inhibitors, with particular focus on their discovery, antibacterial activities, mechanisms of action, synthetic methods, and representative analogues.

85 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The heartworm Dirofilaria immitis is an important parasite of dogs. Transmitted by mosquitoes in warmer climatic zones, it is spreading across southern Europe and the Americas at an alarming pace. There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we have sequenced the genomes of D. immitis and its endosymbiont Wolbachia. We predict 10,179 protein coding genes in the 84.2 Mb of the nuclear genome, and 823 genes in the 0.9-Mb Wolbachia genome. The D. immitis genome harbors neither DNA transposons nor active retrotransposons, and there is very little genetic variation between two sequenced isolates from Europe and the United States. The differential presence of anabolic pathways such as heme and nucleotide biosynthesis hints at the intricate metabolic interrelationship between the heartworm and Wolbachia. Comparing the proteome of D. immitis with other nematodes and with mammalian hosts, we identify families of potential drug targets, immune modulators, and vaccine candidates. This genome sequence will support the development of new tools against dirofilariasis and aid efforts to combat related human pathogens, the causative agents of lymphatic filariasis and river blindness.-Godel, C., Kumar, S., Koutsovoulos, G., Ludin, P., Nilsson, D., Comandatore, F., Wrobel, N., Thompson, M., Schmid, C. D., Goto, S., Bringaud, F., Wolstenholme, A., Bandi, C., Epe, C., Kaminsky, R., Blaxter, M., Mäser, P. The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets.
    Full-text · Article · Aug 2012 · The FASEB Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin's function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two side chains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively, these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin.
    No preview · Article · Sep 2012 · ACS Chemical Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4'-(t-Butyl)-[1,1'-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homolog of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound also exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), as well as a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent.
    No preview · Article · Oct 2012 · Journal of Medicinal Chemistry
Show more