The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA

Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Microbiology (Impact Factor: 2.56). 05/2012; 158(Pt 7):1665-76. DOI: 10.1099/mic.0.058941-0
Source: PubMed


Bordetella pertussis causes whooping cough, an infectious disease that is reemerging despite widespread vaccination. A more complete understanding of B. pertussis pathogenic mechanisms will involve unravelling the regulation of its impressive arsenal of virulence factors. Here we review the action of the B. pertussis response regulator BvgA in the context of what is known about bacterial RNA polymerase and various modes of transcription activation. At most virulence gene promoters, multiple dimers of phosphorylated BvgA (BvgA~P) bind upstream of the core promoter sequence, using a combination of high- and low-affinity sites that fill through cooperativity. Activation by BvgA~P is typically mediated by a novel form of class I/II mechanisms, but two virulence genes, fim2 and fim3, which encode serologically distinct fimbrial subunits, are regulated using a previously unrecognized RNA polymerase/activator architecture. In addition, the fim genes undergo phase variation because of an extended cytosine (C) tract within the promoter sequences that is subject to slipped-strand mispairing during replication. These sophisticated systems of regulation demonstrate one aspect whereby B. pertussis, which is highly clonal and lacks the extensive genetic diversity observed in many other bacterial pathogens, has been highly successful as an obligate human pathogen.

Full-text preview

Available from:
  • Source
    • "In general, biofilm-associated bacteria differ significantly from their planktonic counterparts 19 and studies with B. pertussis have shown that ∼10% of the proteome is differentially expressed between these conditions.20 Most B. pertussis proteins that interact directly with the host are regulated by the two-component Bordetella master virulence regulatory system BvgAS which transduces environmental signals such as temperature, nicotinic acid and sulfate, to gene regulation (reviewed in Decker et al.21). Based on the activity of this system, the Bvg+, Bvgi, and Bvg− phase have been defined. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pertussis is an infectious respiratory disease of humans caused by the gram-negative pathogen Bordetella pertussis. The use of acellular pertussis vaccines (aPs) which induce immunity of relative short duration and the emergence of vaccine-adapted strains are thought to have contributed to the recent resurgence of pertussis in industrialized countries despite high vaccination coverage. Current pertussis vaccines consist of antigens derived from planktonic bacterial cultures. However, recent studies have shown that biofilm formation represents an important aspect of B. pertussis infection, and antigens expressed during this stage may therefore be potential targets for vaccination. Here we provide evidence that vaccination of mice with B. pertussis biofilm-derived membrane proteins protects against infection. Subsequent proteomic analysis of the protein content of biofilm and planktonic cultures yielded 11 proteins which were ≥three-fold more abundant in biofilms, of which Bordetella intermediate protein A (BipA) was the most abundant, surface-exposed protein. As proof of concept, mice were vaccinated with recombinantly produced BipA. Immunization significantly reduced colonization of the lungs and antibodies to BipA were found to efficiently opsonize bacteria. Finally, we confirmed that bipA is expressed during respiratory tract infection of mice, and that anti-BipA antibodies are present in the serum of convalescent whooping cough patients. Together, these data suggest that biofilm proteins and in particular BipA may be of interest for inclusion into future pertussis vaccines.
    Full-text · Article · Aug 2014 · Emerging Microbes and Infections
  • Source
    • "The expression of nearly all pertussis virulence factors, including the antigens present in aPs, is positively regulated by the two-component sensory transduction system BvgAS (reviewed in [18]). Bvg-activated proteins are generally associated with virulence and modulation or evasion of host immunity [19] and play an important, or even essential role, during infection. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.
    Full-text · Article · Aug 2014 · PLoS ONE
  • Source
    • "B. pertussis produces multiple toxins, including Ptx, adenylate cyclase toxin (ACT), T3SS effectors, dermonecrotic toxin (DNT), and tracheal cytotoxin (TCT) that, together with other virulence factors, facilitate within-host survival by manipulating many aspects of the human immune system, including the complement system, phagocytosis, immune cell recruitment, and antibody responses (reviewed in [24], [25]. The expression of most of these virulence factors is regulated by the activity of BvgS and BvgA, which form a typical two-component regulatory system, and the repressor protein BvgR which is expressed from the same BvgASR locus [26] (reviewed in [27]). Several external factors have been identified that can modulate the activity of this system, which results in a spectrum of different Bvg-phases that affect bacterial virulence. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin (Ptx) production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains resulting in a worldwide selective sweep. In order to identify B. pertussis genes associated with the selective sweep, we compared the expression of genes in ptxP1 and ptxP3 strains that are under control of the Bordetella master virulence regulatory locus (bvgASR). The BvgAS proteins comprise a two component sensory transduction system which is regulated by temperature, nicotinic acid and sulfate. By increasing the sulfate concentration, it is possible to change the phase of B. pertussis from virulent to avirulent. Until recently, the only distinctive phenotype of ptxP3 strains was a higher Ptx production. Here we identify additional phenotypic differences between ptxP1 and ptxP3 strains which may have contributed to its global spread by comparing global transcriptional responses under sulfate-modulating conditions. We show that ptxP3 strains are less sensitive to sulfate-mediated gene suppression, resulting in an increased production of the vaccine antigens pertactin (Prn) and Ptx and a number of other virulence genes, including a type III secretion toxin, Vag8, a protein involved in complement resistance, and lpxE involved in lipid A modification. Furthermore, enhanced expression of the vaccine antigens Ptx and Prn by ptxP3 strains was confirmed at the protein level. Identification of genes differentially expressed between ptxP1 and ptxP3 strains may elucidate how B. pertussis has adapted to vaccination and allow the improvement of pertussis vaccines by identifying novel vaccine candidates.
    Full-text · Article · Jan 2014 · PLoS ONE
Show more