UNC-4 antagonizes Wnt signaling to regulate synaptic choice in the C. elegans motor circuit

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
Development (Impact Factor: 6.46). 06/2012; 139(12):2234-45. DOI: 10.1242/dev.075184
Source: PubMed


Coordinated movement depends on the creation of synapses between specific neurons in the motor circuit. In C. elegans, this important decision is regulated by the UNC-4 homeodomain protein. unc-4 mutants are unable to execute backward locomotion because VA motor neurons are mis-wired with inputs normally reserved for their VB sisters. We have proposed that UNC-4 functions in VAs to block expression of VB genes. This model is substantiated by the finding that ectopic expression of the VB gene ceh-12 (encoding a homolog of the homeodomain protein HB9) in unc-4 mutants results in the mis-wiring of posterior VA motor neurons with VB-like connections. Here, we show that VA expression of CEH-12 depends on a nearby source of the Wnt protein EGL-20. Our results indicate that UNC-4 prevents VAs from responding to a local EGL-20 cue by disabling a canonical Wnt signaling cascade involving the Frizzled receptors MIG-1 and MOM-5. CEH-12 expression in VA motor neurons is also opposed by a separate pathway that includes the Wnt ligand LIN-44. This work has revealed a transcriptional mechanism for modulating the sensitivity of specific neurons to diffusible Wnt ligands and thereby defines distinct patterns of synaptic connectivity. The existence of comparable Wnt gradients in the vertebrate spinal cord could reflect similar roles for Wnt signaling in vertebrate motor circuit assembly.

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary The establishment of functional neuronal circuits requires that different neurons respond selectively to guidance molecules at particular times and in specific locations. In the target region, where cells connect, the same guidance molecules steer the growth of neurites from both the neuron and its target cell. The spatial, temporal, and cell-type-specific regulation of neuronal connection needs to be tightly regulated and precisely coordinated within the neuron and its target cell to achieve effective connection. In this study, we found that the precise connectivity of the BDU interneuron and the PLM mechanoreceptor in the nematode worm Caenorhabditis elegans is influenced by Wnt signaling. BDU-PLM contact also depends on the transcription factor AHA-1, which functions within both BDU and PLM cells to enhance transcription of the gene encoding the trans-membrane receptor CAM-1. CAM-1 is present on BDU and PLM and likely serves as a Wnt antagonist, thus linking transcriptional regulation by AHA-1 to modulation of Wnt signaling. Therefore, our study reveals a locally confined, cell type-specific and cell-autonomous mechanism that mediates mutual target identification.
    Full-text · Article · Jun 2013 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.
    Full-text · Article · Jun 2013 · Cellular and Molecular Life Sciences CMLS
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper circuit connectivity is critical for nervous system function. Connectivity derives from the interaction of two interdependent modules: synaptic specificity and synaptic assembly. Specificity involves both targeting of neurons to specific laminar regions and the formation of synapses onto defined subcellular areas. In this review, we focus discussion on recently elucidated molecular mechanisms that control synaptic specificity and link them to synapse assembly. We use these molecular pathways to underscore fundamental cell biological concepts that underpin, and help explain, the rules governing synaptic specificity.
    Full-text · Article · Aug 2013 · Current opinion in neurobiology
Show more