ArticlePDF Available

Distribution, movements and group size of the bottlenose dolphin (Tursiops truncatus) South off San Quintín, Baja California, Mexico

Authors:

Abstract and Figures

Twelve boat-based photoidentification surveys were carried out along the coast to the south of San Quintín Bay, in Baja California, Mexico, from July 1999 to June 2000; effort was 276.76 km and 31.7 h at sea. Twenty-two schools were encountered and 12.9 h of total observation were spent with 242 dolphins in these schools. The average school size was 11 (SD = 8) dolphins, although it is possible that groups are actually smaller; nursing groups were significantly larger (P < 0.05), with frequent membership exchanges occurring among schools. Dolphins preferred a coastal strip between 250 and 500 m offshore (P < 0.05), at depths below 7 m, and with sandy substrates (P < 0.05). Greater sighting frequencies occurred in two coastal zones (P < 0.05) and feeding was common around the mouth of the bay. Dorsal fin photographs led to the identification of 169 dolphins, and 124 were different individuals. During the study period, the coast south of San Quintín was a pass zone for transient dolphins, since most of the animals (>70%) were sighted one time or stayed for short periods. A total of 220 different dolphins have been identified in the San Quintín area when these data are combined with those gathered by Caldwell (1992) in 1990; these dolphins probably represent a small part of a larger population. More research on the population biology of the bottlenose dolphin in this and adjacent geographic areas is needed to develop better conservation and management strategies for this important natural resource.
Content may be subject to copyright.
Ciencias Marinas (2004), 30(1A): 35–46
35
Distribución, movimientos y tamaño de grupo del tursión (Tursiops truncatus) al sur de
Bahía San Quintín, Baja California, México
Distribution, movements and group size of the bottlenose dolphin (Tursiops truncatus)
to the south of San Quintín Bay, Baja California, Mexico
E. Morteo1, 2, 3*
G. Heckel1, 3
R.H. Defran1, 4
Y. Schramm1, 2
1 Investigación y Conservación de Mamíferos Marinos de Ensenada, A.C. (ICMME)
Plácido Mata No. 2309, Departamento D-5
Condominios Las Fincas
Ensenada, CP 22810, Baja California, México
*E-mail: e_morteo@hotmail.com
2 Facultad de Ciencias Marinas
Universidad Autónoma de Baja California
Km 103 carretera Tijuana-Ensenada
Ensenada, CP 22860, México
3 Centro de Investigación Científica y de Educación Superior de Ensenada
Km 107 carretera Tijuana-Ensenada
Ensenada, CP 22860, México
4 Department of Psychology
San Diego State University (SDSU)
San Diego, CA 92182, USA
Recibido en octubre de 2002; aceptado en mayo de 2003
Resumen
Entre julio de 1999 y junio de 2000 se realizaron 12 navegaciones de fotoidentificación a lo largo de la costa al sur de Bahía
San Quintín, Baja California, México. Se recorrieron en total 276.8 km de costa, en 31.7 h. Durante 12.9 h de observación se
encontraron 242 tursiones agrupados en 22 manadas. El tamaño promedio de grupo fue de 11 (DE = 8) delfines; sin embargo, es
posible que las agrupaciones más comunes sean de menor tamaño. Los grupos con crías fueron significativamente más grandes
(P < 0.05) y las manadas intercambiaron individuos constantemente. Los tursiones prefirieron la franja entre 250 y 500 m fuera
de la costa (P < 0.05), con profundidades menores a 7 m y sustratos arenosos (P < 0.05). Se establecieron dos zonas con mayor
frecuencia de avistamientos (P < 0.05) y el comportamiento alimentario fue más común cerca de la boca de la bahía. Se
identificaron 169 animales mediante fotografías de las aletas dorsales y 124 de ellos fueron individuos diferentes. La costa al sur
de San Quintín representó una zona de tránsito durante el periodo de estudio debido a que la mayoría de los tursiones (> 70%)
fueron vistos en una sola ocasión o por corto tiempo. El catálogo de aletas dorsales desarrollado en este trabajo, en conjunto con
el realizado en 1990 por Caldwell (1992), contiene a la fecha 220 animales; posiblemente estos delfines representan sólo una
pequeña parte de la población. En la medida en que se desarrollen trabajos científicos sobre la biología poblacional de los
tursiones en esta área geográfica y en otras adyacentes, se contribuirá a mejorar las estrategias de conservación y manejo de este
recurso natural.
Palabras clave: distribución, movimientos, ecología, Tursiops truncatus, San Quintín.
Abstract
Twelve boat-based photoidentification surveys were carried out along the coast to the south of San Quintín Bay, in Baja
California, Mexico, from July 1999 to June 2000; effort was 276.76 km and 31.7 h at sea. Twenty-two schools were encountered
and 12.9 h of total observation were spent with 242 dolphins in these schools. The average school size was 11 (SD = 8) dolphins,
although it is possible that groups are actually smaller; nursing groups were significantly larger (P < 0.05), with frequent
Ciencias Marinas, Vol. 30, No. 1A, 2004
36
Introducción
El tursión (Tursiops truncatus: Montagu, 1821) es con-
siderado por muchos autores como uno de los cetáceos más
conocidos y estudiados (Leatherwood y Reeves, 1990). El
conocimiento popular de este delfín se debe principalmente a
su distribución cosmopolita y hábitos costeros. Debido a ello,
estos animales han sido aprovechados de formas muy diversas,
como fuente de alimentación, por sus aceites y su piel (Gunter,
1942). También desde principios del siglo XX este animal ha
sido extraído de su hábitat natural para ser entrenado y presen-
tado en acuarios y delfinarios (Heckel, 1992). A pesar de esto,
en muchos lugares aún se desconocen los aspectos más básicos
de la ecología de estos animales; es por este motivo que la
Unión Internacional para la Conservación de la Naturaleza
(IUCN por sus siglas en inglés) considera el estado de riesgo
de esta especie como desconocido. En México es necesario
ampliar los límites geográficos y la duración de los estudios
sobre tursiones para implementar programas adecuados de
conservación, manejo y aprovechamiento (Morteo, 2002).
El presente trabajo es una continuación de los estudios
sobre el tursión realizados por el Laboratorio de Comporta-
miento de Cetáceos de la Universidad Estatal de San Diego
(SDSU) desde 1981 en la costa del Océano Pacífico en
California, EUA, y Baja California, México. El objetivo de la
presente investigación fue describir y analizar la distribución y
los movimientos del tursión en las aguas adyacentes a San
Quintín, Baja California, mediante técnicas de fotoidentifica-
ción.
Materiales y métodos
Navegaciones
Entre julio de 1999 y junio de 2000 se realizaron navega-
ciones mensuales para fotografiar las aletas dorsales de los
delfines y así identificarlos individualmente, según el método
descrito por Defran et al. (1990). Se utilizó una panga de 5.5 ó
6.7 m (18 ó 22 pies) de eslora con un motor fuera de borda de
45 caballos de fuerza. Con el fin de realizar las navegaciones
de manera sistemática, la costa se recorrió desde el Hotel
La Pinta (30º2324N, 115º5443.92W; fig. 1) hacia el sur
hasta el Arroyo Hondo, aproximadamente a 1.5 km de la
Introduction
The bottlenose dolphin (Tursiops truncatus: Montagu,
1821) is considered by many authors as one of the best known
and most studied cetaceans (Leatherwood and Reeves, 1990).
The popular knowledge of this dolphin is mostly attributable to
its world-wide distribution and coastal habits that enhance its
accessibility for study. This dolphin has been exploited as a
source of food and oil supplies, as well as for its skin (Gunter,
1942). Also, since the early 1900s this animal has frequently
been removed form its natural habitat to be trained and exhib-
ited in aquaria and dolphinaria (Heckel, 1992). In spite of this
wide exposure, in most places there is a lack of information
about the basic ecology of these dolphins, and for this reason,
the status of this species is considered as unknown by the
International Union for Conservation of Nature (IUCN). In
Mexico it is necessary to expand the geographic coverage and
the duration of the studies involving bottlenose dolphins, in
order to implement adequate programs of conservation,
management and exploitation (Morteo, 2002).
The present study is a continuation of the bottlenose
dolphin studies conducted at the Cetacean Behavior
Laboratory of San Diego State University (SDSU) since 1981
on the coast of the Pacific Ocean of California (USA) and Baja
California (Mexico). The objective of this research was to
describe and analyze the distribution and movements of the
bottlenose dolphin along the coast to the south of San Quintín,
Baja California, through photoidentificaction techniques.
Materials and methods
Surveys
From July 1999 to June 2000, monthly boat-based surveys
were carried out in order to photograph and identify dolphins’
dorsal fins as described by Defran et al. (1990). These surveys
were conducted on a 5.5 or 6.7 m (18 or 22 ft) panga powered
by an outboard 45 HP engine. In order to conduct systematic
assessments, the coast was surveyed from Hotel La Pinta
(30º2324N, 115º5443.92W; fig. 1) southward to Arroyo
Hondo. The distance from shore was approximately 1.5 km
(depending on the surf) and vessel speed was always below
18 km h–1 (9.7 knots). Sampling dates were grouped by season
membership exchanges occurring among schools. Dolphins preferred a coastal strip between 250 and 500 m offshore (P < 0.05),
at depths below 7 m, and with sandy substrates (P < 0.05). Greater sighting frequencies occurred in two coastal zones (P < 0.05)
and feeding was common around the mouth of the bay. Dorsal fin photographs led to the identification of 169 dolphins, and 124
were different individuals. During the study period, the coast south of San Quintín was a pass zone for transient dolphins, since
most of the animals (>70%) were sighted one time or stayed for short periods. A total of 220 different dolphins have been
identified in the San Quintín area when these data are combined with those gathered by Caldwell (1992) in 1990; these dolphins
probably represent a small part of a larger population. More research on the population biology of the bottlenose dolphin in this
and adjacent geographic areas is needed to develop better conservation and management strategies for this important natural
resource.
Key words: distribution, movements, ecology, Tursiops truncatus, San Quintín.
Morteo et al.: Distribución y movimientos de tursión al sur de Bahía San Quintin
37
costa (dependiendo del oleaje) y con una velocidad menor a
18 km h–1 (9.7 nudos). Las fechas de muestreo se agruparon
por temporada de acuerdo con los máximos y mínimos de tem-
peratura y el régimen de lluvia local (Hersh et al., 1990), por lo
cual la primavera incluyó los meses de abril a junio, el verano
de julio a septiembre, el otoño de octubre a diciembre y el
invierno de enero a marzo. Todos los datos se recolectaron bajo
condiciones del viento menores a Beaufort 3 (velocidad del
viento <5.6 m s–1).
Tamaño y composición de los grupos
Para determinar el tamaño y la composición de los grupos
se usó la definición de manada o grupo según Irvine et al.
(1981). Las clases de edad (crías, jóvenes y adultos) fueron cla-
sificadas según la literatura (Weller, 1991; Barco et al., 1999).
El tamaño de los grupos se revisó y corrigió por medio de
los datos de fotoidentificación (Rossbach y Herzing, 1999).
Se realizaron comparaciones por temporada del año mediante
la prueba no paramétrica de Kruskal-Wallis (Neave y
Worthington, 1988). Para determinar diferencias en el tamaño
according to maximum and minimum temperatures, as well as
the local rain regime (Hersh et al., 1990). Spring consisted of
the months from April to June, summer from July to
September, fall from October to December, and winter from
January to March. All data were gathered on wind conditions
below Beaufort 3 (wind speed <5.6 m s–1).
Composition and group size
Group size and composition were determined following
Irvine et al.’s (1981) definitions. Age classes (calves, young
and adults) were determined according to Weller (1991) and
Barco et al. (1999).
Group size was revised and corrected by photoidentifica-
tion data (Rossbach and Herzing, 1999). Seasonal comparisons
were made using Kruskal-Wallis non-parametric tests (Neave
and Worthington, 1988). The size differences of groups with
and without calves were tested using the Wilcoxon non-
parametric test (Neave and Worthington, 1988). The averages
reported in this study show standard deviations (SD), followed
by sample size.
Behavioral observations
Prior to the acquisition of photographs, dolphin behavior
was recorded by ad libitum sampling (Altman, 1974); for this
purpose, a group was defined as the maximum number of
closely associated dolphins, exhibiting the same behavior pat-
tern. Following Allen and Read (2000), behavior was classified
as feeding or not feeding. Habituation and observation periods
utilized in this study both lasted at least 10 min (Weller, 1998),
and behavior was recorded only if more than 20% of the group
was engaged in the same activity (Hanson and Defran, 1993;
Tepper, 1996).
Spatial distribution and area use
The geographic location of sightings was obtained by GPS,
considering the nearest point to the first encounter with
dolphins (Wilson et al., 1997).
The study area was divided into zones of 5.4 km following
Ballance (1992), starting from Hotel La Pinta to Cañón del
Rosario (fig. 1). As described by Hanson and Defran (1993),
each zone was consequently subdivided into six sections of
0.9 km along the shore and four regions from shore to open sea
(0.25, 0.5, 1.0 and 1.5 km) (fig. 1). Based on the literature and
interviews with local fishermen, the substrate was divided into
sand, gravel, kelp beds, rock and unknown (Hanson and
Defran, 1993; Tepper, 1996; Morteo, 2002).
The distance covered during the dolphin survey
(kilometers) was used as a measure of effort (Reilly and
Fiedler, 1994). An effort balance was conducted to reduce bias
caused by over-sampling and incomplete surveys; data were
eliminated when effort over a particular zone was duplicated
in the same month, only if over-coverage was greater than
Figura 1. Costa adyacente al sur de Bahía San Quintín. Las navegaciones
se realizaron desde el Hotel La Pinta hasta el Arroyo Hondo. Las flechas
indican las divisiones del área de estudio. Las zonas están representadas
por letras mayúsculas y miden 5.4 km; las secciones son subdivisiones de
las zonas a lo largo de la costa y cada una mide 0.9 km; las regiones
representan subdivisiones con respecto a distancia de la costa (0.25, 0.5, 1
y 1.5 km).
Figure 1. Coast to the south of San Quintín Bay. Surveys were conducted
from Hotel La Pinta to Arroyo Hondo. Arrows indicate study area divisions.
Zones are 5.4 km wide and are represented by capital letters; sections are
0.9 km wide and represent zone subdivisions along the shore; regions
represent subdivisions by distance from the coast (0.25, 0.5, 1 and 1.5 km).
116 .15
30.0
30.5
115 .7 5
San Quintín
Océano Pacífico
San Quintín
Hotel La Pinta
El Pabellón
El Socorro
Arroyo
Hondo
Cañón del
Rosario
México
Océano Pacífico
A
B
C
Zona
(5.4km)
Seccion es
(0.9 km)
Regiones
D
E
F
Ciencias Marinas, Vol. 30, No. 1A, 2004
38
de grupo debido a la presencia de crías, se usó la prueba no
paramétrica de Wilcoxon (Neave y Worthington, 1988). Los
promedios reportados en este trabajo muestran entre paréntesis
la desviación estándar (DE) seguida del tamaño de muestra.
Observaciones de comportamiento
Antes de obtener las fotografías, se registró el comporta-
miento de los delfines al aplicar el método ad libitum (Altman,
1974); para ello, un grupo se definió como el número máximo
de delfines en asociación cercana, que exhibieran el mismo
patrón de comportamiento. De acuerdo con Allen y Read
(2000), el comportamiento fue clasificado como alimentación
y no alimentación. Se utilizaron periodos de habituación y
observación, ambos mayores a 10 min (Weller, 1998), y sólo se
registró el comportamiento cuando al menos 20% del grupo se
encontraba realizando la misma actividad (Hanson y Defran,
1993; Tepper, 1996).
Distribución espacial y uso del área
La localización geográfica de las manadas se registró por
medio de un sistema de posicionamiento global (GPS). Para
ello se consideró el punto más próximo al primer contacto con
los delfines (Wilson et al., 1997).
El área de estudio se dividió en zonas de 5.4 km de exten-
sión de acuerdo con Ballance (1992), desde el Hotel La Pinta
hasta el Cañón del Rosario (fig. 1). Cada una de las seis zonas
se subdividió posteriormente en seis secciones de 0.9 km a lo
largo de la costa, y en cuatro regiones desde la costa hasta mar
abierto (0.25, 0.5, 1.0 y 1.5 km) según Hanson y Defran (1993)
(fig. 1). Para identificar el tipo de fondo presente, se determinó
el tipo de sustrato con base en la literatura y las entrevistas a
los pescadores locales, y se clasificó como arena, grava, roca,
mantos de algas y desconocido (Hanson y Defran, 1993;
Tepper, 1996; Morteo, 2002).
Como medida de esfuerzo se utilizó la distancia recorrida
(kilómetros) durante la búsqueda de delfines (Reilly y Fiedler,
1994). Se realizó un balance de esfuerzo para reducir los
sesgos ocasionados por sobremuestreos y navegaciones incom-
pletas; se eliminaron los datos de una navegación cuando
durante el mismo mes de muestreo se duplicó el esfuerzo sobre
una misma zona, siempre y cuando la zona remuestreada fuera
mayor a 1.5 km de longitud. También se eliminaron los datos
cuando la zona no fue visitada al menos en el 85% de las
navegaciones.
Para determinar la distribución espacial de los tursiones se
graficaron las posiciones geográficas de las manadas sobre la
zona de estudio (a priori). Las agrupaciones de avistamientos
se compararon (a posteriori) mediante un análisis de escala-
miento multidimensional (MDS por sus siglas en inglés,
Kruskal y Wish, 1978). La distancia (kilómetros) entre avista-
mientos fue utilizada como índice de similitud para la prueba
de MDS, y se usaron dos dimensiones según el modelo de
Catell (Kruskal y Wish, 1978).
1.5 km. Data from a particular zone were also eliminated if it
was not surveyed at least in 85% of the occasions.
Spatial distribution of bottlenose dolphins was determined
by plotting the geographical position of the groups over the
study area (a priori). Sighting groups were compared (a
posteriori) through a multidimensional scaling analysis (MDS,
Kruskal and Wish, 1978). The distance (kilometers) between
sightings was used as a similitude index for the MDS test, and
Catell’s model suggested the use of two dimensions (Kruskal
and Wish, 1978).
Area use was established by comparing the number of ani-
mals present at each division of the study area using goodness
of fit tests (Neave and Worthington, 1988). In order to avoid
the pooling fallacy (Machlis et al., 1985), data were eliminated
if a group moved to a zone, region or substrate type different
from the original (Morteo, 2002).
Temporal distribution
Dolphin movements were divided into mid- and long-term
based on photoidentification data. In other words, the best
picture of each animal was compared to the rest, and when this
picture allowed the identification of the individual in different
sightings, it was considered a recapture. If no match was found
then it was considered a new animal. Based on this, mid-term
movements were established comparing recaptures throughout
one year and long-term movements were determined compar-
ing pictures from this study to those taken by Caldwell (1992)
in the same zone.
Relative abundance
The number of dolphins sighted was divided by the
distance surveyed (kilometers) and then multiplied by the
visual coverage (0.8 km wide) according to visibility and wind
speed (< Beaufort 3), following Barco et al. (1999). Relative
abundance (dolphins km–2) was compared seasonally using the
non-parametric Kruskal-Wallis tests (Neave and Worthington,
1988).
Results
Twelve surveys were carried out throughout the year,
accounting for 276.8 km of surveyed coast during 31.7 h. A
total of 242 dolphins were sighted in 22 groups during 12.9 h
of direct observation. A total of 2297 pictures were taken and
41.18% of these were useful for the identification of individual
dolphins.
Group size and composition
Group size ranged from 2 to 36 dolphins, averaging 11 ani-
mals (SD = 8, n = 22 herds). The most frequent aggregations
ranged from 4 to 6 and 13 to 15 dolphins (fig. 2). Groups were
Morteo et al.: Distribución y movimientos de tursión al sur de Bahía San Quintin
39
El uso del área fue establecido al comparar el número de
animales presentes en cada división del área de estudio
mediante pruebas de bondad de ajuste (Neave y Worthington,
1988). Para evitar la falacia estadística de combinación de
datos (Machlis et al., 1985), se eliminaron los datos de las
manadas que al moverse se ubicaron en una zona, región o tipo
de sustrato diferente al inicial (Morteo, 2002).
Distribución temporal
Los movimientos de los delfines se dividieron en de
mediano y de largo plazo. Estos datos se obtuvieron con
base en la fotoidentificación; es decir, la mejor fotografía de
cada animal se comparó con el resto de los individuos, y
cuando la fotografía permitió identificar al mismo individuo en
avistamientos diferentes se consideró una recaptura. Si no se
encontraron empates se consideró un animal nuevo. De
acuerdo con lo anterior, los movimientos a mediano plazo se
establecieron al comparar las recapturas a lo largo de un año y
los movimientos a largo plazo se determinaron al comparar las
fotografías de este estudio contra las del catálogo realizado por
Caldwell (1992) en la misma zona.
Abundancia relativa
Se calculó el número de delfines presentes con respecto a la
distancia recorrida (kilómetros) y se multiplicó por un ancho
de banda de 0.8 km de acuerdo con las condiciones de visibili-
dad y la velocidad del viento (< Beaufort 3) según Barco et al.
(1999). Se comparó la abundancia relativa (delfines km–2) entre
temporadas del año mediante la prueba de Kruskal-Wallis
(Neave y Worthington, 1988).
Resultados
Se realizaron 12 navegaciones a lo largo de un año, en las
que se recorrió un total de 276.8 km de costa en 31.7 h. Se
observaron 242 delfines agrupados en 22 manadas durante un
periodo de 12.9 h. Se tomaron 2297 fotografías y el 41.18%
fueron útiles para identificar individualmente a los delfines.
Tamaño y composición de los grupos
El tamaño de grupo varió entre 2 y 36 delfines, con un
promedio de 11 animales (DE = 8, n = 22 manadas). Los gru-
pos más frecuentes tuvieron entre 4–6 y 13–15 delfines (fig. 2).
Los grupos fueron más grandes durante el verano ( = 12.47,
DE = 8.91, n = 15), seguido del otoño ( = 10.5, DE = 6.36,
n= 2), invierno ( = 7.75, DE = 4.35, n = 4) y primavera (3,
n= 1); sin embargo, no se encontró diferencia por temporada
del año (Kruskal-Wallis, H = 6.11, P > 0.05, g.l. = 3, n = 22).
Al combinar los datos de todo el año en relación con la pre-
sencia o ausencia de crías, se encontró que los grupos con cría
( = 13.92, DE = 9.27, n = 12) resultaron ser más grandes
en comparación con los grupos sin crías ( = 7.50, DE = 4.42,
x
x
x
x
x
larger during summer ( = 12.47, SD = 8.91, n = 15), followed
by fall ( = 10.5, SD = 6.36, n = 2), winter ( = 7.75,
SD = 4.35, n = 4), and spring (3, n = 1); however, there was no
seasonal statistical difference (Kruskal-Wallis, H = 6.11,
P> 0.05, d.f. = 3, n = 22). By combining the year-round data
set related to the presence or absence of calves, nursing groups
( = 13.92, SD = 9.27, n = 12) were significantly larger
(Wilcoxon, T = 86, P < 0.05, n = 22) than non-nursing groups
( = 7.50, SD = 4.42, n = 10). Up to 8.5% of the 242 dolphins
sighted were calves and almost 1.5% were young animals.
Spatial distribution, area use and behavior
After eliminating data from over-sampled and poorly
visited areas, sample size decreased from 22 to 16 sightings;
this procedure caused no difference in the surveyed distance by
zone (Kruskal-Wallis, H = 2.12, P > 0.05, d.f. = 4, n = 11; table
1).
The geographical location of these 16 sightings was plotted
over the zone divisions (fig. 3). Zones A and B consisted of
sandy substrate; zone C was mostly sand with a small gravel
beach at El Socorro; zone D was a transition between offshore
kelp beds and inshore gravel; and zone E consisted mostly of
rocky substrate, with gravel and kelp beds at the boundary with
zone D. On 40.9% of the occasions dolphins were determined
to be feeding at some time; this activity was more common in
the northern part of the study area, particularly in zone A
(fig. 3). Of these dolphins, 99% were found in shallow water
(<7 m). Comparison of this distribution to the MDS analysis
(stress = 0.026; fig. 4) was consistent 93.75% of the times; in
other words, the same groups were formed using both methods.
x
x x
x
x
Figura 2. Histograma para el tamaño de grupo de turisones en San Quintín
(n = 22 manadas).
Figure. 2. Histogram for group size of botlenose dolphins in San Quintín
(n= 22 groups).
Tamaño de grupo
Número de manadas
Ciencias Marinas, Vol. 30, No. 1A, 2004
40
n = 10) y la diferencia fue significativa (Wilcoxon, T = 86,
P< 0.05, n = 22). De los 242 delfines avistados, el 8.5% fueron
crías y casi un 1.5% fueron jóvenes.
Distribución espacial, uso del área y comportamiento
Después de eliminar los recorridos en zonas remuestradas y
poco visitadas, el tamaño de muestra se redujo de 22 a 16
avistamientos, sin que la distancia recorrida por zona fuera
diferente (Kruskal-Wallis, H = 2.12, P > 0.05, g.l. = 4, n = 11;
tabla 1).
La localización geográfica de estos 16 avistamientos se
graficó con respecto a la división por zonas (fig. 3). Las zonas
A y B presentaron sustrato arenoso; la zona C tuvo en su mayo-
ría arena, con una pequeña playa de gravas a la altura de El
Socorro; la zona D tuvo una transición entre mantos de algas
fuera de la costa y gravas en la región de la playa; y la zona E
consistió en su mayoría de sustrato rocoso, con gravas y man-
tos de alga en la frontera con la zona D. En el 40.9% de los
casos se determinó que los delfines se alimentaron durante
algún momento y se observó una mayor tendencia de alimenta-
ción en la parte norte del área de estudio, particularmente en la
zona A (fig. 3). El 99% de estos avistamientos se encontraron
en profundidades menores a 7 m. La comparación de esta
distribución con el análisis MDS (estrés = 0.026, fig. 4) fue
consistente en el 93.75% de los casos, es decir, se formaron los
mismos grupos utilizando ambos métodos, con excepción del
avistamiento número 11, el cual a priori se ubicó en la zona C
y el MDS lo agrupó en la zona D.
Con respecto al uso del área, después del balance de
esfuerzo y de eliminar los avistamientos que incurrieron en la
falacia estadística de combinación de datos, la zona A tuvo 99
delfines, la zona C tuvo 38, la zona D tuvo 6, la zona E tuvo 24
y no se observaron tursiones en la zona B. Se encontró una
diferencia en el número de tursiones presentes por zona del
área de estudio (χ2 = 188, P < 0.05, g.l. = 4, n = 167 delfines);
de igual forma, hubo 137 delfines presentes en sustrato
arenoso, 4 en grava, 14 en mantos de algas y ninguno fue
observado en zonas con sustrato rocoso o desconocido, por lo
que el sustrato arenoso tuvo una mayor cantidad de animales
(χ2 = 457, P < 0.05, g.l. = 4, n = 155 delfines). Asimismo, la
región más cercana a la costa (0–250 m) tuvo 11 animales, la
región ente 250 y 500 m de la costa presentó 79 delfines, 14
fueron vistos en la región entre 500 y 1000 m y ninguno se
observó de manera consistente más allá de los 1000 m; estas
diferencias fueron estadísticamente significativas (χ2 = 148,
P< 0.05, g.l. = 3, n = 104 delfines).
The only exception was sighting number 11, which was placed
a priori in zone C and grouped by the MDS in zone D.
Regarding area use, after the effort balance and discarding
data from sightings that met the pooling fallacy, zone A had 99
dolphins, zone C had 38, zone D had 6, zone E had 24, and no
bottlenose dolphins were observed in zone B. The difference
between zones was significant (χ2 = 188, P < 0.05, d.f. = 4,
n= 167 dolphins). Likewise, there were 137 dolphins over
sandy substrate, 4 over gravel, 14 over kelp beds and none was
found over rocks or unknown substrates; the number of dol-
phins over sandy substrate was significantly larger (χ2 = 457,
Tab la 1. Balance de esfuerzo (kilómetros recorridos) por zona. Se eliminó la navegación realizada el 11 de julio y los datos obtenidos en la zona F.
Tab le 1. Effort balance (kilometers surveyed) by zone. The survey conducted on 11 July was eliminated, as were the data obtained from zone F.
Zonas A B C D E F Total
Total anual (km) 54.00 54.00 51.44 49.50 43.30 11.00 263.24
Frecuencia de visita1010998248
Océano
Pacífico
Hotel
El Socorro
5 km
115 .9 115. 8
30.2
30.4
30
20
5
El Pabellón
A
B
C
D
E
8
14
11
7
15
19
12
16
10
17
21
222
20
13
1
15
Figura 3. Distribución espacial de las manadas de tursiones en la zona de
estudio. Los puntos señalan la posición y el número de la manada. Las
flechas indican las zonas de alimentación y las líneas discontinuas
muestran los contornos de profundidad. El hotel indica el inicio de las
navegaciones.
Figure. 3. Spatial distribution of sightings of bottlenose dolphin groups in
the study area. Points indicate position and group number. Arrows indicate
feeding zones and dashed lines show depth contours. The hotel indicates
the starting point of the surveys.
Morteo et al.: Distribución y movimientos de tursión al sur de Bahía San Quintin
41
Distribución temporal
(a) Mediano plazo
A lo largo de un año, el número de animales presentes por
temporada (n = 167 después del balance de esfuerzo) mostró
un aumento significativo durante el verano (χ2 = 201, P < 0.05,
g.l. = 3, n = 167 delfines; tabla 2).
Se identificaron 124 individuos diferentes de 169 aletas
dorsales fotografiadas. El 72% de estos animales fueron foto-
grafiados (capturados) una sola vez, 22% dos veces y el 9%
fueron recapturados en tres ocasiones. Sin embargo, el 52% y
el 70% de los delfines recapturados en dos y tres ocasiones,
respectivamente, fueron avistados en días consecutivos a su
primera recaptura. La acumulación de individuos identificados
mostró un incremento constante, ya que en cada navegación un
promedio del 75% de los animales avistados fueron individuos
nuevos. También se encontró que de los 45 individuos recaptu-
rados, la mayoría (86%) se avistaron durante los meses de
verano.
(b) Largo plazo
La comparación del catálogo fotográfico de este estudio
con el de 1990 (Caldwell, 1992) resultó en 220 delfines dife-
rentes. De lo anterior se obtuvo que sólo cuatro animales
habían sido identificados en el área 10 años antes, la mayoría
durante el verano. Cabe destacar que algunos de los animales
identificados originalmente por Caldwell (1992) fueron identi-
ficados juntos en la misma manada, y reavistados días o años
más tarde, en las mismas fechas, pero en manadas diferentes.
Abundancia relativa
La abundancia relativa de tursiones a lo largo del estudio
promedió 1.00 delfines km–2 (DE = 0.9, n = 10 meses). Se
P< 0.05, d.f. = 4, n = 155 dolphins). Also, the region close to
the shore (0–250 m) had 11 animals, the region between 250
and 500 m from the shore had 79 dolphins, 14 animals were
sighted in the region between 500 and 1000 m, and no dolphins
were found consistently beyond 1000 m; these differences
were statistically significant (χ2 = 148, P < 0.05, d.f. = 3,
n= 104 dolphins).
Temporal distribution
(a) Mid-term
Throughout one year, the number of animals per season
(n= 167 after effort balance) showed a significant increase
during summer (χ2 = 201, P < 0.05, d.f. = 3, n = 167 dolphins;
table 2).
A total of 124 different individuals were identified from
169 pictures of dorsal fins; 72% of these animals were captured
only once, 22% twice and 9% were recaptured on three
occasions. However, 52% and 70% of the dolphins recaptured
on two and three occasions, respectively, were sighted on
consecutive dates from the first capture. Cumulative individual
identification showed a constant increase, because each
survey averaged 75% of new individuals. Also, from the 45
individuals recaptured, 86% were sighted during the summer
months.
(b) Long-term
The comparison of the photographic catalogue from this
study to that of 1990 (Caldwell, 1992) resulted in 220 different
dolphins. Only four of these animals had been previously iden-
tified in the area 10 years before, most of them in summer. It is
also important to mention that some dolphins originally identi-
fied by Caldwell (1992) were identified together in the same
group, and re-sighted days or years later on the same dates but
in different groups.
Relative abundance
Relative abundance of bottlenose dolphins during the study
period averaged 1.00 dolphins km–2 (SD = 0.9, n = 10 months).
The highest abundance was observed in summer ( = 2.06 dol-
phins km–2, SD = 0.25, n = 3 months; fig. 5).
x
Tabla 2. Bondad de ajuste para el número de delfines por temporada del
año.
Table 2. Goodness of fit for the number of dolphins by season.
Temporada Verano Otoño Invierno Primavera
Frecuencia
observada 120 21 23 3
Frecuencia
esperada 41.75 41.75 41.75 41.75
1
278
10 11
12
13
14
15
16
17
19
20
21
22
-1.5 -1.0 -0.5 0.0 1.0 1.5 2.0 2.5
0.5
0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
Dimensión 2
Dimensión 1
(Zona A)
(Zona C)
(Zona D)
(Zona E)
(Zona C)
Figura 4. Análisis de escalamiento multidimensional (MDS). Los puntos
señalan el número de manada y las elipses muestran las agrupaciones
obtenidas. En cada caso se señala la zona en la que fue localizada la
manada.
Figure. 4. Multidimensional scaling analysis (MDS). Points show group
number and ellipses show the groups obtained. Zone location is indicated
for each group.
Ciencias Marinas, Vol. 30, No. 1A, 2004
42
observa una mayor abundancia relativa en los meses de verano
( = 2.06 delfines km–2, DE = 0.25, n = 3 meses; fig. 5).
Discusión
Las navegaciones realizadas durante el presente estudio
(n= 12) son comparables con las realizadas por Caldwell
(1992) 10 años antes (n = 8); sin embargo, el estudio de 1990
cubrió sólo la mitad del área de estudio y únicamente prima-
vera y verano. No obstante, en ambos trabajos los resultados
fueron similares en cuanto al número, tamaño, composición y
movimientos de los grupos de tursiones.
Tamaño y composición de los grupos
El tamaño promedio de grupo en este estudio ( = 11,
DE = 8, n = 22 manadas) resultó menor al reportado para las
costas de San Diego (Weller, 1991; Tepper, 1996; Ward, 1998)
y similar a lo encontrado en las costas de Ensenada y San
Quintín (Espinosa, 1986; Sandoval, 1987; Caldwell, 1992;
Guzón, 2002; tabla 3). Se ha observado que en sistemas semi-
cerrados (bahías, lagunas y canales costeros), el tamaño de
grupo generalmente es menor a seis delfines (Irvine et al.,
1981; Scott et al., 1990; Weller, 1998); por el contrario, en sis-
temas abiertos (como la costa al sur de San Quintín) este valor
generalmente supera los 15 animales (Würsig, 1978; Ross et
al., 1989).
Würsig (1979) propuso que existe un equilibrio en el
número de delfines necesarios para la defensa contra depreda-
dores, la alimentación eficiente, las interacciones sociales y
reproductivas, y la sobrevivencia de las crías. Se ha encontrado
que la abundancia de peces es menor en el exterior de Bahía
San Quintín y que los principales depredadores del tursión
(tiburones) generalmente se encuentran alejados de la costa
(Rosales-Casián, 1996). Esto podría explicar el que los grupos
de tursiones sean de menor tamaño, ya que deben dispersarse
para localizar a sus presas y no necesitan formar grupos
x
x
Discussion
The surveys completed during the present research (n = 12)
are comparable to those carried out by Caldwell (1992) 10
years before (n = 8); however, the research in 1990 covered
only half of the study area and only the spring and summer
seasons. In spite of this, both studies found similar results
regarding number, composition, group size and movements of
the dolphins.
Group size and composition
Mean group size in this study ( = 11, SD = 8, n = 22
groups) was lower compared to that reported for San Diego
(Weller, 1991; Tepper, 1996; Ward, 1998), and similar to those
found in Ensenada and San Quintín (Espinosa, 1986; Sandoval,
1987; Caldwell, 1992; Guzón, 2002; table 3). Group size is
generally less than six dolphins in closed and semi-enclosed
systems (bays, lagoons and coastal channels) (Irvine et al.,
1981; Scott et al., 1990; Weller, 1998); on the other hand, open
systems (such as the coast south of San Quintín) generally have
over 15 animals per group (Würsig, 1978; Ross et al., 1989).
Würsig (1979) suggested that there is an equilibrium in the
number of dolphins necessary for defense against predators,
efficient feeding, social and reproductive interactions and sur-
vival of calves. Fish abundance is lower outside San Quintín
Bay and the main predators of bottlenose dolphins (sharks) are
generally found offshore (Rosales-Casián, 1996). This could
explain the small groups, since they would have to disperse to
find their prey and there would be no need to form large aggre-
gations due to the low presence of predators. It is important to
mention that most prey-predator models do not consider the
dolphin’s echolocation capacity or intraspecific communica-
tion as a mechanism of prey location and prevention against
predators; for example, in oceanic regions where food is
scarce, dolphins aggregate in groups of over 100 individuals to
x
Figura. 5. Abundancia relativa de tursiones (delfines km-2) en el área de
estudio (* = mes no muestreado).
Figure. 5. Relative abundance of bottlenose dolphins (dolphins km–2) in the
study area (* = month not surveyed).
Tabla 3. Tamaño de grupo en tres localidades del Pacífico subtropical
nororiental.
Table 3. Group size at three localities of the subtropical northeastern
Pacific.
Autor Lugar Tamaño de grupo
promedio
Tam o de
muestra
Weller (1991) San Diego, CA 19.81 145
Tepper (1996) San Diego, CA 31.35 244
Ward (1998) San Diego, CA 38.83 82
Espinosa (1986) Ensenada, BC 11.30 91
Sandoval (1987) Ensenada, BC 7.80 354
Guzón (2002) Ensenada, BC 16.42 12
Caldwell (1992) San Quintín, BC 14.28 14
Abundancia relativ a (delfines km )
-2
Jul Ago Sep
Verano Otoño
Temporada del año
2.5
2
1.5
1
0.5
0
**
Primavera
Abr Ma
y
Jun
Ene Feb Mar Oct Nov Dic
Invierno
Morteo et al.: Distribución y movimientos de tursión al sur de Bahía San Quintin
43
grandes debido a la poca presencia de depredadores. Cabe
destacar que la mayoría de los modelos depredador-presa no
consideran las capacidades de ecolocalizacón de los delfines o
la comunicación interespecífica como mecanismo de localiza-
ción de presas y de prevención contra depredadores; por
ejemplo, en regiones oceánicas donde el alimento es más
escaso, se ha observado que los delfines se agregan en mana-
das de más de 100 individuos para localizar a sus presas al usar
de manera conjunta su sistema de ecolocalización (Richardson
et al., 1995).
En lo que respecta a la distribución bimodal del tamaño de
grupo, Caldwell (1992) propuso que la formación de grupos
pequeños en San Quintín se debe a la baja profundidad de la
zona, lo que se refleja en la alta frecuencia de grupos de 4–6
animales. Por otra parte, la formación de grupos de 13–15 ani-
males puede explicarse si se considera que generalmente los
grupos se agregan en zonas de alimentación (Hanson y Defran,
1993) formando manadas de mayor tamaño (Rossbach y
Herzing, 1999); esto fue observado particularmente en las
zonas A y C. Cabe destacar que tanto el promedio del tamaño
de grupo reportado por Caldwell (1992) como el de este trabajo
se encuentran sesgados por valores extremos derivados de una
distribución bimodal. Por lo tanto, el promedio del tamaño de
grupo reportado hace 10 años ( = 14.28) y el encontrado en
este trabajo ( = 11) no reflejan el tipo de agregación más
común en la zona de estudio.
En diversos trabajos se ha planteado el posible papel social
del tamaño y la composición de los grupos de delfines (Scott et
al., 1990); se ha propuesto que la presencia de crías puede
determinar el número de animales agregados en una manada
(Würsig, 1979; Scott et al., 1990; Weller, 1991, 1998). Se ha
sugerido que este incremento presenta alguna ventaja social
(aprendizaje y/o entrenamiento) o cierta tendencia hacia la
protección de las crías, lo cual implica la existencia de micro-
núcleos sociales dentro de las poblaciones (Irvine et al., 1981;
Weller, 1991, 1998). Es factible que esto ocurra en el área de
estudio, ya que se encontró un mayor número de animales en
los grupos con crías; adicionalmente, a pesar del intercambio
de individuos entre las manadas observadas, algunos de los
delfines que cambiaron de grupo permanecieron relativamente
cerca entre sí, debido a que fueron observados durante los
mismos días.
Se ha reportado que en poblaciones cerradas la proporción
de crías puede variar entre 2% y 6% (Leatherwood y Reeves,
1983); en poblaciones abiertas puede encontrarse hasta un 14%
de crías (Irvine et al., 1981; Espinosa, 1986; Caldwell, 1992;
Weller, 1998). Por lo tanto, con base en la proporción de crías,
San Quintín se comporta como un sistema semicerrado. Cabe
destacar que en ocasiones la asignación de los animales en una
categoría de edad es diferente entre estudios; sin embargo,
muchos autores reconocen al menos las tres categorías utiliza-
das en este trabajo (Leatherwood y Reeves, 1983; Caldwell,
1992; Weller, 1998).
x
x
cooperatively find their prey using echolocation (Richardson et
al., 1995).
Regarding the bimodal distribution of group size, Caldwell
(1992) suggested that the formation of small groups (i.e., a
high frequency of groups of 4–6 animals) in San Quintín may
be due to the shallow depth of the area. On the other hand,
formations of groups of 13–15 animals can be explained if one
considers that groups generally aggregate at feeding zones
(Hanson and Defran, 1993) forming larger units (Rossbach
and Herzing, 1999); this was observed particularly in zones A
and C. It is important to note that both the mean group size
reported by Caldwell (1992) and the present study are
biased for the extreme values derived from a bimodal distribu-
tion. For this reason, mean group size reported 10 years before
( = 14.28) and that found in the present study ( = 11) may
not represent the most common aggregations in the study area.
The possible social role of the dolphin’s group size and
composition has been described in numerous studies (Scott et
al., 1990); it has been suggested that calf presence could, in
some way, determine the number of dolphins in the group
(Würsig, 1979; Scott et al., 1990; Weller, 1991, 1998). It has
also been suggested that this increase may represent a social
advantage (learning and/or training) or a tendency to calf pro-
tection, which represents the existence of social micro-nuclei
within populations (Irvine et al., 1981; Weller, 1991, 1998).
This may occur in the study area, since nursing groups were
larger; additionally, in spite of the individual interchange
among groups, some dolphins remained relatively close to one
another, since they were found on the same dates, even years
after.
Calf proportion ranges from 2% to 6% in closed popula-
tions (Leatherwood and Reeves, 1983); in open populations it
can be up to 14% (Irvine et al., 1981; Espinosa, 1986;
Caldwell, 1992; Weller, 1998). Based on calve proportion, San
Quintín behaves as a semi-enclosed system. It is important to
note that age classes can vary among studies; however, many
authors recognize at least the three categories utilized in this
study (Leatherwood and Reeves, 1983; Caldwell, 1992; Weller,
1998).
Spatial distribution, area use and behavior
It is well known that prey distribution is generally discon-
tinuous along the shore (Defran et al., 1999); for this reason
dolphin distributions are discrete rather than homogeneous.
Along the Pacific coasts, bottlenose dolphins are commonly
found near estuaries, rocky shores and kelp beds (Ballance,
1992; Hanson and Defran, 1993; Tepper, 1996; Ward, 1998). It
has been suggested that kelp beds and rocky shores present a
wider variety of microhabitats, as well as refuge for fish; this
explains why dolphins at San Quintín use zones with sandy
substrate for feeding, possibly because their prey cannot hide
when located over this bottom type (Würsig and Würsig, 1979;
Tepper, 1996).
Zones with greater sighting numbers (and animals) can be
considered to be preferred by the dolphins (Ross et al., 1989)
xx
Ciencias Marinas, Vol. 30, No. 1A, 2004
44
Distribución espacial, uso del área y comportamiento
Es conocido que la distribución de presas del tursión gene-
ralmente es discontinua a lo largo de la costa (Defran et al.,
1999); por este motivo la distribución de los tursiones tiende
más a ser discreta que homogénea. En las costas del Pacífico
los tursiones generalmente prefieren zonas estuarinas, ambien-
tes rocosos y mantos de algas (Ballance, 1992; Hanson y
Defran, 1993; Tepper, 1996; Ward, 1998). Se ha sugerido que
los mantos de algas y las zonas rocosas presentan una mayor
variedad de microhábitats, además de que proveen de refugio a
los peces; esto explica que en San Quintín los delfines usan
zonas arenosas para alimentarse, ya que posiblemente sus pre-
sas no pueden esconderse sobre este tipo de fondo (Würsig y
Würsig, 1979; Tepper, 1996).
Se ha propuesto que las zonas con mayor número de avista-
mientos (y de animales) pueden ser consideradas como zonas
preferidas (Ross et al., 1989) y que este incremento puede rela-
cionarse con la concentración de recursos alimentarios (Hui,
1985). En este trabajo las mayores frecuencias de avistamien-
tos y comportamiento alimentario se observaron en las zonas A
y C. No es inusual que esto suceda en dichas zonas debido a su
cercanía con la boca de la Bahía San Quintín, la cual tiene
una alta productividad (Álvarez-Borrego et al., 1975); por
ejemplo, Estrada-Ramírez (2002) reportó la presencia de tur-
siones en el interior de Bahía San Quintín y Morteo et al.
(2002) encontraron que algunos de ellos se alimentan en esta
zona y permanecen en el lugar por más de 2 h.
Cabe destacar la ausencia de avistamientos en la zona B,
aún cuando ésta fue una de las más recorridas. En la zona B se
encuentra la localidad de El Pabellón y en ella se concentra la
mayor cantidad de lanchas de la flota pesquera local; el tránsito
de lanchas (principalmente pangas) es frecuente en esta zona
aunque a baja escala (Morteo, 2002). Se ha documentado la
conducta evasiva de los tursiones hacia embarcaciones de todo
tipo; sin embargo, los tursiones generalmente se habitúan a su
presencia después de cierto tiempo (Irvine et al., 1981;
Ballance, 1992; Weller, 1998). La respuesta de éstos y otros
cetáceos hacia las embarcaciones puede estar influenciada por
una gran cantidad de variables, tales como la velocidad de la
embarcación, el ángulo de acercamiento, el número de lanchas
presentes, el espectro sónico emitido, la frecuencia audible de
los animales, el tiempo de contacto, la profundidad de la zona,
el tamaño y la composición de los grupos e incluso sus propias
actividades (Richardson et al., 1995; Allen y Read, 2000;
Heckel et al., 2001). Por lo tanto, la ausencia de avistamientos
en la zona B podría implicar una tendencia a evitar el transitar
en la zona B por periodos prolongados.
Distribución temporal a mediano y largo plazo
Se han realizado una gran cantidad de estudios sobre los
movimientos de los tursiones a lo largo del año y algunos de
ellos muestran poblaciones residentes, aunque una pequeña
proporción de los individuos tienden a aparecer y desaparecer
durante ciertas épocas (Würsig, 1978; Schramm, 1993). Se ha
and this increase can be related to feeding supplies (Hui, 1985).
In this study, greater sighting frequencies and feeding behavior
were observed in zones A and C. It is not unusual for this to
happen in those zones due to the proximity to the mouth of San
Quintín Bay, which has a high productivity (Álvarez-Borrego
et al., 1975); for example, Estrada-Ramírez (2002) reported the
presence of bottlenose dolphins inside San Quintín Bay and
Morteo et al. (2002) found that some of these dolphins fed
inside the bay for over 2 h.
It is also important to note the absence of sightings in
zone B, even though it was one of the most surveyed. The
locality of El Pabellón is situated in zone B and has the largest
vessel fleet of the local fisheries; boat traffic (mainly pangas)
is frequent but on a low scale (Morteo, 2002). Evasive behav-
ior of bottlenose dolphins has been reported towards all kinds
of vessels; however, dolphins generally habituate to their pres-
ence after a short time (Irvine et al., 1981; Ballance, 1992;
Weller, 1998). The response of these and other cetaceans to
vessels can be influenced by a number of variables, such as
vessel speed, approach angle, number, spectra of the sonic
emissions, audible frequency of animals, time of contact, zone
depth, size and composition of groups, and even their own
activities (Richardson et al., 1995; Allen and Read, 2000;
Heckel et al., 2001). Therefore, the absence of sightings in
zone B could imply a trend to avoid transit in the zone for long
periods.
Mid- and long-term temporal distribution
A number of studies have documented the movements of
bottlenose dolphins throughout the year and some show resi-
dent populations, although a small portion of individuals
appear and disappear during some seasons (Würsig, 1978;
Schramm, 1993). It has been suggested that permanence in
some areas is mainly related to the stability of food supply
through time (Wilson et al., 1997); this could result in areas
more suited for feeding and breeding activities (Irvine et al.,
1981) or to avoid predators (Scott et al., 1990).
Bottlenose dolphins exhibited low site fidelity in the mid-
term; in other words, most of these dolphins (72%) were
captured only once, and those that returned to the area did so
during short periods (mostly in summer). Therefore, it is
possible that during the study period, San Quintín represented
a pass zone for transient dolphins. This trend has been docu-
mented in other open systems (Ballance, 1992; Caldwell, 1992;
Weller, 1998) and it is possible that this feature favors the
individual interchange among schools, reinforcing genetic
variability of populations (Irvine et al., 1981; Scott et al.,
1990).
In this research, the time between surveys (approximately
30 days) implies low temporal continuity; therefore, the
residence of dolphins is not conclusive. However, the study
conducted by Caldwell (1992), which was more localized and
intensive, showed the same trends, meaning that dolphins’
movements are consistent in the mid- and long-term.
Morteo et al.: Distribución y movimientos de tursión al sur de Bahía San Quintin
45
propuesto que la permanencia de los tursiones se relaciona
principalmente con una estabilidad en la producción de recur-
sos alimentarios a lo largo del tiempo (Wilson et al., 1997), lo
cual podría resultar en áreas más propicias para actividades de
alimentación y reproducción (Irvine et al., 1981) o para evitar a
los depredadores (Scott et al., 1990).
Los tursiones exhibieron una baja fidelidad al sitio a
mediano plazo, es decir, la mayor parte (72%) se fotografiaron
una sola vez y los que regresaron al área lo hicieron durante
periodos cortos (principalmente en verano). Por tal motivo, es
posible que durante el periodo de estudio San Quintín repre-
sentara un área de paso para los tursiones. Esta tendencia ha
sido reportada en otros sistemas abiertos (Ballance, 1992;
Caldwell, 1992; Weller, 1998) y es posible que esta caracterís-
tica favorezca el intercambio de individuos entre las manadas,
reforzando la variabilidad genética de las poblaciones (Irvine
et al., 1981; Scott et al., 1990).
El intervalo de tiempo entre las navegaciones realizadas
para la presente investigación (aproximadamente 30 días)
implica una baja continuidad en la escala temporal, por lo que
la determinación del tiempo de residencia de los tursiones no
es concluyente. Sin embargo, el estudio de Caldwell (1992) fue
más puntual e intensivo y mostró la misma tendencia, por lo
cual los movimientos de los delfines son consistentes a
mediano y largo plazo.
Abundancia relativa
En diversos estudios se ha observado que la abundancia
relativa comúnmente se encuentra entre 0 y 3 delfines km–2
(Ross et al., 1989; Heckel, 1992; Schramm, 1993; Barco et al.,
1999). Debido a las variaciones estacionales de las caracte-
rísticas oceanográficas (relacionadas principalmente con las
surgencias), es posible que en efecto exista un aumento en la
cantidad de animales durante el verano.
La presencia casi permanente de tursiones en el área
(Morteo, 2002) y la alta tasa de animales nuevos, sugieren que
la población de animales que frecuentan las costas de San
Quintín es mayor que sólo los 220 animales identificados por
Caldwell (1992) y este estudio. Sin embargo, es necesario
realizar estudios detallados para estimar de manera precisa el
tamaño de la población de delfines en San Quintín, ya que
debido al bajo número de recapturas no fue posible utilizar
algún modelo para la estimación de la abundancia.
Agradecimientos
Agradecemos a la Secretaría del Medio Ambiente, Recur-
sos Naturales y Pesca (ahora SEMARNAT) y al Instituto
Nacional de Ecología (INE) las facilidades otorgadas a esta
investigación (Permiso Pesca de Fomento No. 080699-231-03
y Of. No. DOO 02.-2481, respectivamente). Los mapas fueron
elaborados con la ayuda de Tonatiuh Mendoza. Agradecemos
también a los socios y voluntarios de ICMME, en especial a
Gabriela Athié y Oscar Guzón, así como a los estudiantes del
Laboratorio de Comportamiento de Cetáceos Aimeé Lang y
Relative abundance
Relative abundance has been commonly calculated
between 0 and 3 dolphins km–2 (Ross et al., 1989; Heckel,
1992; Schramm, 1993; Barco et al., 1999). Due to the seasonal
variation of the oceanographic features (mainly related to
upwellings), it is possible that there is in fact a larger number
of animals during the summer.
The almost permanent presence of bottlenose dolphins in
the area (Morteo, 2002), as well as the high rate of new animals
suggest that the actual population inhabiting the San Quintín
coasts is larger than just the 220 animals identified by Caldwell
(1992) and in the present research. However, more detailed
studies are necessary to estimate the population size of dol-
phins at San Quintín, since the use of mathematical models
was not possible to assess the total abundance due to the low
recapture rate.
Acknowledgements
We thank the Secretaría del Medio Ambiente, Recursos
Naturales y Pesca (now SEMARNAT) and the Instituto
Nacional de Ecología (INE) for the assistance granted to this
research (Fisheries Permit No. 080699-231-03 and Of. No.
DOO 02.-2481, respectively). Maps were developed with help
from Tonatiuh Mendoza. We thank the members and volun-
teers of ICMME, especially Gabriela Athié and Oscar Guzón,
as well as Aimeé Lang and Karine Viaud from the Cetacean
Behavior Laboratory, for their great help during the field trips
and lab work. We also thank Horacio de la Cueva and two
other anonymous reviewers for their comments to this
research.
English translation by the authors.
Karine Viaud, su ayuda durante el trabajo de campo y laborato-
rio. También agradecemos a Horacio de la Cueva y a otros dos
revisores anónimos sus comentarios hacia este trabajo.
Referencias
Allen, M.C. and Read, A. (2000). Habitat selection of foraging
bottlenose dolphins in relation to boat density near Clearwater,
Florida. Mar. Mamm. Sci., 16: 815–24.
Altman, J. (1974). Observational study of behavior sampling methods.
Behaviour, 49: 227–67.
Álvarez-Borrego, S., Ballesteros, G. y Chee, A. (1975). Estudio de
algunas variables fisicoquímicas superficiales en la Bahía de San
Quintín en verano, otoño e invierno. Ciencias Marinas, 2: 1–9.
Ballance, L.T. (1992). Habitat use patterns and ranges of bottlenose
dolphin in the Gulf of California, Mexico. Mar. Mamm. Sci., 8:
262–74.
Barco, S.G., Swingle, W.M., McLellan, W.A., Harris, R.N. and Pabst,
D.A. (1999). Local abundance and distribution of bottlenose
dolphins (Tursiops truncatus) in the nearshore waters of Virginia
Beach, Virginia. Mar. Mamm. Sci., 15: 394–408.
Caldwell, M.J. (1992). A comparison of bottlenose dolphins identified
in San Quintín and the Southern California Bight. M.Sc. thesis,
San Diego State University, San Diego, CA, USA, 58 pp.
Ciencias Marinas, Vol. 30, No. 1A, 2004
46
Defran, R.H., Shultz, G.M. and Weller, D.W. (1990). A technique for
the photographic identification and cataloging of dorsal fins of the
bottlenose dolphin (Tursiops truncatus). Rep. Int. Whal. Commn.,
12: 53–55.
Defran, R.H., Weller, D.W., Nelly, D.L and Espinosa, M.A. (1999).
Range characteristics of Pacific coast bottlenose dolphins
(Tursiops truncatus) in the Southern California Bigth. Mar.
Mamm. Sci., 15: 381–393.
Espinosa, M.A. (1986). Biología poblacional del delfín costero
Tursiops truncatus en la costa noroccidental de Baja California,
México. Tesis de licenciatura, Facultad de Ciencias Marinas,
Universidad Autónoma de Baja California, Ensenada, México,
54 pp.
Estrada-Ramírez, A. (2002). Avistamientos de ballena gris
Eschrichtius robustus en la Bahía de San Quintín, Baja California.
Resúmenes del Congreso Bahía San Quintín en el 2002.
Universidad Autónoma de Baja California, Instituto de
Investigaciones Oceanológicas - Facultad de Ciencias Marinas, 17
19 de abril, Ensenada, Baja California, México, p. 7.
Gunter, G. (1942). Contributions to the natural history of bottlenose
dolphin, Tursiops truncatus (Montague), on the Texas coast, with
particular reference to food habits. J. Mamm., 23: 267–76.
Guzón, O. (2002). Distribución y movimientos del tursión (Tursiops
truncatus) en la Bahía de Todos Santos, Baja California, México
(Cetacea: Delphinidae). Tesis de licenciatura, Facultad de
Ciencias Marinas, Universidad Autónoma de Baja California,
Ensenada, Baja California, México, 156 pp.
Hanson, M.T. and Defran, R.H. (1993). The behaviour and feeding
ecology of the Pacific coast bottlenose dolphin, Tursiops
truncatus. Aqua. Mamm., 19: 127–142.
Heckel, G. (1992). Fotoidentificación de tursiones Tursiops truncatus
(Montagu, 1821) en la Boca de Corazones de la Laguna de
Tamiahua, Veracruz, México (Cetacea: Delphinidae). Tesis de
licenciatura, Facultad de Ciencias, Universidad Nacional
Autónoma de México, México, D.F., 164 pp.
Heckel, G., Reilly, S.B., Sumich, J.L and Espejel, I. (2001). The
influence of whalewatching on the behavior of migrating gray
whales (Eschrichtius robustus) in Todos Santos Bay and
surrounding waters, Baja California, Mexico. J. Cetacean Res.
Manage., 3: 227–237.
Hersh, S.L., Odell, D.K. and Asper, E.D. (1990). Bottlenose dolphin
mortality patterns in the Indian/Banana River system of Florida.
In: S. Leatherwood and R. Reeves (eds.), The Bottlenose Dolphin.
Academic Press, San Diego, California, pp. 155–164.
Hui, C.A. (1985). Undersea topography and the comparative
distribution of two pelagic dolphins. Fish. Bull., 83: 472–75.
Irvine, A.B., Scott, M.D., Wells, R.S. and Kaufmann, J.H. (1981).
Movements and activities of the Atlantic bottlenose dolphin,
Tursiops truncatus, near Sarasota, Florida. Fish. Bull., 79: 671–
688.
Kruskal, J.B. and Wish, M. (1978). Multidimensional scaling. Sage
University Paper Series on Quantitative Applications in the Social
Sciences. Sage Publ., Beverly Hills, California, and London,
pp. 7–11.
Leatherwood, S. and Reeves, R.R. (1983). Abundance of bottlenose
dolphins in Corpus Christi Bay and coastal southern Texas.
Contrib. Mar. Sci., 26: 179–99.
Leatherwood, S. and Reeves, R.R. (1990). The Bottlenose Dolphin.
Accademic Press, San Diego, California, 653 pp.
Machlis, L., Dood, P.W.D. and Fentress, J.C. (1985). The pooling
fallacy: Problems arising when individuals contribute more than
one observation to the data set. Z. Tierpsychol., 68: 201–14.
Morteo, E. (2002). Distribución y movimientos del tursión (Tursiops
truncatus; Montagu, 1821) en las aguas adyacentes a San Quintín,
Baja California, México (Cetacea: Dephinidae). Tesis de
licenciatura, Facultad de Ciencias Marinas, Universidad
Autónoma de Baja California, Ensenada, Baja California, México,
146 pp.
Morteo, E., Olivera, L.D. y de la Cueva, H. (2002). Estudio
prospectivo sobre el estado de Tursiops truncatus en la Bahía de
San Quintín. Centro de Investigación Científica y de Educación
Superior de Ensenada, Baja California, México, 23 pp.
Neave, H.R. and Worthington, P.L. (1988). Distribution-free Tests.
Unwin Hyman, London, 430 pp.
Reilly, S.B. and Fiedler, P.C. (1994). Interannual variability of dolphin
habitats in the eastern tropical Pacific. I: Research vessel surveys,
1986–1990. Fish. Bull., 92: 434–50.
Richardson, W.J., Greene, C.G., Malme, C.I. and Thomson, D.H.
(1995). Marine Mammals and Noise. Academic Press, San Diego,
California, 575 pp.
Rosales-Casián, J.A. (1996). Ictiofauna de la Bahía de San Quintín,
Baja California, México y su costa adyacente. Ciencias Marinas,
22: 443–58.
Ross, G.J., Cockroft, V.G., Melton, D.A. and Butterworths,
D.S. (1989). Population estimates for bottlenose dolphins
Tursiops truncatus in Natal and Transkei waters. Afr. J. Mar. Sci.,
8: 119–29.
Rossbach, K.A. and Herzing, D.L. (1999). Inshore and offshore
bottlenose dolphin (Tursiops truncatus) communities
distinguished by association patterns near Grand Bahama Island,
Bahamas. Can. J. Zool., 77: 581–92.
Sandoval, A. (1987). Movimientos y comportamiento del delfín nariz
de botella (Tursiops truncatus) en la Bahía de Todos Santos, BC,
México. Tesis de licenciatura, Facultad de Ciencias Marinas,
Universidad Autónoma de Baja California, Ensenada, México,
100 pp.
Schramm, Y. (1993). Distribución, movimientos, abundancia e
identificación del delfín Tursiops truncatus (Montagu, 1821), en
el sur de la Laguna de Tamiahua, Ver. y aguas adyacentes
(Cetacea: Delphinidae). Tesis de licenciatura, Escuela de
Biología, Universidad Autónoma de Guadalajara, Guadalajara,
Jalisco, México, 174 pp.
Scott, M.D., Wells, R.S., Irvine, A.B. and Mate, B. (1990). Tagging
and marking studies on small cetaceans. In: S. Leatherwood and
R. Reeves (eds.), The Bottlenose Dolphin, Academic Press, San
Diego, California, pp. 489–513.
Tepper, E.M. (1996). Feeding duration in the Pacific coast bottlenose
dolphin (Tursiops truncatus). M.Sc. thesis, San Diego State
University, California, USA, 81 pp.
Ward, B.G. (1998). Movement patterns and feeding ecology of the
Pacific coast bottlenose dolphin (Tursiops truncatus). M.Sc.
thesis, San Diego State University, California, USA, 57 pp.
Weller, D.W. (1991). The social ecology of Pacific coast bottlenose
dolphins. M.Sc. thesis, San Diego State University, California,
USA, 78 pp.
Weller, D.W. (1998). Global and regional variation in the biology and
behavior of bottlenose dolphins. Ph.D. thesis, University of Texas
A&M, USA, 142 pp.
Wilson, B., Thompson P.M. and Hammond P.S. (1997). Habitat use by
bottlenose dolphins: Seasonal distribution and stratified
movement patterns in the Moray Firth, Scotland. J. Appl. Ecol.,
34: 1365–74.
Würsig, B. (1978). Occurrence and group organization of Atlantic
bottlenose porpoises (Tursiops truncatus) in Argentina Bay. Biol.
Bull., 154: 348–359.
Würsig, B. (1979). Dolphins. Sci. Am., 240: 136–48.
Würsig, B. and Würsig, M. (1979). Behavior and ecology of the
bottlenose dolphin, Tursiops truncatus, in the south Atlantic. Fish.
Bull., 77: 399–412.
... Thus, spatial and temporal distribution patterns of common bottlenose dolphin (Tursiops truncatus) populations are influenced by such environmental variations (Ballance, 1992;Defran and Weller, 1999;Baird et al., 2009;Bearzi et al., 2009;Pardo et al., 2013;Sprogis et al., 2018). The continuous presence of this species in highly productive areas, such as coastal lagoons and river mouths, has been well documented, in which individual home ranges are somewhat well defined and populations are well-structured (Ballance, 1992;Reza-García, 2001;Morteo et al., 2004;Rodríguez-Vázquez, 2008). ...
... However, in open coastal waters, bottlenose dolphins have wider distributions and home ranges, which result in potential differences associated with population dynamics and social structure (Defran and Weller, 1999;Morteo et al., 2004;Bearzi et al., 2009;Defran et al., 2015;Bolaños-Jiménez et al., 2021). Coastal bottlenose dolphins in the Gulf of California (GoC) region have a complex population structure and are hypothesized to have originated from an oceanic ecotype (Segura et al., 2018). ...
... Survey effort was measured as the effective time (h) in search for cetaceans, by subtracting the sighting time for data collection from total survey time (Morteo et al., 2004;. Only surveys with effective searching time ≥ 2 h were used to compute the relative abundance (RA) of bottlenose dolphins. ...
Article
Full-text available
Despite being one of the most common odontocetes off Sinaloa (Mexican Pacific coast), basic studies on the ecology of common bottlenose dolphins (Tursiops truncatus) are scarce in the region. This study aimed to describe changes in the relative abundance, group size, and behavior of this species during 2007 – 2012. We used boat-based surveys and satellite images of sea surface temperature (SST) and chlorophyll-a (Chl-a) to model changes in dolphin relative abundance (RA) over time, using correlations in time series analyses. Overall, mean RA was 3.6 dolphins h-1 (SD = 8.0), and significantly higher RA (6.4 –16.7 dolphins h-1) occurred in 2008, 2011, 2012, which was concurrent with hydrographic effects of La Niña oceanographic conditions, as well as during the upwelling season (February – April) (SST: 17.3 – 25.0 °C; Chl-a: 3.7 – 21.4 mg m-3). Conversely, significantly lower RA values (0.5 – 3.8 dolphins h-1) occurred in 2007 and 2010 that were likely associated with El Niño effects on the biological productivity of the area (Chl-a: 0.3 – 7.6 mg m-3). We found significant correlations between monthly Chl-a and SST average values with mean bottlenose dolphins RA, and lags (22 – 29 days) in the trophic response to variations of the hydrographic parameters. Significantly larger dolphin groups were recorded during La Niña years possibly because of the higher availability of their prey. This hypothesis is supported by higher feeding frequencies (35 – 73%) observed during the upwelling seasons, especially during La Niña conditions, whereas the most frequent behavior throughout all other years was traveling (28 – 69%). Our results show that RA and group size of bottlenose dolphins inhabiting the waters off Sinaloa, Mexico, are likely influenced by the changes in hydrographic parameters, especially during extreme climatic events.
... Las navegaciones en Nautla siguieron una forma de "S", mientras las de Alvarado fueron transectos paralelos a la costa; los recorridos se diseñaron para cubrir la mayor área posible y aumentar las probabilidades de avistar delfines, de acuerdo con las características batimétricas y el hábitat característico del ecotipo costero de los tursiones (Morteo et al., 2012a) Se realizaron tres navegaciones consecutivas por mes a baja velocidad (<18.5 km hr -1 ) en cada sitio de estudio a lo largo de un año. Todos los recorridos contaron con al menos con dos observadores, un anotador y un motorista (Heckel, 1992;Schramm, 1993;Morteo et al., 2004;Vázquez-Castán et al., 2007;Martínez-Serrano et al., 2011;Valdés-Are-llanes et al., 2011;Ruiz-Hernández, 2014;Delgado-Estrella, 2015;Morteo et al., 2012a;2014;2017b). La profundidad de cada área de estudio se obtuvo mediante ecosondas (Hondex, Digital Depht Sounders y Garmin Ecosounder 250C) y con los datos obtenidos se generaron modelos batimétricos de cada área calculados mediante una interpolación con el método Kriging en el Programa Surfer Ver. 8 (Morteo, 2002;Morteo et al., 2004). ...
... Todos los recorridos contaron con al menos con dos observadores, un anotador y un motorista (Heckel, 1992;Schramm, 1993;Morteo et al., 2004;Vázquez-Castán et al., 2007;Martínez-Serrano et al., 2011;Valdés-Are-llanes et al., 2011;Ruiz-Hernández, 2014;Delgado-Estrella, 2015;Morteo et al., 2012a;2014;2017b). La profundidad de cada área de estudio se obtuvo mediante ecosondas (Hondex, Digital Depht Sounders y Garmin Ecosounder 250C) y con los datos obtenidos se generaron modelos batimétricos de cada área calculados mediante una interpolación con el método Kriging en el Programa Surfer Ver. 8 (Morteo, 2002;Morteo et al., 2004). ...
... Primero se registró su comportamiento siguiendo el método ad libitum (Altman, 1974) y procurando navegar de forma paralela en su dirección de nado a una distancia promedio de 30 m para reducir el riesgo de perturbarlos. Se usaron las categorías más comunes en estudios etológicos para la especie, que consisten en: alimentación, tránsito, juego, social/sexual, descanso, evasión, e indeterminado (Morteo, 2002;García-Vital et al., 2015;Morteo et al., 2004;Morales-Rincon, 2016). ...
Chapter
Full-text available
The bottlenose dolphin (Tursiops truncatus) is possibly the best known dolphin worldwide and their ecology and biology has been widely documented; however, research on this species in Mexico is re- cent, and the populations of the Gulf of Mexico have been less studied. In this work, we documented the fundamental aspects of the population ecology (distribution, demography, and behavior, includ- ing migratory movements) of bottlenose dolphins within the coastal waters of two localities in the State of Veracruz, separated by 230 km (Nautla 48 km2 and Alvarado 54 km2). We carried out 52 photo-identification surveys between July 2002 and September 2003. Search effort was 204.5 h and there were 76.1 h of sightings, where 60 schools were located with a total of 703 dolphins (42 young, 38 calves). Group size was different between sites (Nautla x= 11.0 ± 14.1, Alvarado x= 9.3 ± 8.41) and the relative abundance (dolphins h-1) was very variable (Nautla x= 4.1 ± 3.7, Alvarado x= 3.5 ± 1.6). We obtained 2,085 useful photographs of the dorsal fins of these dolphins with low photo- graphic efficiency (31%); which produced 555 records of individuals with high photo-identification efficiency (89%); the latter corresponded to 160 dolphins from Nautla and 92 from Alvarado. Daily absolute abundances averaged 187.0 (± 132.4 d.e.) marked individuals in Nautla and 68.6 (± 35.4 d.e.) in Alvarado, with a maximum of 636 individuals in both sites combined. The exchange rate between localities was 5%, where eight dolphins emigrated permanently from the source locality within a few days (x= 42.1 ± 16.9 d.e.), and the rest (n = 4) had back and forth movements. Two individuals traveled the distance from Alvarado to Nautla in 5 and 6 days, with a minimum swim- ming speed between 38 and 46 km d-1. Our results show limited connectivity, but possibly enough to promote genetic flow between these sites. The smaller population size for dolphins in Alvarado is possibly due to the high level of competition with the fisheries, which can regulate the amount of animals present in the site, coupled with its complex social structure, which can limit the income of a high proportion of new dolphins.
... De esta manera, los grupos de tursiones exhiben una estructura social cohesiva y distribución limitada, así como un grado de residencia alto, característicos de una población cerrada (Shane, 1990;Quintana-Rizzo & Wells, 2001;Martínez-Serrano et al., 2011;Morteo et al., 2012b;Morteo et al., 2014). En contraste, en el Pacífico mexicano, las fuentes de alimento y los sitios potenciales de protección son escasos, por lo que los grupos de tursiones amplían su distribución y ámbito hogareño, reflejándose en una estructura social fluida y poca residencia, típicas de poblaciones abiertas (Ballance, 1987;Guzón, 2002;Morteo et al., 2004;Bearzi et al., 2009). ...
... Debido a que estos recorridos tienen un propósito eco-turístico, las rutas de navegación fueron dirigidas hacia zonas de mayor probabilidad de encuentro con los animales. No obstante, durante los encuentros se siguieron los procedimientos estándar para investigación de cetáceos en el Pacífico Guzón-Zatarain, 2002;Morteo, 2002;Morteo et al., 2004). ...
... Las navegaciones se llevaron a cabo a una velocidad promedio de 27.8 km • h -1 bajo condiciones favorables del estado del mar (Beaufort ≤ 3). Una vez avistado un grupo de tursiones, la embarcación se aproximó a una distancia de entre 30 y 50 m con la finalidad de registrar el tamaño de grupo (número aproximado de individuos) y composición del mismo (número de individuos por clase de edad) (Guzón-Zatarain, 2002;Morteo, 2002;Morteo et al., 2004, Guzón-Zatarain et al., 2012. Cada avistamiento correspondió a una unidad independiente en la que se registró un valor único del tamaño de grupo, el cual se refirió a la estimación promedio consensada por los miembros de la tripulación. ...
Thesis
Full-text available
The bottlenose dolphin (Tursiops truncatus) is one of the most common species of odontocetes in Mexican coastal waters. Its presence off Mazatlan, Sinaloa has been documented since 2006; however, studies on this species are scare in the region. The goal of this work was to characterize the main parameters of their population ecology. Data was obtained through standardized ecotourism navigations during 2006-2012. A total of 152 sightings in 302 surveys were recorded (x=3.56 dolphins ∙ h-1; s.d.=2.64). We found differences in the relative abundance (RA), group size, and behavioral trends within annual, monthly and seasonal (dry and rainy) periods. The RA values for 2008 and 2012 were higher than the rest of the years (p<0.05), and we observed a RA increase during the dry seasons (February-April), associated with the decrement of sea surface temperature (18.9-25.0 °C) and high chlorophyll-a concentration (2.8-8.9 mg ∙ m-3). The correlation between these hydrographic parameters and the RA was low but significant (r2<0.25; p<0.01), possibly due to the delay in the trophic response to upwellings. The average group size was 24.2 dolphins (SD=36.6; min=1; max=300; md=10), with larger group sizes in 2011 and 2012 (x=41.4 and 31.9 dolphins, respectively) (p<0.05). During dry season (upwellings), we registered larger group sizes and higher frequencies of feeding behavior (35-73%), compared to the rainy season (travel: 28-69%). A total of 1,697 dorsal fin photographs were analyzed, and 65.5% were useful to identify 210 different individuals. Site fidelity was low (x=0.04; SD=0.03) and only 3% of the photo-identified dolphins were classified as residents, 11% as occasional residents, and the remaining (86%) as transients. The results indicate that bottlenose dolphins inhabiting the waters off Mazatlan, Sinaloa, belong to an open population with a large distribution and home ranges, which uses the area for feeding and travelling. Also, higher RA values and larger group sizes along with the incursion of new individuals during dry season were associated with socialization and feeding behaviors due to the hydrographic conditions during the development of coastal upwellings. The later promoted higher food availability that fits basic needs of the bottlenose dolphin population in this area. Furthermore, we observed an intensification of these trends under “La Niña” hydrographic conditions.
... Sampling locations were selected considering the following: (1) Geographic coverage should include most of the species distribution within Mexican coastal waters, (2) Locations should represent most of the existing conditions of habitat variability for the species in Mexico, (3) Distances among adjacent locations should allow for individual exchange considering the dispersal capabilities of the species, and (4) Photo-identification catalogs of coastal bottlenose dolphin populations must be available. Detailed descriptions on the ecology of the study areas and the biology of dolphin populations in those areas are provided elsewhere (see Espinosa, 1986;Ballance, 1987;Salinas & Bourillón, 1988;Acevedo, 1989;Ballance, Leatherwood & Reeves (1990);Ballance, 1992;Delgado, 1996;Delgado, 2002;Caldwell, 1992;Heckel, 1992;Schramm, 1993;Silber et al., 1994;Silber & Fertl, 1995;López, 1996;López, 2002;Defran et al., 1999;Díaz, 2001;Orozco, 2001;Reza, 2001;Guzón, 2002; Morteo, 2002;Rodríguez, Lugo & Foubert, 2003;Ladrón de Guevara & Heckel, 2004;Morteo et al., 2004;Ramírez, Morteo & Portilla-Ochoa, 2005;Mellink-Bijtel & Orozco-Meyer, 2006;Pérez-Cortes, 2006;Rodríguez-Vázquez, 2008;Morteo et al., 2012;Morteo, Rocha-Olivares & Abarca-Arenas, 2014;Morteo et al., 2015;Morteo, Rocha-Olivares & Abarca-Arenas, 2017;Ruíz-Hernández, 2014;Zepeda-Borja, 2017, unpublished data). Study areas were grouped by region into (1) Pacific Ocean, (2) Gulf of California and (3) Gulf of Mexico (Fig. 1). ...
... Area Duration (y) N Cat Sample (%) Format Pods Espinosa (1986), Defran et al. (1999), Guzón (2002) EN 3 144 27 (19%) S, T 20 Caldwell (1992), Morteo (2002), Morteo et al. (2004 formats, 32% of the material came from film-based images, and a similar proportion was from digital pictures, whereas 28% were fin contour traces in paper and 8% came from printed pictures (see Table 1). ...
Article
Full-text available
Geographic variation in external morphology is thought to reflect an interplay between genotype and the environment. Morphological variation has been well-described for a number of cetacean species, including the bottlenose dolphin ( Tursiops truncatus ). In this study we analyzed dorsal fin morphometric variation in coastal bottlenose dolphins to search for geographic patterns at different spatial scales. A total of 533 dorsal fin images from 19 available photo-identification catalogs across the three Mexican oceanic regions (Pacific Ocean n = 6, Gulf of California n = 6 and, Gulf of Mexico n = 7) were used in the analysis. Eleven fin shape measurements were analyzed to evaluate fin polymorphism through multivariate tests. Principal Component Analysis on log-transformed standardized ratios explained 94% of the variance. Canonical Discriminant Function Analysis on factor scores showed separation among most study areas ( p < 0.05) with exception of the Gulf of Mexico where a strong morphometric cline was found. Possible explanations for the observed differences are related to environmental, biological and evolutionary processes. Shape distinction between dorsal fins from the Pacific and those from the Gulf of California were consistent with previously reported differences in skull morphometrics and genetics. Although the functional advantages of dorsal fin shape remains to be assessed, it is not unlikely that over a wide range of environments, fin shape may represent a trade-off among thermoregulatory capacity, hydrodynamic performance and the swimming/hunting behavior of the species.
... We consider our study area to be an open habitat so we expected to find large groups; however, a mean group size of eight individuals was observed, which is commonly reported in the literature (Wells and Scott 2002). It is common to find 3-7 individuals in sheltered habitats such as Texas (Shane 1980), Florida (Wells 1986), and Belize (Campbell et al. 2002), and even in the Mexican Pacific (Morteo et al. 2004), and it is interesting that dolphins found off northern Veracruz showed group sizes characteristic of sheltered habitats. Thus, we assume these dolphins may modulate their behavior according to local environmental circumstances. ...
... En este trabajo, el área de estudio se considera como un hábitat abierto y se esperaba encontrar grupos grandes; sin embargo, se observó un tamaño promedio de ocho individuos, lo cual se encuentra documentado comúnmente en la literatura (Wells y Scott 2002). Es común encontrar 3-7 individuos en hábitats cerrados como en Texas (Shane 1980), Florida (Wells 1986) y Belice (Campbell et al. 2002), e incluso en el Pacífico mexicano (Morteo et al. 2004), y es interesante que los delfines que se encontraron en las costas del norte de Veracruz mostraran tamaños de grupo que son característicos de un hábitat cerrado. Entonces, se supone que estos delfines pueden modular su comportamiento según las circunstancias ambientales locales. ...
Article
Full-text available
With the goal of gathering ecological data to develop future cetacean management and conservation plans, the distribution, home range, and residency of bottlenose dolphins (Tursiops truncatus) were studied in the central-north Mexican Gulf of Mexico. Between July 2005 and June 2008, 59 boat surveys were carried out for a total of 313 h of effort at sea. During these surveys, 471 individuals were observed in 88 different groups. Photographs of naturally marked animals resulted in 275 different individuals photo-identified. Their distribution was homogeneous throughout the study area at a mean distance from the coast of 2.5 km (SD = 2.9, n = 471) and depths less than 20 m. Of the total of dolphins identified, 202 (73%) had a low sighting rate and were considered transients, whereas 34 individuals (12%) had medium and high sighting rates and were considered resident animals. At the population level, home range estimates calculated using the minimum convex polygon method showed a mean of2771 ± 1116 km². Using the adaptive kernel method, the mean size of home range was 1199 ± 143 km², with five core areas identified. These areas decreased in size during the rainy season because dolphins remained close to the river plumes. At individual level, the mean home range was 129.2 km² (n = 66), concurring with other reports from the Gulf of Mexico (Texas and Florida) in spite of habitat differences. The main component determining the size of the home range was the presence of rivers, rather than the geomorphology of the coast.
... Different populations, as in San Tom e (Pereira et al. 2012), the Azores , and Cocos Island (Acevedo-Gutierrez 1999), exhibit low coefficients of association with large transient populations, with highly fluid groups varying membership within a very small time frame, characteristics typical of a fission-fusion society (Connor et al. 2000). We calculated similar estimates of group size from both land-and transect-based survey methods and higher for photo-identification, finding that the group size estimates were far lower than the average group size for offshore populations and more closely resembled those of coastal populations (Morteo et al. 2004). Moreover, the depth values were considerably lower than the simulated data set, which is also a characteristic of coastal ecotypes, although the depths for the SPR population were quite deeper than the 40 m median reported for coastal populations (Morteo et al. 2004). ...
... We calculated similar estimates of group size from both land-and transect-based survey methods and higher for photo-identification, finding that the group size estimates were far lower than the average group size for offshore populations and more closely resembled those of coastal populations (Morteo et al. 2004). Moreover, the depth values were considerably lower than the simulated data set, which is also a characteristic of coastal ecotypes, although the depths for the SPR population were quite deeper than the 40 m median reported for coastal populations (Morteo et al. 2004). ...
Article
A little-studied common bottlenose dolphin (Tursiops truncatus) population inhabits the offshore waters surrounding Saint Paul's Rocks, a Brazilian marine protected area in the equatorial Atlantic Ocean. Five field expeditions (May 2011-May 2013) were conducted to characterize the habitat use, population size, and site fidelity of this population. Three different survey methods were employed: line-transect surveys, land-based surveys, and photo-identification surveys. A population size of 23 individuals (19-28, CI 95%), which were present on most sampling days (>90% of surveys), was estimated. The maximum resighting interval of photo-identified animals was 9 yr and 3 mo for five distinct individuals, based on data from nonsystematic efforts that have been ongoing since 2004. The dolphins exhibited strong site fidelity, as the minimum convex polygon (MCP, 95%) method revealed that they restricted their movements to a 0.5 km² area across seasons and a 0.99 km² area across years (95% kernel). The dolphins preferred shallow waters close to the archipelago (<1.2 km from the islands), especially on the eastern and southeastern sides, where oceanographic models have revealed persistent upwelling that may result from underwater currents and where food may be more predictably available.
... Investigaciones anteriores han sugerido que las zonas con mantos de algas, zonas rocosas y aguas muy turbias pueden proveer refugio a los peces, por lo que la preferencia de las toninas por zonas arenosas se deba a que sus presas no pueden esconderse en este tipo de sedimento (Morteo, Heckel, Defran y Schramm, 2004). Sin embargo, las zonas rocosas y turbias no son un inconveniente para la alimentación de las toninas, ya que utilizan su sistema acústico de manera activa para detectar a sus presas y su entorno, generando una gran cantidad de trenes de ecolocalización, como se presentó en nuestra zona de estudio (Bazúa-Durán y Herrera-Hernández, 2007). ...
... En general los cetáceos presentan una compleja variación espaciotemporal en su distribución, asociada principalmente a las condiciones oceanográficas, la geomorfología del suelo marino (geología estructural, topografía y tipo de sedimento) y a las condiciones hidrodinámicas que otorgan características específicas en su hábitat para la reproducción, alimentación y crianza (Medrano y Urbán, 2002). En el caso particular de las toninas se ha reportado que pueden ocupar nichos costeros y oceánicos (Wells y Scott, 2002), y que las variables ambientales más importantes que van a determinar su presencia son la temperatura, la salinidad, la profundidad, el tipo de sedimento y la distancia a la costa (Cubero, 2007;Guevara-Aguirre, 2011;Morteo et al., 2004). Sin embargo, en este estudio las variables que determinaron y diferenciaron el hábitat de los 2 ecotipos de toninas fueron la pendiente del fondo, la concentración de clorofila, la distancia a la costa y el color del mar. ...
Article
Full-text available
En el golfo de California se han descrito 2 ecotipos de toninas (costero y oceánico) y la mayoría de investigaciones son de regiones costeras. Este estudio analiza si 10 variables ambientales (profundidad, color del mar, visibilidad, estado del mar, salinidad, temperatura superficial, concentración de clorofila, distancia a la costa, pendiente, densidad del agua) determinan el hábitat de estos ecotipos, probando la hipótesis del hábitat local. Se realizaron 13 muestreos costeros y 16 muestreos oceánicos en la cuenca de Guaymas (septiembre 2013-marzo 2014). El análisis de correspondencia indicó que el ecotipo costero se alimenta y transita por la mañana, socializa al medio día y descansa por la tarde; 6 variables (temperatura superficial, visibilidad, salinidad, color del mar, distancia a la costa, pendiente) determinan estos comportamientos. El ecotipo oceánico se alimenta por la mañana y la tarde, socializa al medio día, descansa en la tarde, transita por la mañana y la tarde; 4 variables (pendiente, color del mar, temperatura superficial y profundidad) determinan estos comportamientos. Los GLM indican que 5 variables caracterizan el hábitat de ambos ecotipos (pendiente, concentración de clorofila, distancia a la costa, estado del mar, color del mar). Se comprueba la hipótesis del hábitat local, porque cada ecotipo depende del conjunto de variables de su hábitat.
... When possible, source individuals were categorised as 'offshore' or 'nearshore' ecotypes using physical characteristics (with the nearshore ecotype being larger and more robust than the offshore, with lighter-coloured dorsal area and flanks, shorter and wider rostrum, relatively shorter and wider flippers and a white belly; after Perrin et al. 2011). Along the coast of California and Baja California offshore dolphins were usually found further than 4 km from shore (Lowther-Thieleking et al. 2015), while nearshore dolphins seem to follow a narrow alongshore corridor less than 1 km wide and in waters less than 60 m depth (Guzón 2002;Morteo et al. 2004). However, most ecotype assignments were done by visual assessment of morphology in the field, rather than by location (see methods described in Segura et al. 2006). ...
Article
Full-text available
For highly mobile species that nevertheless show fine-scale patterns of population genetic structure, the relevant evolutionary mechanisms determining structure remain poorly understood. The bottlenose dolphin (Tursiops truncatus) is one such species, exhibiting complex patterns of genetic structure associated with local habitat dependence in various geographic regions. Here we studied bottlenose dolphin populations in the Gulf of California and Pacific Ocean off Baja California where habitat is highly structured to test associations between ecology, habitat dependence and genetic differentiation. We investigated population structure at a fine geographic scale using both stable isotope analysis (to assess feeding ecology) and molecular genetic markers (to assess population structure). Our results show that there are at least two factors affecting population structure for both genetics and feeding ecology (as indicated by stable isotope profiles). On the one hand there is a signal for the differentiation of individuals by ecotype, one foraging more offshore than the other. At the same time, there is differentiation between the Gulf of California and the west coast of Baja California, meaning that for example, nearshore ecotypes were both genetically and isotopically differentiated either side of the peninsula. We discuss these data in the context of similar studies showing fine-scale population structure for delphinid species in coastal waters, and consider possible evolutionary mechanisms. Electronic supplementary material The online version of this article (10.1007/s11692-018-9445-z) contains supplementary material, which is available to authorized users.
... Sampling locations were selected considering the following: 1) Geographic coverage should 83 include most of the species distribution within Mexican coastal waters, 2) Locations should 84 represent most of the existing conditions of habitat variability for the species, 3) Distances among 85 locations should allow for individual exchange considering the dispersal capabilities of the 86 species, and 4) Photo-identification catalogs of coastal bottlenose dolphin populations must be 87 available. Detailed descriptions on the ecology of the study areas and the biology of dolphin 88 populations in those areas are provided elsewhere (see Espinosa, 1986, Ballance, 1987 Salinas 89 and Bourillón, 1988; Acevedo, 1989; Ballance, 1990 Ballance, , 1992 Delgado, 1996 Delgado, , 2002 Caldwell, 90 1992; Heckel, 1992; Schramm, 1993; Silber et al., 1994; Silber and Fertl, 1995; López, 1997, 91 2002 Defran et al., 1999; Díaz, 2001; Orozco, 2001; Reza, 2001; Guzón, 2002; Morteo, 2002; 92 Rodríguez et al., 2003; Ladrón de Guevara and Heckel, 2004; Morteo et al., 2004; Mellink-Bijtel 93 and Orozco-Meyer, 2006; Pérez-Cortés, 2006; Rodríguez-Vázquez, 2008; Morteo et al., 2012, 94 2014, 2015 Ruiz-Hernández, 2014; Zepeda-Borja, In prep.). Study areas were grouped 95 by region: 1) Pacific Ocean, 2) Gulf of California and 3) Gulf of Mexico (Fig. 1California; BM=Bahia Magdalena, Baja California; MZ=Mazatlan, Sinaloa; BB=Bahia Banderas, Jalisco; 101 PE=Puerto Escondido, Oaxaca; 2) 104 NA=Nautla, Veracruz; VR=Veracruz Reef System, Veracruz; AL=Alvarado, Veracruz; TB=Tabasco, 105 Tabasco; TL=Terminos Lagoon, Campeche; HO=Holbox, Quintana Roo. ...
Article
Full-text available
Geographic variation in external morphology is thought to reflect an interplay between genotype and the environment. Morphological variation has been well-described for a number of cetacean species, including the bottlenose dolphin (Tursiops truncatus). In this study we analyzed dorsal fin morphometric variation in coastal bottlenose dolphins to search for geographic patterns at different spatial scales. A total of 533 dorsal fin images from 19 available photo-identification catalogs across the three Mexican oceanic regions (Pacific Ocean n=6, Gulf of California n=6 and, Gulf of Mexico n=7) were used in the analysis. Eleven fin shape measurements were analyzed to evaluate fin polymorphism through multivariate tests. Principal Component Analysis on log-transformed standardized ratios explained 94% of the variance. Canonical Discriminant Function Analysis on factor scores showed separation among most study areas (p<0.05) with exception of the Gulf of Mexico where a strong morphometric cline was found. Possible explanations for the observed differences are related to environmental, biological and evolutionary processes. Shape distinction between dorsal fins from the Pacific and those from the Gulf of California were consistent with previously reported differences in skull morphometrics and genetics. Although the functional advantages of dorsal fin shape remains to be assessed, it is not unlikely that over a wide range of environments, fin shape may represent a trade-off among thermoregulatory capacity, hydrodynamic performance and the swimming/hunting behavior of the species.
Thesis
Full-text available
La Ensenada de La Paz forma parte del hábitat de tursiones (Tursiops truncatus), especie gregaria que forma grupos determinados por factores socio-demográficos. Los tursiones son el componente principal en la riqueza de odontocetos en la zona, por lo que es importante actualizar el conocimiento acerca de la especie y, con ello, generar herramientas útiles para su manejo y la conservación de su hábitat. El objetivo de este estudio fue determinar la dinámica grupal de los tursiones en la Ensenada de La Paz, durante el periodo 2016-2021. Los datos se obtuvieron de registros fotográficos (2016-2018) realizados durante 1as navegaciones mensuales en el periodo 2019-2021. En los muestreos se registró el número de individuos, etapas de desarrollo y el comportamiento de los delfines. Para la identificación de los individuos, se utilizó la técnica de foto-identificación usando las marcas únicas en su aleta dorsal, se seleccionaron, calificaron y clasificaron las mejores fotografías por el tipo de marca que presentó cada individuo. Se estimó el tamaño de los grupos a través de un cálculo visual mediante la regla de la cadena y se determinó el tipo de formación de los grupos (compacta y dispersa). La composición grupal etaria se realizó a través del tamaño de los individuos como proxi de las etapas de desarrollo (adultos, jóvenes, crías y recién nacidos). Una vez foto-identificados los delfines, se realizó el análisis de estructura social mediante el índice de fuerza de asociación (HWI por sus siglas en inglés) entre pares de individuos. Los tursiones conformaron dos tipos de grupos conforme a la distribución espacial: compactos (mediana = 14 delfines) y dispersos (mediana = 25 delfines). Así mismo se registraron grupos de sólo adultos (mediana = 5 delfines) y grupos mixtos (mediana = 20 delfines) con adultos, jóvenes, crías y/o recién nacidos. En cuanto al comportamiento, los tursiones utilizaron el área para navegar, alimentarse y socializar. El número de tursiones foto-identificados fue de 147 delfines distintos, de los cuales el 66% presentó al menos una recaptura. Los tursiones conformaron una sociedad diferenciada (0.38 ± 0.11 DE), sus asociaciones fueron ocasionales (CDA=0.23± 0.07 DE). El análisis de conglomerados mostró que la sociedad de los delfines se compone por cuatro grupos, con individuos asociados de manera regular a moderada (CDA=0.41- 0.61) y cinco parejas de individuos con asociaciones fuertes (CDA > 0.81). Este trabajo redujo la brecha de información sobre los tursiones de la zona y exhibió la dinámica de sus grupos; estructura social, composición etaria y las asociaciones entre los delfines.
Article
Full-text available
In order to complete the study presented by Chávez de Nishikawa and Alvarez Borrego (1974), we made seven samplings in San Quintin Bay in 3une 1973 - 3anuary 1974. In this report we present and discuss the results on the surface distribution of temperature, salinity, dissolved oxygen concentration and pH. There is a good correlation between the salinity and temperature gradients. Both, salinity and temperature, increase from the mouth to the interior of the Bay, during summer and fall. San Quintin Bay is an antiestuary. We never detected a significant input of fresh water to the Bay.
Article
Full-text available
A tagging-observation program was conducted to study the behavioral ecology of Atlantic bottlenose dolphins near Sarasota, Florida. Forty-seven bottlenose dolphins (24 males, 23 females) werecaptured. tagged, and released a total of 90 times from 29 January 1975 through 25 July 1976. Tagged animals were identified during regular boat surveys, and information was collected on all individuals and groups encountered. A total of997 tagged or marked bottlenose dolphins were sighted. A population of bottlenose dolphins was identified in an estuarine-nearshore area extending about 40 km to the south from Tampa Bay and up to 3 km into the Gulfof Mexico. Social organization was characterized by small dynamic groups that appeared to be subunits ofa larger socially interacting herd. Average group size of 688 groups was 4.8 bottlenose dolphins (standard error = 0.16), Bottlenose dolphins concentrated in different areas seasonally, possibly in response to distribution changes of important prey species. Feeding strategies of the bottlenose dolphins apparently varied according to available water depth and differed from strategies of pelagic small cetaceans. Calving apparently occurred from spring to early fall.
Article
Full-text available
We investigated patterns of abundance and distribution for coastal migratory Atlantic bottlenose dolphins (Tursiops truncatus) that appear seasonally in the nearshore waters of Virginia Beach, Virginia. The study was conducted along 24 km of shoreline at the southern point of the Chesapeake Bay mouth from April 1994 to March 1995. This is the first study to investigate the relationship between the abundance of coastal migratory dolphins and factors that might affect their movement. A profile analysis of variance revealed significant differences in local abundance and distribution throughout the year. Dolphin number was positively correlated with water temperature and not correlated with photoperiod. Although prey distribution and abundance are two factors thought to affect dolphin presence, in this study the relationship between these two factors and dolphin abundance was unclear. Greater numbers of dolphins were found in the ocean section of the study area. However, significantly higher ratios of neonatal dolphins were observed in the bay section, suggesting the bay serves as a nursery area. The observed relationship between local dolphin abundance and environmental factors in Virginia may provide insight into dolphin distribution and migration along the Atlantic coast of the United States.
Article
Population estimates of bottlenose dolphins Tursiops truncatus on the Natal (five replicates) and Transkei (two replicates) coasts are made from aerial inshore strip-transects conducted between 23 April and 5 May 1985. Counts of dolphin schools and numbers were made in a 1 km wide strip-transect flown northwards along the water's edge, and a narrow transect flown southwards 600 m offshore. Three independent tests failed to detect any drop in sighting efficiency across this strip, although the power of the tests was low because of small sample sizes. Count variability between transects was high, probably reflecting movement of dolphins beyond the strip surveyed and failure to sight all the schools within the strip. The average count over a number of transects provides an index of population size for determination of future population trends, but this index was estimated with poor precision. Nevertheless, estimates of average density from the counts indicate that densities of bottlenose dolphins on the Natal South Coast are an order of magnitude less than those off the Natal North Coast and the coast of Transkei. The maximum counts on transects over areas "preferred" by bottlenose dolphins provide underestimates of absolute abundance (population censuses) of 433 and 219–249 for the Natal North and Natal South coasts respectively. Low estimates on the Natal South Coast may reflect offshore movements due to water turbidity. If this is not the case, available data on catches of dolphins in shark nets along the Natal coast suggest that present catches probably exceed the level that the South Coast population can sustain, and so would be causing this population to decline. The Natal South Coast should be accorded urgent priority for future studies on the species, and specific recommendations for such studies are made.
Article
Bottlenose dolphins observed nearshore in Golfo San Jose, Argentina, spent 92% oftheir time in water less than 10 m deep. They moved into deeper water, up to 39 m depth, mainly during midday in nonsummer for brief (16 min) periods. They moved more rapidly in deeper water, and may have been feeding on schooling fish at that time. During summer they stayed in shallow water, 2-6 m deep. Dolphins moved parallel to shore and in consistent depth of water at almost all times. They changed direction at predictable locations and patrolled certain nearshore waters for up to several hours. Their movement was influenced by tide and by nearshore rocks. Slow movement and apparent resting occurred mainly riuring the morning, while most aerial behavior, apparent sexual and social behavior, and rapid-movement feeding occurred in the afternoon. The Atlantic bottlenose dolphin, Tursiops trun­ catus, is undoubtedly the best studied of any of the toothed cetaceans. It was successfully kept in cap­ tivity over 60 yr ago (Townsend 1914), and has since that time served as the "white rat" of cetol­ ogy, with a great deal known about its behavior in captivity, but until relatively recently practically nothing known about its behavior in the wild. Long-term behavioral studies of stable bottlenose dolphin colonies in captivity were mainly carried out at Marine Studios/Marineland ofFlorida from the mid-1930's to mid-1950's (McBride 1940; McBride and Hebb 1948; McBride and Kritzler 1951; Essapian 1953, 1963; Tavolga and Essapian 1957; Tavolga 1966). These studies showed that bottlenose dolphins have a complex social organi­ zation, often with a male-dominated social hierar­ chy. From some ofthese studies also developed the idea that bottlenose dolphins, and other odonto­ cete species as well, use echolocation (McBride 1956). This concept was validated by numerous workers in the 1950's and 1960's (Schevill and Lawrence 1956; Kellogg 1961; Norris et al. 1961). Other l'esearch on captive bottlenose dolphins in general (including the species T. gilli and T. aduncus, as well as T. truncatus) was reported by Brown and Norris (1956), Caldwell et al. (1965), D. K. Caldwell and M. C. Caldwell (1972), M. C. Caldwell and D. K. Caldwell (1972), Tayler and Saayman (1972), and Saayman et al. (1973). The
Article
Little is known about the behavior of offshore dolphin populations. Our purpose was to distinguish and describe stable social groups of bottlenose dolphins (Tursiops truncatus) between inshore and offshore West End, Grand Bahama Island (26°42'N, 79°00'W). Photoidentification was conducted from May to September, 1994 to 1996. A simple ratio index described association patterns between dolphins. Multidimensional scaling of association indices (n = 1711 dolphin pairs) distinguished two dolphin communities consisting of 28 dolphins (19 of known sex) found inshore and 15 dolphins (12 of known sex) found ≥27 km offshore. Eight of the 15 offshore dolphins were opportunistically photographed in the same region between 1986 and 1990. The two communities were found at different water depths (Mann-Whitney U test, p < 0.01), over distinct bottom types (Kruskal-Wallis test, p < 0.01), and used different bottom-foraging strategies. Long-term site fidelity of up to 10 years and repeated dolphin associations of up to 8 years occurred ≥27 km from shore. Dolphins sighted ≥15 times averaged 48 associates (SD = 11, n = 28). A dolphin's closest associate was of the same gender 74% of the time. This study is the first to report long-term site fidelity and association patterns of bottlenose dolphins found far from shore.