Article

Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity

Center for Chemical Toxicology Research & Pharmacokinetics, North Carolina State University, NC, USA.
Nanomedicine (Impact Factor: 5.41). 05/2012; 7(8):1197-209. DOI: 10.2217/nnm.12.18
Source: PubMed

ABSTRACT

To evaluate the toxicity and cellular uptake of both undifferentiated and differentiated human adipose-derived stem cells (hASCs) exposed to silver nanoparticles (Ag-NPs), and to assess their effect on hASC differentiation.
hASC were exposed to 10- or 20-nm Ag-NPs at concentrations of 0.1, 1.0, 10.0, 50.0 and 100.0 µg/ml either before or after differentiation down the adipogenic or osteogenic pathways.
Exposure of hASC to either 10- or 20-nm Ag-NPs resulted in no significant cytotoxicity to hASC, and minimal dose-dependent toxicity to adipogenic and osteogenic cells at 10 µg/ml. Each of the hASC, adipogenic and osteogenic cells showed cellular uptake of both 10- and 20-nm Ag-NPs, without causing significant ultrastructural alterations. Exposure to 10- or 20-nm Ag-NPs did not influence the differentiation of the cells, and at antimicrobial concentrations of Ag-NPs resulted in a minimal decrease in viability.
The biocompatibility of Ag-NPs with both undifferentiated and differentiated hASC establishes their suitability for incorporation into tissue-engineered graft scaffolds, for the prevention of bacterial contamination upon implantation.

Download full-text

Full-text

Available from: Nancy A Monteiro-Riviere
  • Source
    • "Conversely, acrylic resins covered with AgNPs were biocompatible, with no evident genotoxic or cytotoxic effect in normal fibroblast and Leucocytes from peripheral blood (Acosta-Torres et al., 2012). Also, minimal citotoxicity was reported in undifferentiated and differentiated human adipose-derived and osteogenic-derived stem cells exposed to AgNPs at 10 µg/mL (Samberg et al., 2012) Silver nanoparticles have the ability to inhibit bacterial growth, and therefore AgNPs are used in the area of health for coating dental biomaterials (Rai et al., 2009). Nanomaterials have important physical and chemical properties, such as small size, large surface areas and high reactivity, which are different from polymeric to ceramic or metal nanoparticles used as vehicles in the pharmaceutical and medical fields (Moreno-Vega et al., 2012). "
    [Show description] [Hide description]
    DESCRIPTION: Existe un gran ecosistema microbiano en la cavidad oral donde Staphylococcus aureus (S. aureus) se puede encontrar, causando patologías orales tales como quelitis angular, las paperas y la mucositis estafilocócica. Estas enfermedades producidas por S. aureus en la cavidad oral son consecuencia de los factores de virulencia, toxinas y multiresistencia a los antibióticos, lo que contribuye a la infección. La colonización en la cavidad oral por S. aureus en pacientes sanos es de 24% a 36%. Sin embargo, la incidencia aumenta a 48% en pacientes con prótesis debido a la formación de biofilms en la superficie de las dentaduras postizas. Actualmente, no existe ningún tratamiento para infecciones orales sin el uso de antibióticos. Investigaciones recientes indican que las nanopartículas de plata (AgNPs) son un material o estrategia para eliminar S. aureus debido a su efecto antibacteriano. Sin embargo, el mecanismo del efecto inhibidor de los iones de Ag sobre S. aureus es sólo parcialmente conocida y muy poco se ha informado. Por lo tanto, el propósito de la presente revisión sistemática es determinar las estrategias y retos de la utilización de biomateriales antimicrobianos con AgNPs frente a las infecciones orales de S. aureus.
    Full-text · Research · Sep 2015
  • Source
    • "Conversely, acrylic resins covered with AgNPs were biocompatible, with no evident genotoxic or cytotoxic effect in normal fibroblast and Leucocytes from peripheral blood (Acosta-Torres et al., 2012). Also, minimal citotoxicity was reported in undifferentiated and differentiated human adipose-derived and osteogenic-derived stem cells exposed to AgNPs at 10 µg/mL (Samberg et al., 2012) Silver nanoparticles have the ability to inhibit bacterial growth, and therefore AgNPs are used in the area of health for coating dental biomaterials (Rai et al., 2009). Nanomaterials have important physical and chemical properties, such as small size, large surface areas and high reactivity, which are different from polymeric to ceramic or metal nanoparticles used as vehicles in the pharmaceutical and medical fields (Moreno-Vega et al., 2012). "
    [Show description] [Hide description]
    DESCRIPTION: Resumen Existe un gran ecosistema microbiano en la cavidad oral donde Staphylococcus aureus (S. aureus) se puede encontrar, causando patologías orales tales como quelitis angular, las paperas y la mucositis estafilocócica. Estas enfermedades producidas por S. aureus en la cavidad oral son consecuencia de los factores de virulencia, toxinas y multiresistencia a los antibióticos, lo que contribuye a la infección. La colonización en la cavidad oral por S. aureus en pacientes sanos es de 24% a 36%. Sin embargo, la incidencia aumenta a 48% en pacientes con prótesis debido a la formación de biofilms en la superficie de las dentaduras postizas. Actualmente, no existe ningún tratamiento para infecciones orales sin el uso de antibióticos. Investigaciones recientes indican que las nanopartículas de plata (AgNPs) son un material o estrategia para eliminar S. aureus debido a su efecto antibacteriano. Sin embargo, el mecanismo del efecto inhibidor de los iones de Ag sobre S. aureus es sólo parcialmente conocida y muy poco se ha informado. Por lo tanto, el propósito de la presente revisión sistemática es determinar las estrategias y retos de la utilización de biomateriales antimicrobianos con AgNPs frente a las infecciones orales de S. aureus.
    Full-text · Research · Sep 2015
  • Source
    • "Silver is a potent antimicrobial agent with broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and certain viruses, including antibiotic-resistant strains,11 less likelihood of developing resistant strains, and has been used safely in medicine for many years.12–14 For improved antibacterial activity at the nanoscale level, silver nanoparticles (AgNPs) are becoming the most useful and valuable nanomaterial in medicine.9 A number of investigators have reported the use of AgNPs in tissue engineering scaffolds, with a reduced incidence of infection and good cell compatibility.15,16 "
    [Show abstract] [Hide abstract]
    ABSTRACT: In tissue engineering, urine-derived stem cells are ideal seed cells and silver nanoparticles (AgNPs) are perfect antimicrobial agents. Due to a distinct lack of information on the effects of AgNPs on urine-derived stem cells, a study was conducted to evaluate the effects of silver ions and AgNPs upon the cytotoxicity and osteogenic differentiation of urine-derived stem cells. Initially, AgNPs or AgNO3 were exposed to urine-derived stem cells for 24 hours. Cytotoxicity was measured using the Cell Counting kit-8 (CCK-8) test. The effects of AgNPs or AgNO3 at the maximum safety concentration determined by the CCK-8 test on osteogenic differentiation of urine-derived stem cells were assessed by alkaline phosphatase activity, Alizarin Red S staining, and the quantitative reverse transcription polymerase chain reaction. Lastly, the effects of AgNPs or AgNO3 on "urine-derived stem cell actin cytoskeleton organization" and RhoA activity were assessed by rhodamine-phalloidin staining and Western blotting. Concentration-dependent toxicity was observed starting at an AgNO3 concentration of 2 μg/mL and at an AgNP concentration of 4 μg/mL. At these concentrations, AgNPs were observed to promote osteogenic differentiation of urine-derived stem cells, induce actin polymerization and increase cytoskeletal tension, and activate RhoA; AgNO3 had no such effects. In conclusion, AgNPs can promote osteogenic differentiation of urine-derived stem cells at a suitable concentration, independently of silver ions, and are suitable for incorporation into tissue-engineered scaffolds that utilize urine-derived stem cells as seed cells.
    Full-text · Article · May 2014 · International Journal of Nanomedicine
Show more