Simulating hemodynamics of the Fontan Y-graft based on patient-specific in vivo connections

ArticleinThe Journal of thoracic and cardiovascular surgery 145(3) · May 2012with8 Reads
Impact Factor: 4.17 · DOI: 10.1016/j.jtcvs.2012.03.076 · Source: PubMed

Background: Using a bifurcated Y-graft as the Fontan baffle is hypothesized to streamline and improve flow dynamics through the total cavopulmonary connection (TCPC). This study conducted numerical simulations to evaluate this hypothesis using postoperative data from 5 patients. Methods: Patients were imaged with cardiac magnetic resonance or computed tomography after receiving a bifurcated aorto-iliac Y-graft as their Fontan conduit. Numerical simulations were performed using in vivo flow rates, as well as 2 levels of simulated exercise. Two TCPC models were virtually created for each patient to serve as the basis for hemodynamic comparison. Comparative metrics included connection flow resistance and inferior vena caval flow distribution. Results: Results demonstrate good hemodynamic outcomes for the Y-graft options. The consistency of inferior vena caval flow distribution was improved over TCPC controls, whereas the connection resistances were generally no different from the TCPC values, except for 1 case in which there was a marked improvement under both resting and exercise conditions. Examination of the connection hemodynamics as they relate to surgical Y-graft implementation identified critical strategies and modifications that are needed to potentially realize the theoretical efficiency of such bifurcated connection designs. Conclusions: Five consecutive patients received a Y-graft connection to complete their Fontan procedure with positive hemodynamic results. Refining the surgical technique for implementation should result in further energetic improvements that may help improve long-term outcomes.

    • "Thus, the question is not 'will this idea work for all single-ventricle patients', but is instead 'for which patients will this connection provide a haemodynamic improvement?' The Fontan Y-graft has already demonstrated potential for successfully achieving Fontan flow bifurcation and improving haemodynamic efficiency in single-ventricle patients [12] . Realizable improvements with the flow-divider will therefore be achieved if either the flow-divider is found to be haemodynamically superior to the Y-graft, which appears unlikely, or it shows benefit in patients for whom a Y-graft is contraindicated ( perhaps in cases with large aortic reconstructions). "
    [Show abstract] [Hide abstract] ABSTRACT: OBJECTIVES The total cavopulmonary connection (TCPC), the current palliation of choice for single-ventricle heart defects, is typically created with a single cylindrical tunnel or conduit routing inferior vena caval (IVC) flow to the pulmonary arteries. Previous studies have shown the haemodynamic efficiency of the TCPC to be sub-optimal due to the collision of vena caval flow, thus placing an extra energy burden on the single ventricle. The use of a bifurcated graft as the Fontan baffle (i.e. the ‘Optiflo’) has previously been proposed on the basis of theoretically improved flow efficiency; however, anatomical constraints may limit its effectiveness in some patients.
    Preview · Article · Apr 2013 · Interactive Cardiovascular and Thoracic Surgery
    0Comments 2Citations
  • [Show abstract] [Hide abstract] ABSTRACT: Virtual modeling of cardiothoracic surgery is a new paradigm that allows for systematic exploration of various operative strategies and uses engineering principles to predict the optimal patient-specific plan. This study investigates the predictive accuracy of such methods for the surgical palliation of single ventricle heart defects. Computational fluid dynamics (CFD)-based surgical planning was used to model the Fontan procedure for four patients prior to surgery. The objective for each was to identify the operative strategy that best distributed hepatic blood flow to the pulmonary arteries. Post-operative magnetic resonance data were acquired to compare (via CFD) the post-operative hemodynamics with predictions. Despite variations in physiologic boundary conditions (e.g., cardiac output, venous flows) and the exact geometry of the surgical baffle, sufficient agreement was observed with respect to hepatic flow distribution (90% confidence interval-14 ± 4.3% difference). There was also good agreement of flow-normalized energetic efficiency predictions (19 ± 4.8% error). The hemodynamic outcomes of prospective patient-specific surgical planning of the Fontan procedure are described for the first time with good quantitative comparisons between preoperatively predicted and postoperative simulations. These results demonstrate that surgical planning can be a useful tool for single ventricle cardiothoracic surgery with the ability to deliver significant clinical impact.
    Full-text · Article · Jul 2012 · Annals of Biomedical Engineering
    0Comments 12Citations
  • [Show abstract] [Hide abstract] ABSTRACT: The Fontan procedure, although an imperfect solution for children born with a single functional ventricle, is the only reconstruction at present short of transplantation. The haemodynamics associated with the total cavopulmonary connection, the modern approach to Fontan, are severely altered from the normal biventricular circulation and may contribute to the long-term complications that are frequently noted. Through recent technological advances, spear-headed by advances in medical imaging, it is now possible to virtually model these surgical procedures and evaluate the patient-specific haemodynamics as part of the pre-operative planning process. This is a novel paradigm with the potential to revolutionise the approach to Fontan surgery, help to optimise the haemodynamic results, and improve patient outcomes. This review provides a brief overview of these methods, presents preliminary results of their clinical usage, and offers insights into its potential future directions.
    No preview · Article · Dec 2013 · Cardiology in the Young
    0Comments 0Citations
Show more