Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells

Frank Reidy Research Center for Bioelectric, Old Dominion University, Norfolk, VA 23508, United States.
Biochemical and Biophysical Research Communications (Impact Factor: 2.3). 04/2012; 421(4):808-12. DOI: 10.1016/j.bbrc.2012.04.094
Source: PubMed


NsPEF ablation induces apoptosis markers, but specific cell death pathways have not been fully defined. To identify nsPEF-activated cell death pathways, wildtype human Jurkat cells and clones with deficiencies in extrinsic and intrinsic apoptosis pathways were investigated. NsPEFs activated caspase isozymes and induced identical electric field-dependent cell death in clones deficient in FADD or caspase-8, indicating that extrinsic apoptosis pathways were not activated. This was confirmed when cytochrome c release was shown to be unaffected by the pan caspase inhibitor, z-VAD-fmk. NsPEF-treated APAF-1-silenced cells did not exhibit caspase-3/7 and -9 activities and corresponding electric field-dependent cell death in this clone was attenuated compared to its vector control at low, but not at high electric fields. These data demonstrate that nsPEFs induce intrinsic apoptosis activate by cytochrome c release from mitochondria through an APAF-1- and caspase-dependent pathway as well as through caspase-independent mechanisms that remain to be defined. Furthermore, the results establish that nsPEFs can overcome natural and oncogenic mechanisms that promote cell survival through inhibition of apoptosis and other cell death mechanisms.

Download full-text


Available from: Stephen Beebe, Dec 18, 2015
  • Source
    • "Since nsPEFs do not exist in nature, eukaryotic cells evolved without such stimuli so cell responses to them are distinct from those induced by other known forms of cellular stresses [23]. NsPEF-induced cell death has been defined as intrinsic caspase-dependent and caspase-independent [24] as well as apoptotic and necrotic [25] [26] [27]. Studies show that nsPEFs affect multiple therapeutic targets, including plasma membranes and mitochondria [28] [29] and cancer hallmarks including resisting cell death [9] [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Strategies for treating liver cancer using radiation, chemotherapy combinations and tyrosine kinase inhibitors targeting specific mutations have provided longer survival times, yet multiple treatments are often needed and recurrences with new malignant phenotypes are not uncommon. New and innovative treatments are undoubtedly needed to successfully treat liver cancer. Over the last decade, nanosecond pulsed electric fields (nsPEFs) have shown promise in pre-clinical studies; however, these have been limited to treatment of skin cancers or xenographs in mice. In the present report, an orthotopic hepatocellular carcinoma (HCC) model is established in rats using N1-S1 HCC cells. Data demonstrate a response rate of 80-90% when 1000 pulses are delivered with 100ns durations, electric field strengths of 50kV/cm and repetition rates of 1Hz. N1-S1 tumours treated with nsPEFs expressed significant number of cells with active caspase-3 and caspase-9, but not caspase-8, indicating an intrinsic apoptosis mechanism(s) as well as caspase-independent mechanisms. Most remarkably, rats with successfully ablated tumours failed to re-grow tumours when challenged with a second injection of N1-S1 cells when implanted in the same or different liver lobe that harboured the original tumour. Given this protective effect, infiltration of immune cells and the presence of granzyme B expressing cells within days of treatment suggest the possibility of an anti-tumour adaptive immune response. In conclusion, NsPEFs not only eliminate N1-S1 HCC tumours, but also may induce an immuno-protective effect that defends animals against recurrences of the same cancer.
    Full-text · Article · Jul 2014 · European journal of cancer (Oxford, England: 1990)
  • Source
    • "While these effects have all been observed after nsPEF exposures [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23], the relationship between nsPEF stimulation and lipid signaling pathways has never been studied. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to nanosecond pulsed electrical fields (nsPEFs) results in a myriad of observable effects in mammalian cells. While these effects are often attributed to the direct permeabilization of both the plasma and organelle membranes, the underlying mechanism(s) are not well understood. We hypothesize that nsPEF-induced membrane disturbance will initiate complex intracellular lipid signaling pathways, which ultimately lead to the observed multifarious effects. In this article, we show activation of one of these pathways - phosphoinositide signaling cascade. Here we demonstrate that nsPEF initiates phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) hydrolysis or depletion from the plasma membrane, accumulation of inositol-1,4,5-trisphosphate (IP3) in the cytoplasm and increase of diacylglycerol (DAG) on the inner surface of the plasma membrane. All of these events are initiated by a single 16.2kV/cm, 600ns pulse exposure. To further this claim, we show that the nsPEF-induced activation mirrors the response of M1-acetylcholine Gq/11-coupled metabotropic receptor (hM1). This demonstration of PIP2 hydrolysis by nsPEF exposure is an important step toward understanding the mechanisms underlying this unique stimulus for activation of lipid signaling pathways and is critical for determining the potential for nsPEFs to modulate mammalian cell functions.
    Full-text · Article · May 2013 · Bioelectrochemistry (Amsterdam, Netherlands)
  • Source
    • "Applications of nsPEF are emerging as a novel stimulus for tumor treatment [26]–[33]. Electric fields interact with plasma membranes, intracellular organelles [20] and alter cell functions such as mobilizing calcium [34]–[37], dissipating mitochondria membrane potentials (ΔΨm) [27], [49]–[50], and damaging DNA [29], [51] as well as inducing apoptosis [26]–[30], [49] and other forms of cell death [27], [49], [52]. Although applications of nsPEFs are effective to eliminate melanoma [31], [32] and hepatocellular carcinoma [33] in mice in vivo, understanding underlying mechanisms require further analysis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment of cancer often involves uses of multiple therapeutic strategies with different mechanisms of action. In this study we investigated combinations of nanosecond pulsed electric fields (nsPEF) with low concentrations of gemcitabine on human oral cancer cells. Cells (Cal-27) were treated with pulse parameters (20 pulses, 100 ns in duration, intensities of 10, 30 and 60 kV/cm) and then cultured in medium with 0.01 µg/ml gemcitabine. Proliferation, apoptosis/necrosis, invasion and morphology of those cells were examined using MTT, flow cytometry, clonogenics, transwell migration and TEM assay. Results show that combination treatments of gemcitabine and nsPEFs exhibited significant synergistic activities versus individual treatments for inhibiting oral cancer cell proliferation and inducing apoptosis and necrosis. However, there was no apparent synergism for cell invasion. By this we demonstrated synergistic inhibition of Cal-27 cells in vitro by nsPEFs and gemcitabine. Synergistic behavior indicates that these two treatments have different sites of action and combination treatment allows reduced doses of gemcitabine and lower nsPEF conditions, which may provide better treatment for patients than either treatment alone while reducing systemic toxicities.
    Full-text · Article · Jul 2012 · PLoS ONE
Show more