Chapter

Water and Sediment EQS Derivation and Application

Authors:
  • Environmental Contaminants Research
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

This chapter deals with the derivation of aquatic EQSs, including standards for the protection of water dwellers, predators of water dwellers, and human water users. However, the main focus is on standards for the protection of organisms that live in water or aquatic sediment and are able to absorb contaminants directly via their gills, skin and/or cell surfaces. In other words, the chapter primarily covers the derivation of standards for the protection of aquatic ecosystems.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
To protect the quality of water from toxic pollutants for the health of humans and the environment, two approaches are generally applied in the field of toxicology to predict the effects of pollutants and to monitor the toxic pollutants in water. Here we provide our perspective on state-of-the-art methods to develop water quality criteria and the use of molecular techniques for monitoring water quality. Emphasized is the recent development and application of cell-based assays and small fish model in toxicology research of water.
Article
Full-text available
Potential impacts of chemical releases are often evaluated by regulators, industry, and others to set regulatory action priorities, to make business decisions, and to target pollution prevention efforts. A chemical ranking and scoring method entitled “Chemical Hazard Evaluation for Management Strategies” (CHEMS-1) has been developed as a screening tool to provide a relative assessment of chemical hazards to human health and the environment. The purpose of this method is to place chemical release data into perspective by evaluating both the toxic effects of chemicals and the potential exposure to those chemicals. This is done by combining measures of chemical toxicity pertaining to both human health and the environment with chemical release amounts and information on environmental persistence and bioaccumulation. The CHEMS-1 was initially developed to select priority chemicals for assessing safer substitutes for major product and process uses, where chemicals were selected from Toxics Release Inventory (TRI) data and annual pesticide usage data. A two-tiered approach was adopted with CHEMS-1 presented here representing the first, or screening-level, tier.
Article
Full-text available
In laboratory experiments the effects of suspected endocrine disrupting chemicals on freshwater and marine prosobranch species were analysed. In this second of three publications the responses of the freshwater ramshorn snail Marisa cornuarietis and of two marine prosobranchs (the dogwhelk Nucella lapillus and the netted whelk Hinia reticulata) to the xeno-androgenic model compound triphenyltin (TPT) are presented. Marisa and Nucella were exposed via water (nominal concentrations 5-500 ng TPT-Sn/L) and Hinia via sediments (nominal concentrations 50-500 micrograms TPT-Sn/kg dry wt.) for up to 4 months. Female ramshorn snails but not the two marine species developed imposex in a time and concentration dependent manner (EC10 4 months: 12.3 ng TPT-Sn/L) with a comparable intensity as described for tributyltin. TPT reduced furthermore the fecundity of Marisa at lower concentrations (EC10 4 months: 5.59 ng TPT-Sn/L) with a complete inhibition of spawning at nominal concentrations > or = 250 ng TPT-Sn/L (mean measured +/- SD: > or = 163 +/- 97.0 ng TPT-Sn/L). The extension of the pallial sex organs (penis with accessory structures and prostate gland) of male ramshorn snails and dogwhelks were reduced by up to 25% compared to the control but not in netted whelks. Histopathological analyses for M. cornuarietis and H. reticulata provide evidence for a marked impairment of spermatogenesis (both species) and oogenesis (only netted whelks). The test compound induced a highly significant and concentration independent increase in the incidence of hyperplasia on gills, osphradia and other organs in the mantle cavity of N. lapillus indicating a carcinogenic potential of TPT. The results show that prosobranchs are sensitive to endocrine disruption at environmentally relevant concentrations of TPT. Also, M. cornuarietis is a promising candidate for a future organismic invertebrate system to identify endocrine-mimetic test compounds.
Article
Full-text available
In order to gain basic understanding of the ecological effects of vertebrate Endocrine Disrupting Chemicals (EDCs), many research groups are currently testing these chemicals using aquatic invertebrates. Small crustaceans, such as cladocerans and copepods, are of particular interest since they are ecologically important and their short life cycles allow obtaining information on demographic parameters. Despite the existence of diverse literature on the development, growth and reproductive effects of EDCs on these crustaceans, only a few studies have unambiguously assessed a truly endocrine disrupting effect. This review discusses new experimental designs to differentiate between endocrine disruption and other causes of reproductive and developmental impairment. Our findings clearly illustrate that many studies may have falsely concluded that chemicals have endocrine disrupting modes of action when in fact a much simpler explanation was not previously ruled out (e.g., egg mortality, feeding inhibition). This means that there is an urgent need for integration of toxic effects on energy intake to toxicity assessments. Such an approach would permit different ectotoxicological models of action, including endocrine disrupting effects, to be distinguished and their relative roles in the overall toxic response to be clarified.
Article
Full-text available
We present a Bayesian approach for characterizing background contaminant concentration distributions using data from sites that may have been contaminated. Our method, focused on estimation, resolves several technical problems of the existing methods sanctioned by the U.S. Environmental Protection Agency (USEPA) (a hypothesis testing based method), resulting in a simple and quick procedure for estimating background contaminant concentrations. The proposed Bayesian method is applied to two data sets from a federal facility regulated under the Resource Conservation and Restoration Act. The results are compared to background distributions identified using existing methods recommended by the USEPA. The two data sets represent low and moderate levels of censorship in the data. Although an unbiased estimator is elusive, we show that the proposed Bayesian estimation method will have a smaller bias than the EPA recommended method.
Article
Full-text available
Prosobranch snails represent almost 50% of all recent molluscs, are ubiquitously distributed, play important roles in various ecosystems and exhibit a variety of reproductive modes and life-cycle-strategies. Many of them attain life spans of several years, which in combination with their limited ability to metabolize organic chemicals, may contribute to the fact that prosobranchs constitute one of the most endangered taxonomic groups in aquatic ecosystems. Although it is not yet known to what extent endocrine disrupting chemicals (EDCs) contribute to this situation, the case of tributyltin (TBT) and its population-level impact on prosobranchs demonstrates the general susceptibility of these invertebrates. The existing evidence for comparable population-level effects in prosobranch snails by other androgens, antiandrogens, and estrogens is critically reviewed. The example of TBT demonstrates the difficulty to prove an endocrine mode of action for a given chemical. Although it is generally accepted that TBT causes imposex and intersex in prosobranch snails as a result of endocrine disruption, the detailed biochemical mechanism is still a matter of debate. The strengths and weaknesses of the five competing hypotheses are discussed, together with previously unpublished data. Finally, the ecological relevance of EDC effects on the population and community level and the application of prosobranchs for the assessment of EDCs are addressed.
Book
INCLUDE: Preface Foreword The oceans Marine plankton Measuring and sampling The seawater habitat - physical and chemical conditions Organic production in the sea The sea bottom Energetics of a marine ecosystem The seashore Sea fisheries Human impact on the marine environment Appendix 1: Topics for further study and class discussion Appendix 2: Some laboratory exercises Appendix 3: Some field course exercises, abundance scales, and a field course book list Appendix 4: Marine stations and other organisations Index.
Article
Lead (Pb) in the environment is derived from both naturaland anthropogenic sources. The aim of this study is to estimate the isotopic signature of anthropogenic Pb in sediments from a highly contaminated area (Stockholm), to discuss the influence of different sources on this signature, and to suggest natural Pb background concentrations. Also distribution patterns and differences between different water areas in Stockholm have been studied, both by total Pb and stable Pb isotopes. In 1993, sediment samples were collected at 24 stations in the Stockholm area and analysed for total Pb, zirconium (Zr), scandium (Sc) and stable Pb isotopes (204, 206-208Pb). Total Pb data show that the Stockholm sediments are severely contaminated by Pb. The contamination seems to be rather local since the small lakes surrounding the central parts of Stockholm are much less effected than the central parts. Stockholm is clearly influenced by anthropogenic and natural sources, but in some of the small lakes also by Pb in zircons from the geological basement. The anthropogenic Pb in Stockholm has typical 207Pb/206Pb ratios of 0.85–0.89 and 208Pb/204Pb ratios of 36–38, which are distinct from natural sources. Pb/Sc ratios suggest that the natural background Pb concentration is 10–20 mg kg-1 d.w.
Article
Threshold concepts of toxicological concern are based on the possibility of establishing an exposure threshold value for chemicals below which no significant risk is to be expected. The objective of the present study is to address environmental thresholds of no toxicological concern for freshwater systems (ETNCaq) for organic chemicals. We analyzed environmental toxicological databases (acute and chronic endpoints) and substance hazard assessments. Lowest numbers and 95th-percentile values were derived using data stratification based on mode of action (MOA; 1 = inert chemicals; 2 = less inert chemicals; 3 = reactive chemicals; 4 = specifically acting chemicals). The ETNCaq values were derived by multiplying the lowest 95th percentile values with appropriate application factors; ETNCaq,MOA1–3 is approximately 0.1 μg/L. A preliminary analysis with complete MOA stratification of the databases shows that in the case of MOA1 or MOA2, the ETNCaq value could be even higher than 0.1 μg/L. A significantly lower ETNCaqMOA4 value was observed based on the long-term toxicity information in the European Centre for the Ecotoxicology and Toxicology of Chemicals database. Application of the ETNCaq value in a tiered risk-assessment scheme may help chemical producers to set data-generation priorities and to refine or reduce animal use. It also may help to inform downstream users concerning the relative risk associated with their specific uses and be of value in putting environmental monitoring data into a risk-assessment perspective.
Article
Diazinon, an organophosphate pesticide, had a sublethal effect on the olfactory system of mature male Atlantic salmon parr. The olfactory responses of the parr to prostaglandin F2a (PGF2a) were studied after exposure of the epithelium to different concentrations of Diazinon in water. Electrophysiological recordings from the epithelium indicated that the responses to this prostaglandin were significantly reduced at nominal concentrations as low as 1.0μg l−1 and the threshold of detection was reduced 10-fold at 2.0 μg 1−1 . Mature male salmon parr exposed for a period of 120 h to Diazinon (nominal concentrations 0.3, 0.8, 1.7, 2.7, 5.6, 13, 28 and 45 μg 1 −1) also had significantly reduced levels of the reproductive steroids, 17,20β-dihydroxy-4-pregnen-3-one, testosterone and gonadotrophin II in the blood plasma after priming with ovulated female salmon urine. Both prostaglandin F2a and ovulated female urine are known to have important roles in synchronizing reproductive physiology and behaviour in salmonids as well as other fish species. The results are therefore discussed in relation to the possible sublethal effects of Diazinon on reproduction in the Atlantic salmon and possible effects on populations of salmonids.
Article
An extension of the simultaneously extracted metals/acid-volatile sulfide (SEM/AVS) procedure is presented that predicts the acute and chronic sediment metals effects concentrations. A biotic ligand model (BLM) and a pore water—sediment partitioning model are used to predict the sediment concentration that is in equilibrium with the biotic ligand effects concentration. This initial application considers only partitioning to sediment particulate organic carbon. This procedure bypasses the need to compute the details of the pore-water chemistry. Remarkably, the median lethal concentration on a sediment organic carbon (OC)—normalized basis, SEM*x,OC, is essentially unchanged over a wide range of concentrations of pore-water hardness, salinity, dissolved organic carbon, and any other complexing or competing ligands. Only the pore-water pH is important. Both acute and chronic exposures in fresh- and saltwater sediments are compared to predictions for cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) based on the Daphnia magna BLM. The SEM*x,OC concentrations are similar for all the metals except cadmium. For pH = 8, the approximate values (μmol/gOC) are Cd-SEM*x,OC ⋍ 100, Cu-SEM*x,OC ⋍ 900, Ni-SEM*x,OC ⋍ 1,100, Zn-SEM*x,OC ⋍ 1,400, and Pb-SEM*x,OC ⋍ 2,700. This similarity is the explanation for an empirically observed dose—response relationship between SEM and acute and chronic effects concentrations that had been observed previously. This initial application clearly demonstrates that BLMs can be used to predict toxic sediment concentrations without modeling the pore-water chemistry.
Article
This discussion paper presents a framework for spatiotemporal differentiation in ecological protection goals to assess the risks of pesticides in surface waters. It also provides a proposal to harmonize the different scientific approaches for ecotoxicological effect assessment adopted in guidance documents that support different legislative directives in the European Union (Water Framework Directive and Uniform Principles). Decision schemes to derive maximum permissible concentrations in surface water are presented. These schemes are based on approaches recommended in regulatory guidance documents and are scientifically underpinned by critical review papers concerning the impact of pesticides on freshwater organisms and communities. Special attention is given to the approaches based on standard test species, species sensitivity distribution curves, and model ecosystem experiments. The decision schemes presented here may play a role in the “acceptability” debate and can be used as options in the process of communication between risk assessors and risk managers as well as between these risk experts and other stakeholders.
Article
This is the first in a series of five papers that assess the risk of the cotton pyrethroids in aquatic ecosystems in a series of steps ranging from the analysis of effects data through modeling exposures in the landscape. Pyrethroid insecticides used on cotton have the potential to contaminate aquatic systems. The objectives of this study were to develop probabilistic estimates of toxicity distributions, to compare these among the pyrethroids, and to evaluate cypermethrin as a representative pyrethroid for the purposes of a class risk assessment of the pyrethroids. The distribution of cypermethrin acute toxicity data gave 10th centile values of 10 ng/L for all organisms, 6.4 ng/L for arthropods, and 380 ng/L for vertebrates. For bifenthrin, cyfluthrin, lambda-cyhalothrin, and deltamethrin, the 10th centile values for all organisms were 15, 12, 10, and 9 ng/L, respectively, indicating similar or somewhat lower toxicity than cypermethrin. For tralomethrin and fenpropathrin, the 10th centiles were <310 and 240 ng/L, respectively. The distribution of permethrin toxicity to all organisms, arthropods, and vertebrates gave 10th centiles of 180, 76, and 1600 ng/L, respectively, whereas those for fenvalerate were 37, 8, and 150 ng/L. With the exception of tralomethrin, the distributions of acute toxicity values had similar slopes, suggesting that the variation of sensitivity in a range of aquatic nontarget species is similar. The pyrethroids have different recommended field rates of application that are related to their efficacy, and the relationship between field rate and 10th centiles showed a trend. These results support the use of cypermethrin as a reasonable worst-case surrogate for the other pyrethroids for the purposes of risk assessment of pyrethroids as a class.
Article
The OECD endocrine disrupter activity was initiated in November 1996. A Task Force on Endocrine Disrupter Testing and Assessment (EDTA) has been established in 1997 to oversee the programme. One of the most important outcomes of EDTA is the development of an initial framework for the testing of endocrine disrupting substances consisting of three tiers, initial assessment, screening and testing. Another major outcome of EDTA is agreement to launch a co-operation project on the validation of new and enhanced guidelines for assessment of endocrine disruption in both mammalian and non-mammalian species. With respect to the assessment of endocrine disrupters on wildlife, it was generally recognised that the development of methods for detection of endocrine disrupting effects on wildlife is at the level of pre-validation or optimisation method. In this regard, two main areas of development of endocrine disruption test protocols are currently under investigation: testing in fish and in birds.
Article
The former U.S. EPA OPPT tiered test scheme for heritable gene mutations included the Drosophila sex-linked recessive lethal (SLRL) test in which positive results triggered the mouse specific locus (MSL) test. However, review of available literature indicated that the evaluation of mutations in the germ cells of this insect is not a good predictor of the risk of heritable gene mutations in mammals. The database contained 29 compounds for which there were conclusive MSL test results in either spermatogonial and/or postspermatogonial cells. Results in the SLRL test were available for 27 of those compounds. Of the 24 SLRL-positive chemicals, only 13 (54%) induced heritable mutations in mice; the three SLRL-negative compounds were nonmutagenic in mouse germ cells. The overall concordance between the two tests was 59%. In contrast, results of unscheduled DNA synthesis (UDS: 18 chemicals) and alkaline elution (AE: 14 chemicals) assays in rodent testicular cells following in vivo exposure correlated well with results in the MSL test (83% and 86%, respectively). MSL test results in spermatogonia and postspermatogonia were also compared separately to the SLRL, UDS, and AE assays. The concordances for the two cell types in the SLRL relative to the MSL test were 36% and 79%, respectively, indicating that the SLRL test is extremely poor in predicting heritable gene mutations in mammalian spermatogonia. Concordances for UDS and AE assays relative to MSL test results in spermatogonia (53% and 54%, respectively) and postspermatogonia (91% and 100%, respectively) were greater. Based on these analyses, the U.S. EPA OPPT has revised its tiered test scheme using assays for interaction with gonadal DNA (e.g., UDS and AE) in place of the SLRL test.
Article
There is generally a lack of saltwater ecotoxicity data for risk assessment purposes, leaving an unknown margin of uncertainty in saltwater assessments that utilize surrogate freshwater data. Consequently, a need for sound scientific advice on the suitability of using freshwater data to extrapolate to saltwater effects exists. Here we use species sensitivity distributions to determine if freshwater datasets are adequately protective of saltwater species assemblages for 21 chemical substances. For ammonia and the metal compounds among these data, freshwater data were generally protective because freshwater organisms tended to be more sensitive. In contrast, for pesticide and narcotic compounds, saltwater species tended to be more sensitive and a suitable uncertainty factor would need to be applied to surrogate freshwater data. Biological and physicochemical factors contribute to such differences in freshwater and saltwater species sensitivities, but the species compositions of datasets used are also important.
Article
The use of quantitative structure-activity relationships (QSARs) for deriving the predicted no-effect concentration of discrete organic chemicals for the purposes of conducting a regulatory risk assessment in Europe and the United States is described. In the United States, under the Toxic Substances Control Act (TSCA), the TSCA Interagency Testing Committee and the U.S. Environmental Protection Agency (U.S. EPA) use SARs to estimate the hazards of existing and new chemicals. Within the Existing Substances Regulation in Europe, QSARs may be used for data evaluation, test strategy indications, and the identification and filling of data gaps. To illustrate where and when QSARs may be useful and when their use is more problematic, an example, methyl tertiary-butyl ether (MTBE), is given and the predicted and experimental data are compared. Improvements needed for new QSARs and tools for developing and using QSARs are discussed.
Article
Single-species acute toxicity data and (micro)mesocosm data were collated for 16 insecticides. These data were used to investigate the importance of test-species selection in constructing species sensitivity distributions (SSDs) and the ability of estimated hazardous concentrations (HCs) to protect freshwater aquatic ecosystems. A log-normal model was fitted to a minimum of six data points, and the resulting distribution was used to estimate lower (95% confidence), median (50% confidence), and upper (5% confidence) 5% HC (HC5) values. Species sensitivity distributions for specific taxonomic groups (vertebrates, arthropods, nonarthropod invertebrates), habitats (saltwater, freshwater, lentic, lotic), and geographical regions (Palaearctic, Nearctic, temperate, tropical) were compared. The taxonomic composition of the species assemblage used to construct the SSD does have a significant influence on the assessment of hazard, but the habitat and geographical distribution of the species do not. Moreover, SSDs constructed using species recommended in test guidelines did not differ significantly from those constructed using nonrecommended species. Hazardous concentrations estimated using laboratory-derived acute toxicity data for freshwater arthropods (i.e., the most sensitive taxonomic group) were compared to the response of freshwater ecosystems exposed to insecticides. The sensitivity distributions of freshwater arthropods were similar for both field and laboratory exposure, and the lower HC5 (95% protection with 95% confidence) estimate was protective of adverse ecological effects in freshwater ecosystems. The corresponding median HC5 (95% protection level with 50% confidence) was generally protective of single applications of insecticide but not of continuous or multiple applications. In the latter cases, a safety factor of at least five should be applied to the median HC5.
Article
Species sensitivity distribution (SSD) methodology currently is used in environmental risk assessment to determine the predicted no-effect concentration (PNEC) of a substance in cases where a sufficient number of chronic ecotoxicological tests have been carried out on the substance, covering, for the aquatic environment with which we are concerned, three taxonomic groups: algae, invertebrates, and vertebrates. In particular, SSD methodology enables calculation of a hazardous concentration that is assumed to protect 95% of species (HC5). This approach is based on the hypothesis that the species for which results of ecotoxicological tests are known are representative, in terms of sensitivity, of the totality of the species in the environment, which raises a number of questions, both theoretical and practical. In this study, we compared various methods of constructing a species sensitivity-weighted distribution (SSWD). Each method is characterized by a different way of taking into account intraspecies variation and proportions of taxonomic groups (vertebrates, invertebrates, and algae), as well as by the statistical method of calculation of the HC5 and its confidence interval. Those methods are tested on 15 substances by using chronic no-observed-effect concentration data available in the literature. The choice of data (intraspecies variation and proportions between taxonomic groups) was found to have more effect on the value of the HC5 than the statistical method used to construct the distribution. The weight of each taxonomic group is the most important parameter for the result of the SSWD and letting literature references decide which proportions of data are used to construct it is not satisfactory.
Article
In our study, we aim to characterize the estrogenicity of 18 independent rivers that receive effluent from sewage treatment works. During the winter and summer of 2003, we collected multiple water samples and measured environmental estrogens with an in vitro yeast-based reporter gene assay; estrogenicity was expressed as ng 17beta-estradiol equivalents (EEQ) per L of water. Estradiol equivalents values in winter ranged from 0.3 to 2.0 ng/L and, in summer, from 0.4 to 7.0 ng/L. Winter and summer EEQ values were not correlated with each other or with the dilution factor of the effluent in the river. Variation in EEQ values was large and correlated from winter to summer. Part of this variation in estrogenicity is explained by water flow rates; variation is larger at reduced flow rates. We measured plasma vitellogenin concentrations in immature male brown trout. At five sites, vitellogenin concentrations exceeded 1 microg/ml; however, at the majority of the sites, plasma vitellogenin concentrations were below 0.5 microg/ml. Our data indicate that the exposure of brown trout to environmental estrogens in Swiss midland rivers is low. However, some sites show reoccurring higher EEQ values and, at some sites, plasma vitellogenin concentrations in male fish clearly are elevated.
Article
As we enter the 21st "biocentury", with issues such as biodiversity and biotechnology growing in public profile, it is important to reflect on the immense ecological, medical and economic importance of invertebrates. Efforts to understand the diverse biology of invertebrates come from many directions, including Nobel Prize winning developmental biology, research to control insects that threaten human health and food supplies, aquaculture opportunities and also within ecotoxicology. In the latter context, this special journal volume highlights the importance of addressing endocrine disruption in aquatic invertebrates, from molecular and cellular biomarkers to population-relevant adverse effects. The contributors to this special volume have provided an excellent assessment of both the fundamental endocrinology and applied ecotoxicology of many aquatic invertebrate groups. On the premise that reproductive success is ultimately the vital population parameter, this chapter gives a personal view of key gaps in knowledge in invertebrate reproductive and developmental endocrinology and ecotoxicology. Based on current knowledge, there are four key issues that need to be prioritised within aquatic ecotoxicology: (1) a wider assessment of the reproductive status of invertebrates in both freshwater and coastal ecosystems; (2) prioritisation of laboratory studies in OECD and other regulatory test organisms, including basic endocrinology and ADME (absorption, distribution, metabolism and excretion) research; (3) development and validation of mechanistic biomarkers that can be used as "signposts" to help prioritise species and chronic test endpoint selection, and help link data from laboratory and field studies; and (4) develop a comparative invertebrate toxicology database utilising the prioritised reference chemicals from the EDIETA workshop, encompassing the diverse modes-of-action pertinent to endocrine disrupter testing in both aquatic arthropod and non-arthropod invertebrates.
Article
The ability to predict metal toxicity in sediments based on measurements of simple chemical parameters is not possible using currently available sediment-quality guidelines (SQGs). Past evaluations of available SQGs for metals indicated little difference in their predictive abilities; however, the scientific understanding of cause-effect relationships is progressing rapidly. Today, it is clear that they can be protective of benthic ecosystem health, but single-value SQGs will be ineffective for predicting the toxicity of metals in sediments. Recent exposure-effects models and the sediment biotic ligand model both indicate that a better approach would be to have SQG concentrations, or ranges, that are applied to different sediment types. This review indicates that significant improvements in laboratory and field-based measurements, better recording of parameters that influence metal toxicity in sediments, as well as quantification of the metal exposure routes and the relative contribution of dissolved and particulate sources to toxic effects are needed to improve the power of predictive models and the overall effectiveness of SQGs for metals. Simply exposing benthic organisms to contaminated sediments and reporting effects concentrations or thresholds based on particulate metal concentrations will provide little information to aid future SQG development. For all tests, careful measurement and reporting of concentrations of particulate metal-binding phases (e.g., sulfide, organic carbon, and iron phases), metal partitioning between porewater and sediments, and porewater pH are considered as minimum data requirements. When using metal-spiked sediments, much better efforts are required to achieve sediment properties that resemble those of naturally contaminated sediments. Our current understanding of metal toxicity indicates that considerably greater information requirements will be needed to predict sublethal and chronic effects of metals, because the toxic, metabolically available concentration of metals within an organism will fluctuate over time. Based on the review of exposure and effects models, along with improved measurement of metal exposure-related parameters, the measurement of the short-term uptake rate of metals into organisms is likely to improve future models.