Molecular bases and clinical spectrum of early infantile epileptic encephalopathies

Department of Pediatrics, Cedars Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.
European journal of medical genetics (Impact Factor: 1.47). 04/2012; 55(5):299-306. DOI: 10.1016/j.ejmg.2012.04.002
Source: PubMed


Epilepsy can be a challenging diagnosis to make in the neonatal and infantile periods. Seizures in this age group may be due to a serious underlying cause that results in an epileptic encephalopathy. Early infantile epileptic encephalopathy (EIEE) is a progressive neurologic condition that exhibits concomitant cognitive and motor impairment, and is often associated with severe intellectual disability. This condition belongs to the group of age-dependent epileptic encephalopathies, and thus the clinical and electro-encephalographic features change with age as the central nervous system evolves. The molecular bases and the clinical spectrum associated with the early infantile epileptic encephalopathies continue to expand as new genetic discoveries are made. This review will highlight the molecular etiologies of early infantile epileptic encephalopathy, and the clinical and electro-encephalographic changes that take place in these epileptic phenotypes as the brain develops.

1 Follower
12 Reads
  • Source
    • "Several studies elucidated the pathological mechanism of genetic mutations, showing synaptogenesis, pruning, neuronal migration and differentiation, as well as neurotransmitter synthesis and release, and functions of receptors and transporters [2] [3] [4] [5]. Abnormal expression of glutamate or γ-aminobutyric acid (GABA) receptor is a major pathogenesis of severe epilepsy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Early-onset epileptic encephalopathies include various diseases such as early-infantile epileptic encephalopathy with suppression burst. We experimentally investigated the unique clinicopathological features of a 28-month-old girl with early-onset epileptic encephalopathy. Her initial symptom was intractable epilepsy with a suppression-burst pattern of electroencephalography (EEG) from 7days of age. The suppression-burst pattern was novel, appearing during sleep, but disappearing upon waking and after becoming 2months old. The EEG showed multifocal spikes and altered with age. Her seizures demonstrated various clinical features and continued until death. She did not show any developmental features, including no social smiling or head control. Head MRI revealed progressive atrophy of the cerebral cortex and white matter after 1month of age. (123)IMZ-SPECT demonstrated hypo-perfusion of the cerebral cortex, but normo-perfusion of the diencephalon and cerebellum. Such imaging information indicated GABA-A receptor dysfunction of the cerebral cortex. The genetic analyses of major neonatal epilepsies showed no mutation. The neuropathology revealed atrophy and severe edema of the cerebral cortex and white matter. GAD-immunohistochemistry exhibited imbalanced distribution of GABAergic interneurons between the striatum and cerebral cortex. The results were similar to those of focal cortical dysplasia with transmantle sign and X-linked lissencephaly with ARX mutation. We performed various metabolic examinations, detailed pathological investigations and genetic analyses, but could not identify the cause. To our knowledge, her clinical and pathological courses have never been described in the literature.
    Full-text · Article · Feb 2013 · Journal of the neurological sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene are associated with a severe epileptic encephalopathy (early infantile epileptic encephalopathy type 2, EIEE2) characterized by early-onset intractable seizures, infantile spasms, severe developmental delay, intellectual disability, and Rett syndrome (RTT)-like features. Despite the clear involvement of CDKL5 mutations in intellectual disability, the function of this protein during brain development and the molecular mechanisms involved in its regulation are still unknown. Using human neuroblastoma cells as a model system we found that an increase in CDKL5 expression caused an arrest of the cell cycle in the G(0)/G(1) phases and induced cellular differentiation. Interestingly, CDKL5 expression was inhibited by MYCN, a transcription factor that promotes cell proliferation during brain development and plays a relevant role in neuroblastoma biology. Through a combination of different and complementary molecular and cellular approaches we could show that MYCN acts as a direct repressor of the CDKL5 promoter. Overall our findings unveil a functional axis between MYCN and CDKL5 governing both neuron proliferation rate and differentiation. The fact that CDKL5 is involved in the control of both neuron proliferation and differentiation may help understand the early appearance of neurological symptoms in patients with mutations in CDKL5.
    Full-text · Article · Aug 2012 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early infantile epileptic encephalopathies usually manifest as severely impaired cognitive and motor development and often result in a devastating permanent global developmental delay and intellectual disability. A large set of genes has been implicated in the aetiology of this heterogeneous group of disorders. Among these, the ion channelopathies play a prominent role. In this study, we investigated the genetic cause of infantile epilepsy in three affected siblings. Homozygosity mapping in DNA samples followed by exome analysis in one of the patients resulted in the identification of a homozygous mutation, p.L1040P, in the CACNA2D2 gene. This gene encodes the auxiliary α(2)δ2 subunit of high voltage gated calcium channels. The expression of the α(2)δ2-L1040P mutant instead of α(2)δ2 wild-type (WT) in Xenopus laevis oocytes was associated with a notable reduction of current density of both N (Ca(V)2.2) and L (Ca(V)1.2) type calcium channels. Western blot and confocal imaging analyses showed that the α(2)δ2-L1040P mutant was synthesised normally in oocyte but only the α(2)δ2-WT, and not the α(2)δ2-L1040P mutant, increased the expression of α(1B), the pore forming subunit of Ca(V)2.2, at the plasma membrane. The expression of α(2)δ2-WT with Ca(V)2.2 increased the surface expression of α(1B) 2.5-3 fold and accelerated current inactivation, whereas α(2)δ2-L1040P did not produce any of these effects. L1040P mutation in the CACNA2D2 gene is associated with dysfunction of α(2)δ2, resulting in reduced current density and slow inactivation in neuronal calcium channels. The prolonged calcium entry during depolarisation and changes in surface density of calcium channels caused by deficient α(2)δ2 could underlie the epileptic phenotype. This is the first report of an encephalopathy caused by mutation in the auxiliary α(2)δ subunit of high voltage gated calcium channels in humans, illustrating the importance of this subunit in normal physiology of the human brain.
    No preview · Article · Feb 2013 · Journal of Medical Genetics
Show more