Article

Foxp-Mediated Suppression of N-Cadherin Regulates Neuroepithelial Character and Progenitor Maintenance in the CNS

Department of Neurobiology, David Geffen School of Medicine at UCLA, 610 Charles Young Drive East, Los Angeles, CA 90095, USA.
Neuron (Impact Factor: 15.05). 04/2012; 74(2):314-30. DOI: 10.1016/j.neuron.2012.02.024
Source: PubMed

ABSTRACT

Neuroepithelial attachments at adherens junctions are essential for the self-renewal of neural stem and progenitor cells and the polarized organization of the developing central nervous system. The balance between stem cell maintenance and differentiation depends on the precise assembly and disassembly of these adhesive contacts, but the gene regulatory mechanisms orchestrating this process are not known. Here, we demonstrate that two Forkhead transcription factors, Foxp2 and Foxp4, are progressively expressed upon neural differentiation in the spinal cord. Elevated expression of either Foxp represses the expression of a key component of adherens junctions, N-cadherin, and promotes the detachment of differentiating neurons from the neuroepithelium. Conversely, inactivation of Foxp2 and Foxp4 function in both chick and mouse results in a spectrum of neural tube defects associated with neuroepithelial disorganization and enhanced progenitor maintenance. Together, these data reveal a Foxp-based transcriptional mechanism that regulates the integrity and cytoarchitecture of neuroepithelial progenitors.

  • Source
    • "Several reports have begun to elucidate a role for Foxp1 in the brain (Rousso et al. 2012; Tang et al. 2012), and recent work has shown that mice with brain-specific loss of Foxp1 have altered hippocampal electrophysiology, striatal morphology, and social behaviors (Bacon et al. 2015). However, the region-specific "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication.
    Full-text · Article · Oct 2015 · Genes & Development
  • Source
    • "Sey/Sey mutant mice were generated as previously described (Novitch et al., 2001; Rousso et al., 2012). All mice were maintained and tissue collected in accordance with guidelines set forth by the UCLA Institutional Animal Care and Use Committee. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Throughout the developing nervous system, neural stem and progenitor cells give rise to diverse classes of neurons and glia in a spatially and temporally coordinated manner. In the ventral spinal cord, much of this diversity emerges through the morphogen actions of Sonic hedgehog (Shh). Interpretation of the Shh gradient depends on both the amount of ligand and duration of exposure, but the mechanisms permitting prolonged responses to Shh are not well understood. We demonstrate that Notch signaling plays an essential role in this process, enabling neural progenitors to attain sufficiently high levels of Shh pathway activity needed to direct the ventral-most cell fates. Notch activity regulates subcellular localization of the Shh receptor Patched1, gating the translocation of the key effector Smoothened to primary cilia and its downstream signaling activities. These data reveal an unexpected role for Notch shaping the interpretation of the Shh morphogen gradient and influencing cell fate determination. Copyright © 2015 Elsevier Inc. All rights reserved.
    Full-text · Article · Apr 2015 · Developmental Cell
  • Source
    • "What are the molecular mechanisms controlling such migration? Rousso et al. (2012) remarkably identify the role of the forkhead box P2 and 4 (FOXP2/4) in promoting the detachment of newly born MNs from the ventricular zone. Additionally, the authors elegantly linked nuclear gene regulation to effector protein at the membrane. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.
    Full-text · Article · Oct 2014 · Frontiers in Cellular Neuroscience
Show more